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Abstract—A look at Exascale reveals a future with multicore
supercomputers that will inexorably experience frequent failures.
Providing scalable and efficient fault tolerance support is one of
the major concerns to pave the road for the next generation of
machines. Checkpoint/restart remains as the standard de facto
approach to provide fault tolerance in supercomputers. However,
its high recovery cost has brought the attention of the community
to an alternative mechanism, message logging. In this paper we
present the design of a message logging protocol that targets
multicore machines based on two fundamental assumptions.
First, a multicore node is the minimum unit of failure and very
frequently only one node goes down per failure. Second, the
shared memory is a key resource to bring down the overhead of
message logging. This paper also presents an analysis of failure
data from recent supercomputers that show that most of the time
a failure involves one single computational node. We offer two
different distributions to model the data. Using those distributions
we build a model for the survivability of the message logging
protocol to multiple concurrent failures. We demonstrate our
technique has a low overhead. The results of an experiment
with a stencil program show the execution time penalty is below
5% when the program scales up to 1024 cores. Moreover, even
when the protocol was designed to tolerate one single failure at
a time, it provides a high probability of survival to a failure
involving any number of nodes. Using real-world data from
recent supercomputers we demonstrate the chances of survive
any failure are higher than 99%.

Index Terms—fault tolerance, causal message logging, multi-
core systems.

I. INTRODUCTION

One of the major concerns for the future of high perfor-
mance computing (HPC) is fault tolerance [1], [2]. The most
optimistic predictions about failures in Exascale forecast a
mean time between failures of a few hours. To pave the road
for HPC applications to scale and be able to make progress
in spite of frequent failures, it is necessary to design new
fault tolerance techniques that consider the peculiarities of
modern supercomputing environments (hardware, systems and
applications) and optimize for the common case.

The typical solution for fault tolerance in HPC is check-
point/restart. Under that scheme, all the nodes running the
application must checkpoint their state periodically. Several
flavors of checkpoint/restart exist. For instance, checkpoint can
be triggered by the system, middleware or by the user. On the
other hand, a node’s checkpoint can be stored in stable storage
or in the memory of other node. In this paper we assume the

checkpoint is initiated by the user and checkpoints are stored
in main memory.

The drawback of checkpoint/restart is its high cost in recov-
ery, either in terms of time or energy. After a crash, all nodes
have to roll back and restart the execution. An alternative
approach is message logging, that requires messages to be
stored and additional information to be computed after each
message is received. The benefit of message logging is that a
crash on one node only requires that node to roll back, while
the rest of nodes resend the messages to the recovering node
and keep making progress (or sitting idle and spending less
energy) in the meantime.

A multicore machine offers new opportunities to the design
of message logging protocols. There are two major properties
about multicore we take advantage from in this paper. First,
a node is typically a single unit of failure. After a crash of a
node, all its composing processing elements (PEs) are lost as
it is the memory of the node. The message logging protocol
can use that fact to tolerate the failure of a subset of PEs.
Second, a node has a memory that can be shared by all its
PEs. In this way, data structures common to the whole set of
PEs of the same node can reside in shared memory and can
be used to store the additional information message logging
protocols require.

The contributions of this paper can be summarized as
the following: i) a collection of distributions for failures
from real-world supercomputer’s data and two models for the
distribution of multiple concurrent failures, i7) a design of
a message logging protocol for multicore arquitectures that
has a low overhead compared to checkpoint/restart and, i7)
an analysis of the survivability of this protocol to multiple
concurrent failures.

The paper is organized in the following way. Section II
shows the results of analyzing failure datasets of five different
supercomputers and getting the distribution for multiple con-
current failures. We show two different functions to model
those distributions. An adaptation to multicore of a well-
know message logging protocol is presented in Section III.
Results from an evaluation of the protocol appear in Section
IV. Section V contains an analysis of the adapted protocol
when multiple concurrent failures occur. Finally, Section VI
concludes the paper.



II. FAILURES IN HPC SYSTEMS

The first comprehensive study of failures in High Per-
formance Computing (HPC) systems was performed by
Schroeder and Gibson [3]. They analyzed failure data from
several supercomputers at Los Alamos National Laboratory.
The methodology followed by them was to find a good model
to fit different variables. For instance, they found Poisson
and exponential distributions to be poor fits for number of
failures per node and time between failures, respectively. On
the contrary, Weibull and lognormal distributions were shown
to be a good model for time between failures and repair time,
correspondingly. Their analyses helped to understand better the
behavior of failures in large-scale computing systems. One of
their findings was that failure rates do not grow significantly
faster than linearly with system size. Based on that fact, we can
assume failure frequency will scale as supercomputers grow
within the same architecture type.

One statistic Schroeder and Gibson did not analyze was the
probability of a failure affecting k£ nodes. In other words, how
likely it is that k£ nodes go down as part of the same failure
in the system. As noted by other authors, failures rarely affect
more than one node. For instance, Moody et al [4] mention
that 85% of the failures disable at most one compute node
on the clusters at Lawrence Livermore National Laboratory
where The Scalable Checkpoint/Restart (SCR) library is run.
Understanding this distribution is important, since it directly
dictates what design decisions should be made when laying
out the fault tolerance protocol. It is well known that tolerating
the concurrent failure of any k£ nodes in a system has a high
impact on the performance of message logging protocols [5],
[6]. On the contrary, we have found that protocols that tolerate
one single failure at a time present low overhead and good
scalability [7].

In this paper, we call multiple concurrent failure distribution
the one that represents the number of nodes that simultane-
ously go down per failure. We collected failure information
from several available sources and analyzed the information
to generate the multiple concurrent failure distribution for 5
different machines. The Computer Failure Data Repository
(CFDR) [8] has information about failure data collected at
different institutions and made public for scientific use. We
extracted the failure information of 3 different machines from
CFDR. These machines are called System 7, System 8 from
Los Alamos National Laboratory and MPP2 from Pacific
Northwest National Laboratory. We also gather information
from Tsubame supercomputer at Tokyo Institute of Tech-
nology and Mercury machine at National Center for Super-
computing Applications. All those machines have multicore
architecture with different features about memory size, number
of cores per node and so on.

Figure 1 presents the multiple concurrent failure distribution
for each machine. We only present the percentage of failures
that involve 1, 2, 3, 4 or more than 4 nodes. There are two
important things to notice. First of all, the distribution is very
skewed, to the point that the y axis had to be logarithmic
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Fig. 1: Distribution of failures according to the number of
crashed nodes per failure.

in order to appreciate the percentage of the less common
cases. This means a very high percentage of the time a failure
involves only one node. This is consistent with the findings
of other authors [4]. Second, we see two different types of
cases according to the shape of the curve. In the first group
(consisting of the first 3 machines) we can appreciate that the
percentage of cases reduces exponentially from 1 node to more
than 4. The last two machines show a slightly different story,
where the decreasing in the percentage is not exponential,
granted they have a seemingly heavy-tailed distribution.

We proceeded to find good-fit probability distributions to
model the two different types of curves in the data collected:
exponential decay and heavy tail. For the former case we chose
the geometric distribution, whereas for the latter we selected
Zipf’s.

A Bernoulli trial is an experiment with only two possible
outcomes. As a random variable, the outcome has probability
p of being a success and probability (1 —p) of being a failure.
The geometric distribution models the probability of having x
failures before getting the first success. More mathematically,

flx)=1-p) " p

where p is the only parameter of the distribution. The geomet-
ric distribution can be thought as the discrete counterpart of
the exponential distribution. That means, it decays quickly as
x grows and for a large x the probability of x tends to zero.

On the other hand, to model distributions with a heavy tail,
we recurred to Zipf’s distribution. Notoriously by being ap-
plied to information retrieval to model the frequency of words
in a text, Zipf’s distribution is described by the following

formula, .

flz) = ﬁ

i=17s
which has two parameters. First, s is a parameter controlling
how skewed the distribution is. If s equals 1, then the de-
nominator of the fraction is = multiplied by the generalized
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bution.

harmonic number. Second, n is the maximum value of x, being
1 the minimum. A property of Zipf’s distribution is that it does
not decay exponentially and provides a long tail. This means,
the accumulated probability of values larger than x is never
negligible, no matter how big z is.

Using these two functions we chose proper parameters to
model the distributions in figure 1. The results are shown in
figure 2 and the parameters are shown in parenthesis. For the
heavy-tail cases we used a value of n equals to 1024. The first
two distributions were modeled by a geometric function and
fit very closely the original data. The third distribution is also
geometric and has a good fit, but the tail was not completely
captured by the geometric function. The fourth case was the
more challenging, since it has a surprisingly long tail. In order
to account for the long tail, we had to reduce value s and
reduce how skewed the curve was. Still the tail does not
account exactly for the original value, but is not negligible
in the model. We would not have been able to do this by
using a geometric distribution. Finally, the last distribution is
almost matched perfectly by a Zipf’s distribution.

III. FAULT TOLERANCE MECHANISMS

An important design decision when devising a fault toler-
ance technique is whether to tolerate one single node failure or
the simultaneous failure of any subset of nodes. The previous
section gives us a fundamental clue on this regard. A high
fraction of the failures in HPC systems brings down only one
single node. We will present two major mechanisms for fault
tolerance that survive the crash of one single failure at a time.
Section V will provide an analysis of the probability of these
two mechanisms to resist multiple concurrent failures.

A. Checkpoint/Restart

The preferred method to provide fault tolerance in HPC
is checkpoint/restart [4], [9]. In a nutshell, checkpoint/restart
consists in nodes frequently checkpointing their state to stable
storage or the memory of another node. The optimum time

to checkpoint has been analyzed elsewhere [10]. Nodes can
coordinate their checkpoints to store them in a consistent way.
As an option, each node may checkpoint at its own pace, but
the system must take care of the state of the channel at the
time of checkpoint. If there is a failure, all nodes must roll
back to the previous checkpoint and restart from there.

Previous work on checkpoint/restart for multicore machines
has focused on reducing the jitter at the time of checkpoint by
merging multiple requests to the file system into coarser writes.
Ouyang et al have identified the benefits of write aggregation
and interleaving in this scenario [11].

We designed and implemented a checkpoint/restart strategy
for multicore machines to work as a comparison point for the
message logging protocol. There are a few design decisions
we made in our approach. First, we target applications with
a moderate memory footprint, such that checkpoint can be
stored in main memory. Second, the application checkpoints
in a synchronized fashion. This means, all the nodes in the
application reach a point where they start a global collective
operation to checkpoint. Third, we assume we always have
spare nodes to substitute those other nodes that crash.

Each node at checkpoint will store its state in two places:
its own memory and the memory of its buddy node. If a
node fails, its buddy will provide the required state to restart.
More details on a similar protocol that targets machines with
one core per node are presented elsewhere [12]. It should
be clear that our protocol tolerates one failure at a time. If
both a node and its buddy are lost due to a failure, then
restart is compromised. However, there are multiple concurrent
failures that our protocol can still tolerate. A deeper analysis
is presented in section V.

B. Message Logging

The main drawback of checkpoint/restart is its cost of
recovering from a failure. Since all nodes have to rollback after
one of them crashes, there is a high impact on the energy and
execution time necessary to tolerate a failure. Message logging
techniques have been explored as a promising alternative to
checkpoint/restart [13], [14].

The main advantage of message logging comes from the fact
that a crash in one node does not mean all the rest have to roll
back. Instead, the surviving nodes can keep making progress
in the application or at least remain idle and consuming less
energy while the crashed node recovers.

Of course, that advantage does not come for free. Message
logging requires every application message to be stored. For
instance, if the sender node X stores all the messages it sends,
then after a failure of one of its recipient nodes Y, X is able
to re-send to Y all the messages it sent before the crash. That
way, X does not roll back and Y is able to recover.

In addition to storing messages, message logging protocols
must also store extra information about the messages. A
determinant is the result of any non-deterministic decision
made by a node. For example, a message reception is in
general non-deterministic. After receiving a message, a node
will generate a determinant consisting of four components
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Fig. 3: Forward path and recovery in causal message logging.

(senderID,receiverI D, ssn,rsn). Along with the IDs of
both sender and receiver, the determinant contain the send
sequence number (ssn) and the receive sequence number (rsn).
A determinant is necessary to provide a consistent recovery,
discarding repeated messages and ordering the reception of
messages resent. Depending on how determinants are manip-
ulated, several flavors of message logging are possible [15].

In this paper we will use a protocol called causal message
logging [5], [7], [15]. The main intuition behind this protocol is
that determinants will be stored in the causality path that starts
at their creation. In other words, a determinant d produced at
PE A will be stored somewhere else only if there is a message
leaving A that occurs after d has been generated at A. If no
message connects determinant d with any other determinant,
then it is fine to lose d in a failure, since it did not have any
causal effect on the system.

The way causal message logging works is depicted in figure
3. There are two parts presented in the figure. The failure-free
scenario or forward path is shown on the left extreme. The
recovery after a failure is shown on the right. The execution in
the figure starts with a checkpoint that we assume is globally
coordinated. This assumption can be easily removed as one of
the major advantages of message logging is to provided un-
coordinated checkpoint. However, many applications in HPC
exhibit global synchronization points and those places are ideal
to kick off the checkpoint mechanism. Each node checkpoints
its state in the memory of a buddy node, but this time a node
does not store its state in its own memory. As opposed to
checkpoint/restart, that extra copy of a node’s state does not
bring any advantage to the protocol.

Every message reception generates a determinant. In figure
3 message m; is sent by PE A and received by PE B. As
soon as the message is received, B generates determinant d;.
Once a determinant is generated, it will be piggybacked on
every outgoing message until it is safely stored in other node.
Notice that message mo does not piggyback any determinant,
since it is a local message, i.e., within the same node.
However, at C, the reception of msy generates determinant
do. The next outgoing message, ms in this case, piggybacks
both determinants. We denote the piggyback operation by the
@ symbol. Notice that message my also piggybacks both
determinants, since at the time of sending my4 out of node

Y, the acknowledgments for the determinants have not been
received.

In our causal protocol the node is the minimum unit of
failure and as such, all the PEs failed as soon as part of the
crash of their containing node. Figure 3 presents the failure of
node Y. Once the system finds substitute for Y, all the PEs are
recreated on that node from their last checkpoints. All the other
nodes resend the messages they sent from the last checkpoint
and they also send any determinants they have stored from
node Y. With messages and their respective determinants,
node Y is able to recover from the crash.

An important thing to highlight is that local messages are
not stored, since they will be lost in case of a failure. De-
terminants corresponding to those messages are nevertheless
generated and treated as any other determinant. To leverage
the potential of multicore machines, we devised a method to
manage the determinants generated at a particular node. All
the PEs share a common structure for storing determinants.
This structure behaves like a queue, where different PEs will
insert a new determinant, copy several of them to piggyback
and acknowledge the safe storage of other determinants. Since
all PEs will simultaneously access this structure, we must have
a way to synchronize the access to the structure for the three
different operations. A straightforward way is to use a single
lock and define three critical regions protected by that lock.
This will inevitably result in a high lock contention for nodes
with several PEs and potentially many threads running per PE.
We ran a simple experiment to have an idea of how much time
lock contention could stand for. We used 32 nodes with 8 PEs
each and 4 threads running per PE. Table I shows the timing
results for lock contention on the three different operations:
adding a determinant, piggybacking and acknowledging them.
In general we can see the high cost of having a simple
synchronization mechanism. The added extra latency for every
message could be measure in dozens of microseconds.

TABLE I: Lock Contention (microseconds)

Add Piggyback Acknowledge
41 60 79

However, a coarse synchronization for the structure holding
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the determinants is clearly an overkill. Having a fine-grained
synchronization mechanism can easily get rid of the lock and
avoid the high cost of lock contention. We decided to use a
smarter way to access the determinants in shared memory.
Figure 4 presents a simplified view of the queue storing
determinants. There are four possible states for an entry in
that queue. A determinant may have been acknowledged (A),
or it has to be piggybacked (P), or is currently being filled up
(F), or it may be empty (E). Three different indexes regulate
access to the queue. The start index indicates the start of the
segment of determinants that have to be piggybacked in the
next outgoing messages. If an acknowledgment is received,
that index has to be moved forward. The other limit for the
piggybacked determinants is signaled by end. Finally, every
time a thread needs to enter a new determinant, it is given
the entry pointed by new. Once the thread finishes writing all
the information on that entry, the end index has to be moved
accordingly.

Figure 5 presents the pseudo-algorithm for the different
operations on the queue of determinants (). We are able to
remove all locking operations to access the queue and instead
use atomic operations over the indexes of the queue. Notice
that when a new determinant is to be added to the queue, a new
position t is obtained, but this position has to be committed
in order, to keep consistency in the queue.

Add (d,Q):
t + AtomicFetchAndIncrement(new)
Fill entry ¢ with d
while ¢ # (end + 1) do
NO OP
end while
AtomicIncrement(end)

Piggyback (Q):
last < end

first < start
if last > first then
Piggyback(first,last)
L__end if
Ack (index, Q):
if index > start then
AtomicSet(start,index + 1)
L__end if
Fig. 5: Lockless shared access to determinant queue.

Our protocol ensures the recovery from a single node
failure. A multiple concurrent failure may compromise the
recovery. Section V analyzes the likelihood of our approach
to survive a multiple concurrent failure.

IV. EXPERIMENTS

We implemented both approaches explained in the previous
section, checkpoint/restart and causal message logging, in the
CHARM++ runtime system [16]. As a programming language,
CHARM++ allows the programmer to split the computation
and data of an application into objects. Usually, the application
is over-decomposed and the system has more objects than
physical PEs. As a runtime system, CHARM++ offers a
substrate that implements features like object migration and
fault tolerance.

A. Experimental Setup

We ran our experiments on two different clusters. The
first is Steele supercomputer at Rosen Center for Advanced
Computing (RCAC). Steele is a 60-Teraflop machine and
consists of 893 nodes. Each node is a 64-bit, 8-core Dell
system with either 16 or 32 GB in RAM. The nodes are
connected through 1 Gigabit Ethernet. For the experiments
we considered each core on a node to be a PE. The second is
Ranger supercomputer at Texas Advanced Computing Center
(TACC). Ranger is a 579.4-Teraflop machine that comprises
3,936 nodes for a total of 62,976 processing cores. Each node
has 16 cores and 32 GB of main memory. An Ethernet network
connects the different nodes.

We chose various applications to run the experiments.
First we use a 3D stencil computation that decomposes a
tri-dimensional space into blocks. Each block is modeled
thorough a CHARM++ object and has 6 neighbors. In every
iteration, an object exchanges its halo cells with all its neigh-
bors and performs a relaxation computation over the block
of cells it is responsible for. The execution proceeds for a
number of iterations. The other program is called FT Test
and represents a configurable benchmark that provides several
parameters to customize: communication topology, message
size, computation grain-size and a few others.

B. Results

We started the experiments by measuring two important
common features of checkpoint/restart and message logging.
Both schemes use a similar checkpoint and restart mechanism.
Our interests was to see how scalable these two features were.

For the checkpoint part we used FT Test and measured how
much time it takes to perform an in-memory checkpoint. We
changed both the data size and the number of cores on Steele.
Figure 6 presents the results for the different cases when the
data size is changed from 64 MB to 1024 MB. In every case we
used one single object per PE. There are two things to notice in
this case. All the curves look flat as the number of cores should
not affect the checkpoint time in a significant way. Also, time
to checkpoint grows linearly with data size, ensuring that the
dominant cost in checkpointing is data sending and not any
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other manipulation. It is important to mention that at 1024
MB per object, we were effectively exhausting the physical
memory of nodes on Steele.

Next, we studied the behavior of restart time. Recalling from
figure 3, the restart time is the time span between a failure
and the point where the application is ready to run again. It
includes relaunching the crashed node in one spare node and
obtaining the checkpoint from the buddy. Using Stencil 3D we
measured the restart time on Steele and changed the number of
cores. We see in figure 7 the results of restarting after a crash.
The penalty of increasing the number of nodes or cores is very
small and the dominant factor seem to be the transmission of
data across the network.

A comparison of both approaches, checkpoint/restart and
causal message logging, was obtained by using Stencil 3D
program. Using a weak scaling approach, where each core has
four objects (each having a block of size 1282128x128) we ran
the program from 64 cores up to 1024 cores. Figure 8 presents
the results of the overhead of message logging with respect to
checkpoint/restart. The overhead never goes beyond 7%, the
highest value is obtained for 64 cores where the overhead is
6.45%. The rest of the data points show lower values for the
overhead. This experiment was run on Ranger that has 16-way
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Fig. 8: Weak scaling experiment with Stencil 3D.

nodes and the test scaled from 4 nodes to 64.

We decided to inspect on the bandwidth overhead imposed
by the determinants. Using the same configuration as the
previous experiment and running on 256 cores on Ranger,
we measured how many determinants were sent in all the
messages. Table II summarizes our findings. The table shows
the statistics per PE (core) throughout the whole execution. By
observing the number of determinants generated by a PE and
piggybacked by the same PE, we can compute the average
number of times a determinant is piggybacked. In our case
this number is 6.34. This means, that a particular determinant
is replicated more than 6 times. Even more, the number of
determinants piggybacked per message goes beyond 15.

TABLE II: Determinants and Messages

Determinants Generated 2456
Determinants Piggybacked 15584
Messages 1830
Determinants per Message  15.8

V. ANALYSIS OF SURVIVABILITY

The protocols presented in section III for multicore ma-
chines, checkpoint/restart and message logging, are designed
to tolerate one single failure at a time. Multiple concurrent
failures may be tolerated, though. This section presents an
analysis of how likely it is for those protocols to survive a
crash involving multiple nodes.

A. Checkpoint/Restart

Recalling from section III, checkpoint/restart bases its fault
tolerance strategy on frequent checkpoints. The checkpoints
can be stored either in disk or in a remote memory. In
our protocol we prefer the latter, since it provides a faster
checkpoint time, although may become a problem for memory
hungry applications. In-memory checkpoint/restart requires
each node to have a buddy node where it will checkpoint.
Besides the checkpoint stored in its buddy, each node will



store a checkpoint in its own memory. That way, the crash of
the buddy will not affect the recovery of a particular node.

The assignment of buddies to nodes is a mapping or a
bijection among the nodes. There are, however, different
mappings with very different features. For instance, figure
9 presents two possible mappings, called the ring map and
pair map. Even when both seem simple enough, pair map
is much more resilient to multiple concurrent failures than
ring map. Remember that in order to survive a multiple crash
we need not to lose a node and its buddy (because that will
make impossible to restart a node). Now, imagine a double
concurrent crash in the scenario of figure 9 where we have
8 nodes. Out of the 28 possible cases, ring map survives 20,

Whereas palr map survives 24.

(b) Pair Map

CI)<—@<—®
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Fig. 9: Different mapping schemes for buddy assignment.

So, if we have to choose between the two previous map-
pings, we should go for pair map. We will assume we are
using pair mapping in the rest of the paper. The question is
how resilient this mapping is when we have n nodes and f
nodes fail concurrently. Since we have a total of n nodes and
a subset of size f nodes fail, the total possible number of such
subsets is ("). We need to compute, how many out of those
subsets are not catastrophic, given the pair mapping.

In order to survive a multiple crash of f nodes, we need to
compute how many subsets of f nodes do not take down a
node and its buddy. Now, if we need to choose f nodes with
such property, then the first node of the f has n options, the
second has n — 2 (since we do not want to include the buddy
of the first), the third has n — 4, and so on. So, at the end we
have this total number of subsets size f that will not make the
whole system to collapse:

nn—2)(n—4)...n—2(f - 1))
f!
which gives us the following expression for the probability of
surviving f concurrent failures:

n(n—2)(n—4)..(n—2(f-1)) _ [T (n —2i)
n(n—1)(n—2)..(n— f+1) 1= (n—1i)

As an illustration, figure 10 shows the curve for the previous
equation as we plot the value for each f in the range 0 to 128.
In this particular case, we chose n equals to 1024. The curves
drops smoothly, showing a value higher than 80% for up to
16 nodes crashing concurrently.
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Fig. 10: Probability of surviving a multiple concurrent failure
in the checkpoint/restart model.

B. Message Logging

The checkpoint/restart model is oblivious of communi-
cation. In other words, having more nodes connected via
messages does not affect the resilience of checkpoint/restart.
That metric, however, makes a big impact on message logging.
Before getting into the theoretical formulation of multiple
concurrent failure for message logging, we will address an
important point regarding communication topology on parallel
programs.

Many parallel computing applications result from com-
posing different modules that apply some structured pattern
of communication. Programmers may use one of Berkeley’s
thirteen dwarfs [17] as building blocks for their applications.
For instance, a halo exchange communication pattern is used to
implement a stencil computation, whereas a wavefront compu-
tation pattern is useful in many parallel dynamic programming
algorithms.

Figure 11(a) shows a communication topology for the NAS-
CG (class D) benckmark with 512 ranks on 64 nodes. The
x-axis presents the sender and the y-axis the receiver. As we
can appreciate the communication pattern is very regular, to
the point where most of the communication is symmetric. Each
node contacts on average little more than 2 other nodes. The
same can be said about NAS-MG (class D) benchmark. Figure
11(b) presents the communication graph for this program. Al-
though communication is more spread throughout the system,
on average every node contacts little more than 4 other nodes.

In the causal message logging scheme, each determinant
is only replicated one single time on the memory of other
node, additionally to the one where it was generated. This
means, it will support with total certainty one single failure at
a time. A multiple concurrent failure can be tolerated as long
as there is a copy of the determinant alive after the crash. More
specifically, if node  communicates with g other nodes, and
there is a multiple failure where z is involved (i.e., x crashes),
then the only hope to tolerate such a failure is to have the other
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Fig. 11: Communication Topology.

g nodes x communicates with still alive.

The question we are trying to solve is how likely a system
using the causal message logging protocol is able to survive
a multiple concurrent failure. Let’s formalize a few concepts.
The system has n nodes where each node communicates with
g others. For simplicity, we will assume each node chooses
randomly the other nodes it exchanges information with. Let
us assume a multiple failure involves f nodes from the system.
The set of crashed nodes is denoted by F.

To compute the probability to survive the failure of set F',
we need to compute how likely it is for F' to not intersect
the f different communication subgroups of elements in f.
In other words, there cannot be 2 or more nodes in F' that
communicate with each other. It is a combinatorics problem.
Let’s pick one element x in F' and compute how likely it is
that the rest of F' does not intersect the subset of g elements
2 communicates with (denoted by G). Since the system has
n elements, the number of subsets of g elements that x may

contact 1s:

Now, the number of subsets of size ¢ that do not intersect F’

are given by:
n—f
(")

With this two quantities we are ready to compute the probabil-
ity of the set G not intersecting F. Moreover, the probability
of set F' not intersecting any of the communication subsets of
its members and, by definition, the probability of tolerating a
multiple concurrent failure of f nodes is:

&l

Using the previous formula, we can plot the probability of
surviving a multiple crash based on different values of g and
different values of f. Figure 12 presents four different curves
for values of degree g (2,4,8,16) for a value of n = 1024.
Running horizontally in the figure, we have f, the number of
concurrent failures. Given that the formula of survivability is
dominated by f in the exponent, the decay in the probability
is exponential. For example, if g is 8, then probability of

Multiple Failure Survivability (n=1024)

1 — ]
O.BV\

2z 0.6 1 |
s 0.4 |
Q
Q 0.2 J
a ]
0 Il Il Il Il Il Il Il
02 46 810121416
degree=2 ——
degree=4
degree=8 ——
‘ degree=16 ——
0 20 40 60 80 100 120

Multiple Concurrent Failures

Fig. 12: Probability of surviving a multiple concurrent failure
in the message logging model.

surviving 2 concurrent failures is 0.97, whereas probability
of surviving 4 and 8 concurrent failures is 0.83 and 0.41,
respectively. In general we see that all message logging curves
drop more drastically than the checkpoint/restart case. That is
the price of being susceptible to communication.

C. Survivability

If we were to compute how likely it is that we survive any
crash, we should sum over all the cases and multiply each case
by its corresponding probability. Let us define survivability as
the probability of survive any crash, regardless of how many
nodes are involved in the failure. The formula is given by:

S=3 s(ipli)
i=1

where s(i) represents the probability of surviving a crash that
involves i nodes and p(4) is the probability of a random failure
involving ¢ nodes.

Using the definition of S, we can compute the survivability
of the different approaches of section IIl. In order to model
the probability of failure we used the two functions discussed
in section II. Since other authors found evidence that single
node failure probability is higher than 85% [4], we chose
the parameters of the distributions accordingly. For the ge-
ometric distribution we set p value to be 0.85 and for the
Zipf’s distribution we used s value equals to 3.2. Table III
shows the survivability values for the different fault tolerance
strategies. The number in parenthesis for the message logging
approach stands for the degree g. Although the survival of
checkpoint/restart is better than message logging, which has
a curve that drops exponentially as the number of concurrent
failures increases, the difference does not translate into a big
difference for survivability. The reason comes from the fact
that functions to model the probability of multiple concurrent
failures are very skewed, making negligible the contribution
of larger values of f.



TABLE III: Survivability

Geometric  Zipf’s

Checkpoint/Restart 0.9997 0.9992
Message Logging (2) 0.9991 0.9974
Message Logging (4) 0.9983 0.9953
Message Logging (8) 0.9967 0.9919
Message Logging (16) 0.9936 0.9862

VI. CONCLUSION AND FUTURE WORK

The paper presented the design, implementation and anal-
ysis of fault tolerance strategies for multicore machines. We
focused our paper in the design of a message logging protocol
that tolerates the crash of a single node and may survive the
failure of several nodes simultaneously.

We analyzed several failure datasets to generate the dis-
tribution of failures according to the number of nodes that
crash as part of a failure. We discovered such distributions
are highly skewed and can be classified into two families.
The first family presents distributions with exponential drop
that can be modeled by a geometric distribution, whereas the
second family shows a longer tail that is fitted by a Zipf’s
distribution. Using this knowledge, we designed a message
logging protocol for multicore machines, where a shared data
structure keeps track of the determinants generated in the
node. We devised a fine-grained synchronization mechanism
to access the shared data structure. Our experiments showed
a small overhead of the message logging implementation over
the standard checkpoint/restart mechanism. An analysis of
the message logging protocol for multiple concurrent crashes
showed that we can tolerate the crash of several nodes with
high probability, granted that number is single digit. We built
a model for multiple concurrent failures and determined the
probability of tolerating any failure is higher than 99% for
most of the cases.

For future work, we are planning to analyze the cases where
multiple concurrent failures are correlated. Since there are
architectural constraints that may cause several nodes to fail in
tandem, we may design message logging protocols to tolerate
those multiple correlated failures.
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