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Laércio L. Pilla1,2, Christiane Pousa Ribeiro2, Daniel Cordeiro2, Abhinav Bhatele3,
Philippe O. A. Navaux1, Jean-François Méhaut2, Laxmikant V. Kale3

1Institute of Informatics – Federal University of Rio Grande do Sul – Porto Alegre, Brazil
{laercio.pilla, navaux}@inf.ufrgs.br

2LIG Laboratory – INRIA – Grenoble University – Grenoble, France
{christiane.pousa, daniel.cordeiro, jean-francois.mehaut}@imag.fr

3Department of Computer Science – University of Illinois at Urbana-Champaign – Urbana, IL, USA
{bhatele, kale}@illinois.edu

Abstract—Multi-core nodes with Non-Uniform Memory Ac-
cess (NUMA) are now a common architecture for high perfor-
mance computing. On such NUMA nodes, the shared memory
is physically distributed into memory banks connected by a
network. Owing to this, memory access costs may vary depending
on the distance between the processing unit and the memory
bank. Therefore, a key element in improving the performance
on these machines is dealing with memory affinity. We propose a
NUMA-aware load balancer that combines the information about
the NUMA topology with the statistics captured by the Charm++
runtime system. We present speedups of up to 1.8 for synthetic
benchmarks running on different NUMA platforms. We also
show improvements over existing load balancing strategies both
in benchmark performance and in the time for load balancing.
In addition, by avoiding unnecessary migrations, our algorithm
incurs up to seven times smaller overheads in migration, than
the other strategies.

Keywords-load balancing, non-uniform memory access, mem-
ory contention, performance, object migration

I. INTRODUCTION

The importance of Non-Uniform Memory Access (NUMA)
architectures has been increasing as a scalable solution to
alleviate the memory wall problem and to provide better
scalability for multi-core machines. Clusters based on AMD
Opteron processors and Intel Nehalem ones are examples of
multi-core machines with NUMA design. A NUMA platform
is a multi-processor system where the processing elements
share a single global memory that is physically distributed
into several memory banks. These memory banks are intercon-
nected by a specialized network. Due to this interconnection,
memory access costs may vary depending on the distance (la-
tency) between processing elements and memory banks, and
based on the number of processing elements accessing the
same memory bank (bandwidth). Since these platforms are
becoming ubiquitous in high performance computing (HPC),
it is important to reduce the access latency and to increase
the available bandwidth for data access on them. Therefore,

enhancing the memory affinity becomes a key element to
improve performance on these machines.

Memory affinity is enhanced when the thread and data
placement is done in a such way that the access latency
and memory contention perceived by threads to get data is
reduced [1]. This improvement may happen through different
approaches, such as the use of efficient memory allocation
mechanisms or by balancing the load appropriately among the
different processing elements. The first approach focuses on
distributing data and bringing it closer to its users, so as to
reduce latency and memory contention. The second approach
deals with doing a better distribution of the work among
processing elements in order to avoid hot spots and improve
communication among threads. The implementation of these
approaches is usually linked to the characteristics of the target
parallel programming environment.

Several popular options for programming multi-core and
NUMA architectures are available, and their performance
can be improved in different ways. In OpenMP, an interface
may be employed in the standard to allow memory affinity
control [1], or a hardware-aware runtime system can be
used to control thread scheduling [2]. When using MPI on
shared memory, the efficiency problem is usually addressed by
improving the process mapping [3], [4]. Another environment
that may benefit from the improvement of memory affinity is
CHARM++ [5].

CHARM++ is a C++-based parallel programming model and
runtime system (RTS) designed to enhance programmer pro-
ductivity by providing a high-level abstraction of the parallel
computation while delivering good performance. CHARM++
programs are decomposed into communicating objects called
chares, which exchange data through remote method invoca-
tions. One of the main advantages of CHARM++ is that the
RTS captures statistics for the chares during the execution [6],
which can be used to improve the load balance [7] and to
enhance memory affinity on multi-core machines with NUMA
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Fig. 1. Schema of a multi-core NUMA machine with 16 cores and 4 NUMA nodes.

design. However, it still lacks information about memory
access costs, which represents an important aspect of the
NUMA platform.

Using CHARM++ as a test bed, we try to address the follow-
ing key questions: 1) How can we obtain information about the
NUMA architecture? 2) How can we use this information to
improve the parallel system performance? 3) How does this
improvement compare to other strategies on different multi-
core machines with different workloads?

In this context, this paper presents a NUMA-aware load
balancer — named NUMALB, which combines the informa-
tion about the machine topology with the statistics captured
by the CHARM++ RTS. It aims to improve the load balance
while avoiding unnecessary migrations and reducing across-
core communication.

The rest of this paper is organized as follows: in Section II
we briefly describe multi-core platforms with NUMA design
and the CHARM++ runtime system. Section III introduces and
describes the proposed load balancer for the CHARM++ run-
time. In Section IV, we present the platforms and benchmarks
used in our experiments. We evaluate the performance of the
proposed load balancer in Section V. In Section VI, we discuss
some related work and present concluding remarks and future
work in Section VII.

II. BACKGROUND

In this section, we describe the main characteristics of multi-
core platforms with NUMA design. Furthermore, we also
present the CHARM++ parallel system and some of its design
characteristics.

A. Multi-core Platforms with NUMA Design

Multi-core platforms are a growing trend in computer
science, especially in HPC. A multi-core machine consists
of multiple cores grouped into sockets that share different
levels of cache hierarchies and the main memory. This aims to
alleviate some important issues such as the instruction level
parallelism within a chip and the power wall problem [8].
The multi-core design allows computer architecture engineers

to build powerful shared memory machines with tens or even
hundreds of cores. However, the increasing number of cores
demands an efficient memory hierarchy solution, since several
cores might use the same network interconnect to access the
shared memory generating the memory wall problem [9].

In order to support this high number of cores and to reduce
the memory wall problem, multi-core platforms with Non-
Uniform Memory Access design are being deployed. In these
multi-core NUMA machines, several cores access the same
global shared memory. Furthermore, their shared memory is
physically distributed into several memory banks which are
interconnected by a network. The memory wall problem is thus
reduced, since cores can use different paths and memory banks
to access data. However, this design generates an asymmetry
on access latency to get the data [1], [10], leading to the
concept of local and remote accesses. A local access is
performed when a core accesses a memory bank that resides
in its node. Contrary to this, a remote access occurs when a
core requests data that is allocated on some other node.

Figure 1 shows the schema of a multi-core NUMA machine
with sixteen cores and four NUMA nodes. The global shared
memory is distributed over the machine in four memory
banks. In this architecture, four cores each have their local
memory bank (local access) and other memory banks are
accessed using the interconnection network (remote access).
Additionally, this machine has multiple levels of shared cache
to reduce latency costs. In this case, each pair of cores share
a L2 cache and four cores each share a L3 cache.

In multi-core machines with NUMA design, it is particularly
important to ensure an efficient usage of memory banks to
reduce NUMA costs in the application. In order to do so,
mechanisms such as thread scheduling, memory allocation and
load balancing can be used, depending on the application and
runtime system characteristics [1], [2], [10].

B. CHARM++ Parallel System

CHARM++ is a parallel runtime system that provides an
object oriented parallel programming language with a goal of
improving programmer productivity. It abstracts architectural



characteristics from the developer and provides portability over
platforms based on shared and distributed memory. Parallel
CHARM++ applications are written in C++ using an interface
description language to describe its objects [5], [11].

Computation in CHARM++ applications is decomposed into
objects called chares. The programmer describes the computa-
tion and communication in terms of how these chares interact
and the CHARM++ RTS takes care of all messages generated
from these interactions. Chares communicate through remote
method invocation (a message-driven model). Further, the
CHARM++ RTS is responsible for physical resource manage-
ment on the target machine.

In the current version of CHARM++, all communication on
shared memory machines is done in memory. In the shared
memory (SMP) build of CHARM++, communication proceeds
through the exchange of pointers between CHARM++ threads.
Due to this, the CHARM++ runtime is able to avoid high
overheads due to messages and reduce communication time.
However, in the case of NUMA machines, this mechanism can
be affected by asymmetric memory latencies and bandwidth.
CHARM++ relies on the operating system memory affinity and
does not explicitly control the placement of shared data in the
memory.

Particularly on some operating systems such as Linux and
Windows, the default policy to manage memory affinity on
NUMA machines is first-touch. This policy places data on
the NUMA node that first accesses it [12]. In the case of
CHARM++ communication mechanism, once the data (e.g. a
message) is touched, this memory policy will not perform any
data migration to enhance memory affinity. This might result in
sub-optimal data placement in CHARM++ applications running
on NUMA platforms. For instance, we can imagine a situation
where some messages have been generated and originally
allocated on core 0 of NUMA node 0. After that, these
messages are sent to core 1 of NUMA node 1 and after
several hops they end up on core N of NUMA node N .
All message sends are pointer exchanges of data that were
originally allocated and touched in the memory of core 0. In
such a scenario, several remote accesses will be generated for
every communication.

Owing to the design of the CHARM++ communication
mechanism and the ubiquity of multi-core platforms with
NUMA design, it is important to provide NUMA support
in the CHARM++ parallel system to manage the machine
resources efficiently and reduce the memory access costs to
get data.

III. NUMA-AWARE LOAD BALANCER

The new generation of NUMA multi-core platforms, com-
bined with the availability of easy-to-use parallel runtime
systems like CHARM++, are enabling the development of very
large parallel programs composed of several tasks. In order
to ensure good performance, it is crucial to fully utilize the
platform, ensuring that no processor will be underutilized due
to imbalance of the tasks being executed.

The problem of load balancing is known to be NP-
complete [13]. In NUMA machines, the problem becomes
more challenging due to its memory hierarchy. In these
systems, an action taken by the load balancer to equalize
the load of the available processors may actually decrease the
overall performance because of the latency in remote memory
accesses.

In order to cope with the complexity introduced by NUMA
machines, we have developed a new heuristic that considers
the specifics of NUMA multi-core machines to perform load
balancing. In this section, we describe the information that can
be obtained from the underlying system which can be used by
a NUMA-aware load balancer. In light of this information,
we present a new heuristic and its implementation using the
CHARM++ runtime system.

A. Obtaining Runtime Information

A NUMA-aware load balancer can benefit from two differ-
ent classes of information obtained dynamically (at runtime)
from the underlying system: application data and NUMA
topology.

Application data comprises all information about the paral-
lel application that can be probed at runtime: task execution
times, communication information, and the assignment chosen
by the scheduler at a given time. In CHARM++ RTS, this
information can be dynamically obtained during the execution
of the application.

CHARM++ provides a mature load balancing framework
to balance computational and communication load on the
processors [7]. Load balancing in CHARM++ is measurement-
based and depends on instrumented data from previous time
steps to balance load for future time steps. The RTS provides
information about the total work assigned to each processing
element (load) and execution time of each chare. The execution
time of each chare includes its computational and communi-
cation load. The load on each processing element (core) is the
sum of loads of all its chares and other runtime overheads.

The CHARM++ RTS also provides detailed information
about the communication graph of the application. It is pos-
sible to obtain details about the number of messages and the
amount of bytes exchanged among chares. A NUMA-aware
load balancer can take advantage of this information to reduce
communication overhead by bringing communicating chares
closer to each other.

The NUMA topology comprises all information that can be
gathered at runtime about the machine hardware that is execut-
ing the application. A NUMA machine can be characterized
in terms of the number of NUMA nodes, cache memory sizes,
sharing of cache hierarchies among cores and grouping of
NUMA nodes.

Using this information, a NUMA-aware load balancer can
create a model that represents the machine topology and use
it to infer its memory access penalties. Since there is no tool
that can automatically discover the physical topology among
NUMA nodes, we define a NUMA factor to synthesize both
the topology and the memory penalties. The NUMA factor



represents the overhead to access remote data and is defined
as:

NUMA factor (i, j) =
Read latency from i to j

Read latency on i

where i and j represent different NUMA nodes. This factor
is computed for all NUMA nodes of the target machine,
resulting in a square matrix of NUMA factors. Thus, the main
advantages of using the NUMA factor as a topology indicator
is that it is generic (can be easily computed for different
NUMA machines) and aggregates the differentiating features
of NUMA machines. In addition, the NUMA factor can be
precomputed, which reduces the overhead of using it.

B. Load Balancing Heuristic

It is not possible to compute an assignment of tasks on
to available processors that optimally equalizes the load in
polynomial time (unless P = NP). Moreover, in the general
case, a CHARM++ load balancer cannot make any assumptions
about the application that will be executed, so it is also
impossible to use precomputed assignments instead of online
scheduling. Thus, in practice, in order to compute a good
(approximated) assignment in a reasonable amount of time,
a heuristic must be employed.

We have developed a load balancing heuristic that uses
application data and NUMA topology information to reduce
the load imbalance of parallel applications. The heuristic
works like a classical List Scheduling algorithm [13], where
tasks (chares) are rescheduled from a priority list and assigned
to less loaded processors in a greedy manner. List schedule
algorithms usually are fast to compute and provide good
results in practice.

The main idea of the heuristic is to improve application
performance by mapping chares to cores while reducing the
costs of unbalanced computation and remote communications.
The heuristic is based on the following cost function for
mapping of a chare c on to core p:

cost(c, p) = load(p) +

α× (rcomm(c, p)

×NUMA factor(comm(c),node(p))

− lcomm(c, p))

In the equation, load(p) represents the total load of core p,
lcomm represents the number of messages sent from chare c
to chares on cores of the same NUMA node (with the same
local memory bank) as core p, and rcomm expresses the
number of messages sent from chare c to chares on other
NUMA nodes and is multiplied by the NUMA factor between
the NUMA node of core p (node(p)) and the NUMA nodes
where these communicating chares are mapped (comm(c)).
Finally, α controls the weight that the communication costs
have over the execution time. The heuristic uses the number
of exchanged messages because it represents the amount of
accesses to the shared memory. Since messaging time is
related to the access latency, the cost is multiplied by the
NUMA factor when considering remote accesses. In addition,

local communications are subtracted from the overall cost to
favor their occurrence.

C. NUMALB’s Algorithm

By combining the information described in III-A and the
heuristic presented in III-B, we have implemented a new load
balancer for CHARM++, named NUMALB, which is better
adapted for NUMA environments. It is a List Scheduling,
greedy algorithm, that picks the heaviest (largest execution
time) unassigned chare and assigns it to the core that presents
the smaller cost. The choice for a greedy algorithm is based on
the idea of fast convergence to a balanced situation by mapping
the greatest sources of imbalance first. The pseudocode for
NUMALB is presented in Algorithm 1.

Algorithm 1: NUMALB.
Input: C set of chares, P set of cores, M mapping of

chares to cores
Output: M ′ mapping of chares to cores

1 M ′ ←M
2 while C 6= ∅ do
3 c← v | v ∈ argmaxu∈C load(u)
4 C ← C \ {c}
5 p← q, q ∈ P ∧ {c, q} ∈M
6 load(p)← load(p)− load(c)
7 M ′ ←M ′ \ {(c, p)}
8 p′ ← q | q ∈ argminr∈P cost(c, r)
9 load(p′)← load(p′) + load(c)

10 M ′ ←M ′ ∪ {(c, p′)}

Considering n chares and m cores, this algorithm presents
a complexity of O(n2m) in the worst-case scenario — when
chares present all-to-all communications. However, since this
kind of behavior is usually avoided in CHARM++ applications,
NUMALB shows a complexity of O(nm) for a constant vertex
degree of the communication graph.

Another important fact about this algorithm is that it avoids
unnecessary migrations. Since there is no information available
about the size of the chares, there is no way to estimate the
overhead brought by migrations. They are avoided by consid-
ering the initial scheduling and by subtracting the chare’s load
from its current core, as depicted on line 6 of Algorithm 1.

D. Implementation Details

NUMALB was implemented on top of the load balancing
framework in CHARM++. This framework provides all neces-
sary information about the application and only requires the
new mappings of the chares from the load balancing strat-
egy, to execute the migrations. It also enables the allocation
of dynamic structures and gathering of information during
CHARM++’s startup.

To extract the node hierarchy (which cores dwell on which
node) and the machine’s NUMA penalties, we implemented
a library that retrieves the machine characteristics. The node
hierarchy is retrieved from the operating system kernel. After



that, information such as number of nodes, number of cores
and the mapping between cores and NUMA nodes is stored in
files for later use. For the NUMA penalties, we use the LM-
bench benchmark [14] to get the access latency and to compute
the NUMA factor. LMbench is a set of synthetic benchmarks
that measures scalability of multi-processor platforms and
the characteristics of the processor micro-architecture. During
the installation of CHARM++, our library runs a script that
executes LMbench between each pair of nodes. These latencies
between nodes are saved in temporary files. We then use these
latencies to compute the NUMA factor for each pair of nodes.
The NUMA factor is also stored in files for later use by
our library. During the initialization of NUMALB, these files
are loaded into dynamic structures that are then used by its
algorithm.

IV. EXPERIMENTAL SETUP

In this section we present our experimental setup to evaluate
the NUMA-aware load balancer. We have selected two repre-
sentative multi-core platforms with NUMA characteristics:
• NUMA16: based on eight dual-core AMD Opteron 875

processors. The cores have private L1 (64 KB) and
L2 (1 MB) caches and no caches are shared.

• NUMA32: four eight-core Intel Xeon X7560 processors.
Each core has a private L1 (32 KB) and L2 (256 KB)
caches and all cores on the same socket share a L3 cache
(24 MB).

Both machines run Linux (kernel 2.6.32) with GNU Com-
piler Collection.

Table I summarizes the hardware characteristics of these
machines. Memory bandwidth (obtained from Stream - Triad
operation [15]) and NUMA factor are also reported in this
table. NUMA factors are shown in intervals, meaning the
minimum and maximum penalties to access remote memory
in comparison to local memory.

TABLE I
OVERVIEW OF THE NUMA MULTI-CORE PLATFORMS.

Characteristic NUMA16 NUMA32

Number of cores 16 32
Number of sockets 8 4
NUMA nodes 8 4
Clock (GHz) 2.22 2.27
Highest level cache (MB) 1 (L2) 24 (L3)
DRAM capacity (GB) 32 64
Memory bandwidth (GB/s) 9.77 35.54
NUMA factor (Min;Max) [1.1; 1.5] [1.36; 3.6]

We used the CHARM++ release 6.2.1 with the opti-
mized multi-core build [16]. To evaluate the load balancer,
we selected three benchmarks from CHARM++ programs:
(i) kNeighbor, a synthetic iterative benchmark where a chare
communicates with k other chares at each step; (ii) lb test, a
synthetic unbalanced benchmark that can choose from differ-
ent communication patterns; and (iii) jacobi2D, an unbalanced
two-dimensional five-point stencil computation.

For comparison, the performance of other load balancers
was also evaluated. They are: GREEDYLB, RECBIPARTLB,
METISLB and SCOTCHLB. These four load balancers do
not consider the original mapping of the chares and they are
oblivious to the machine topology.

GREEDYLB reassigns the chares in a greedy fashion. The
algorithm iteratively maps the heaviest chare to the least
loaded core. Hence, it does not consider the communications
among chares. Despite that, this strategy performs well due
to its simplicity and speed. RECBIPARTLB does a recursive
bipartition of the communication graph based on their loads.
This is done by a breadth-first traversal until the required
load (execution time) is gathered in one group.

METISLB is based on the graph partition algorithms im-
plemented in METIS [17]. This strategy considers both the
execution time and communication graph to improve the load
balance. Similarly, SCOTCHLB follows the same principles,
but it is based based on the algorithms in SCOTCH [18].

The results shown in the next section are the averages
obtained over a minimum of 25 executions. They present a
statistical confidence of 95% by Student’s t-distribution and a
5% relative error.

V. RESULTS

The performance improvements obtained by rebalancing
load in CHARM++ programs may depend on several different
parameters, such as the iteration time of the application, the
number of chares, the load balancing frequency, the load
balancing algorithm’s execution time, etc. In this section, in
order to exemplify the impact of load balancing, we first show
the performance improvements obtained by the load balancers.
Afterwards, we provide details about the overheads induced by
the execution of the load balancer and migrations of chares.
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Fig. 2. Average iteration time for load balancers with the kNeighbor
benchmark.

A. Performance Improvements

The results presented in this section represent the average
iteration time before (as Baseline) and after applying a load
balancing algorithm. Fig. 2 shows the performance obtained
for the kNeighbor benchmark on both NUMA platforms



Fig. 3. Timeline view of jacobi2D using Projections — two time steps before and four after load balancing (using METISLB) are shown.

using 200 chares, for number of neighbors k equal to 8
and messages of 16 KB. On NUMA16, all load balancers
present a speedup of 1.45 over the baseline time. On the other
hand, on NUMA32, the best performance is obtained using
the GREEDYLB, which reduces the iteration time to 50% and
presents a speedup of 1.1 over NUMALB. While GREEDYLB
distributes the load (that also considers the communication
time but not the communication graph) more homogeneously
over the cores, METISLB, SCOTCHLB and RECBIPARTLB
tend to group chares and migrate them together to cores, and
NUMALB tends to only migrate the heavier chares, which
happens usually to nearby (in the same NUMA node) cores.
The greater differences in performance on NUMA32 happen
because this machine has a larger number of cores to distribute
the chare’s communication overhead. Furthermore, it has cores
that share a cache, which results in faster communication
among cores in the same NUMA node (which is exploited
by NUMALB).

It is important to emphasize that this benchmark represents
an extreme case, where there is only communication and no
computation. In addition, its iteration time is small (tens of
milliseconds), which makes it more vulnerable to minor load
imbalances.
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Fig. 5. Average iteration time for load balancers with the lb test benchmark.

Fig. 5 depicts the performance obtained for the lb test
benchmark using 200 chares and a random communica-
tion graph. Each chare is randomly assigned a load be-
tween 50 and 200 ms. The best performance is obtained by
the communication-aware load balancers. NUMALB shows
speedups of 1.21 and 1.39 when compared to the baseline on
NUMA16 and NUMA32, respectively. These results are simi-
lar to the ones of METISLB and RECBIPARTLB on NUMA16,
and SCOTCHLB on NUMA32. Especially, NUMALB presents
the best average performance improvement over these two ma-
chines. These results highlight the importance of considering
the communication in addition to the execution times when
rescheduling.
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Fig. 6. Average iteration time for load balancers with the jacobi2D
benchmark.

The best results for NUMALB are obtained with the ja-
cobi2D benchmark, as shown in Fig. 6. These iteration times
are for 100 chares and a 322 data array. NUMALB reduces
the iteration time of jacobi2D over 40% (speedup of 1.69) on
NUMA16 and over 35% (speedup of 1.55) on NUMA32. NU-
MALB balances the load among cores while keeping part of
the original proximity among chares, both in core and NUMA
node levels. This happens because NUMALB considers the



Fig. 4. Timeline view of jacobi2D using Projections — two time steps before and four after load balancing (using NUMALB) are shown.

TABLE II
TOTAL EXECUTION TIMES (IN SECONDS).

Benchmark Machine Load Balancer

Baseline NUMALB GREEDYLB METISLB RECBIPARTLB SCOTCHLB

kNeighbor NUMA16 0.609 0.500 0.510 0.511 0.509 0.512
NUMA32 0.510 0.364 0.377 0.390 0.392 0.399

lb test NUMA16 19.213 17.401 18.441 17.476 17.356 17.899
NUMA32 11.320 9.754 10.462 9.942 10.039 9.708

jacobi2D NUMA16 17.323 13.868 14.896 15.189 14.743 14.208
NUMA32 4.182 3.457 3.906 4.073 4.047 3.560

NUMA topology, while the other load balancers are oblivious
to this information.

To get a better idea of the improvements obtained by
load balancing, jacobi2D execution traces were captured and
analyzed using the Projections performance analysis tool [19].
Fig. 3 shows a time line view of the application – the load
distribution across the 16 cores for two time steps before
and four after load balancing with METISLB on NUMA16.
The benchmark presents an extreme case of load imbalance,
where the heavier chares share the same core. Since this is an
iterative application, the time of each step is defined by the
slowest core. As Fig. 3 illustrates, starting from the second
step after load balancing, the iteration behavior stabilizes with
an efficiency of only 75%. On the other hand, we achieve an
efficiency of 93.5% when using NUMALB, as shown in Fig. 4.

For all benchmarks, NUMALB gives the best performance
improvements, with an average speedup of 1.51 over the base-
line iteration time. This represents a 10% improvement over
the other load balancers with the exception of SCOTCHLB.
The latter obtains an average speedup of 1.44 over the base-
line. Still, the improvements on application execution time de-
pend on the load balancing frequency and number of iterations.
For instance, Table II presents the average total execution
time for all benchmarks. jacobi2D had a total of 10 iterations
and one load balancing call after the fifth iteration, while
kNeighbor and lb test had 19 iterations and one load balancing

call after the ninth iteration. For this configuration, an average
speedup of 1.22 is obtained over the baseline with NUMALB.

Additionally, these results do not show the complete picture,
because they consider the improvements on average iteration
time but none of the rescheduling overheads. These overheads
are reported in the next section.

B. Load Balancing Overhead

The two main overheads brought by load balancing are
the execution time of the load balancing algorithm and the
time spent on migration of chares. The average load balancing
times for the different machines and benchmarks are presented
in Table III. The faster load balancers are GREEDYLB and
RECBIPARTLB, which do not use any external libraries. Still,
even the slowest load balancer, SCOTCHLB, does not take
more than 7 ms. This overhead is easily hidden by the
improvements brought by load balancing. In addition to the
execution time of the load balancer, NUMALB also incurs an
initialization overhead to read the NUMA topology from files,
as discussed in Section III-D. However, this process takes at
most 3 ms and only has to be done once per execution.

Table IV presents the average number of migrations for
each load balancer. kNeighbor and lb test were executed with
200 chares, while jacobi2D had only 100. All load balancers
present more migrations on NUMA32 than NUMA16 because
the former has more cores. NUMALB’s migration avoidance



TABLE III
AVERAGE LOAD BALANCING TIMES (IN MILLISECONDS).

Benchmark Machine Load Balancer

NUMALB GREEDYLB METISLB RECBIPARTLB SCOTCHLB

kNeighbor NUMA16 3.804 2.648 4.392 1.571 5.930
NUMA32 3.418 2.468 3.772 2.066 6.387

lb test NUMA16 1.876 1.629 2.027 0.981 2.552
NUMA32 5.507 3.547 4.340 3.242 4.725

jacobi2D NUMA16 1.029 0.859 1.124 0.722 1.671
NUMA32 1.177 0.978 1.540 1.061 2.074

TABLE IV
AVERAGE NUMBER OF CHARES MIGRATED PER LOAD BALANCING INVOCATION.

Benchmark Machine Load Balancer

NUMALB GREEDYLB METISLB RECBIPARTLB SCOTCHLB

kNeighbor NUMA16 25 189 188 176 185
NUMA32 57 194 195 185 194

lb test NUMA16 40 188 187 184 184
NUMA32 48 194 194 192 192

jacobi2D NUMA16 26 94 94 91 93
NUMA32 33 97 96 93 98

is clear, as it migrates at most 33% of the chares, while all
other load balancers usually migrate 90% or more.

 0.01

 0.1

 1

 10

 100

1 KB 10 KB 100 KB 1 MB 10 MB 100 MB

A
ve

ra
ge

 M
ig

ra
tio

n 
T

im
e 

(s
)

Size of Chares

Migration time: NUMA16

ScotchLB 200 chares
ScotchLB 100 chares
NumaLB 200 chares
NumaLB 100 chares

Fig. 7. Average migration time with the lb test benchmark on NUMA16.

We also did several tests which vary the size of the chares
with the lb test benchmark to show the effect of the number
of migrations on the load balancing overhead. For this, NU-
MALB and SCOTCHLB were used with 100 and 200 chares.
SCOTCHLB was chosen because the number of migrations
for it was similar to the other load balancers, but it had better
overall performance, as presented in Section V-A.

The results for NUMA16 are shown in Fig. 7. The vertical
axis represents the average time for migration in seconds for
the different load balancers. The horizontal axis represents
the size of the chares. Both axes are on a logarithmic scale.
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Fig. 8. Average migration time with the lb test benchmark on NUMA32.

As the figure shows, both load balancers present the same
migration time for small chares (up to 10 KB). After that,
the migration costs for SCOTCHLB increase rapidly, taking
double the time than NUMALB for 100 KB chares. As the
chares grow in size, the difference of migrating only a few
chares becomes even more noticeable. This culminates in a
difference of 7 times when using 200 chares with a size of
100 MB, when SCOTCHLB’s decisions incur 16.26 seconds in
migrating chares, while NUMALB takes only 2.29 seconds. In
addition, the migration costs increase by 60% when increasing
the number of chares from 100 to 200 for NUMALB, and by
80% for SCOTCHLB.

Similar results for NUMA32 are presented in Fig. 8. When



using chares of 1 MB or more, SCOTCHLB takes more
than 3 times to migrate all chosen chares when compared
to NUMALB. For the largest size of chares considered, this
difference goes to almost 4 times for 200 chares and 3.2 times
for 100 chares. These results illustrate the important of avoid-
ing unnecessary migrations to sustain a small load balancing
overhead.

VI. RELATED WORK

The complexity of current parallel machines and applica-
tions has demanded efficient techniques to place tasks on
processors. In this context, significant research has been done
proposing schedulers and load balancers that improve the
overall system performance [3], [20], [21], [22], [23], [24].

Agarwal, Sharma and Kale [20] propose topology-aware
task mapping algorithms for CHARM++. They present load
balancing strategies that reduce communication contention.
The proposed algorithms exploit information about the ap-
plication communication graph and the network topology of
large parallel machines. They combine this information into a
heuristic that reduces the hops-bytes for the application. The
hop-bytes is a performance metric defined in the paper, which
is based on the total number of bytes exchanged between
processors weighted by the distance between them. Results
show that the algorithms lead to performance improvements
when compared to a random placement and a greedy strategy.
Although this work considers the machine topology, it focuses
on inter-node topology.

Bhatele, Kale and Kumar [22] studied the impact of load
balancing algorithms in a molecular dynamics application
over large parallel machines. The study focuses on static and
dynamic topology-aware mapping techniques on 3D mesh and
torus architectures. Results show that these techniques can
improve the performance of NAMD [25] up to 10%. Similar to
the work presented by Agarwal [20], the performance metric
used to evaluate the load balancing algorithms is hop-bytes.
However, the techniques do not consider the NUMA and
multi-core design of large parallel platforms.

Rodrigues et al. [24] discuss a strategy to reduce load
imbalance on weather forecast models. They try to preserve
the spatial proximity between neighbor tasks (and, by conse-
quence, reduce communication overheads) by traversing them
with a Hilbert curve and recursively bisecting it according
to the load of the threads. With this strategy, they obtained
a small performance improvement over METISLB. However,
this strategy can only be mapped to applications with regular
communication patterns such as structured grids.

Work-stealing [23] is another well-known technique used
to distribute computational tasks among a set of processes
(”workers”). The main idea of work-stealing is that if a worker
becomes idle (i.e., finishes the execution of its own tasks) then
it will ”steal” tasks from other workers. XKAAPI is a parallel
system that relies on such technique to distribute the workload
among the processors of the machine [21]. XKAAPI is a C++
library that provides support for asynchronous parallel and
interactive programming. This parallel system also supports

both shared and distributed memory parallel platforms. Work-
stealing in XKAAPI is performed using a data flow represen-
tation of the application, which is built at execution time by
the XKAAPI RTS. Differently from CHARM++, XKAAPI is
well-suited to parallelize recursive algorithms specifically.

Tchiboukdjian et al. [23] propose an adaptive work-stealing
algorithm for applications based on parallel loops. The objec-
tive of their algorithm is to ensure that multi-core machines
sharing the same cache work on data that are close in memory.
This is made to reduce the total number of cache misses. The
proposed work stealing algorithm presents performance im-
provements of up to 30%, although its utilization is restricted
to applications based on parallel loops.

On NUMA platforms, [3] tries to improve the placement of
MPI processes by combining hardware’s hierarchy information
from the PM2 runtime system, application’s communication
information from traces and the SCOTCH library [18] to
compute the mapping of processes to cores. Similarly, in [4] a
hierarchical algorithm is presented that uses information about
the NUMA machine gathered by HWLOC [26]. This approach
focuses only on improving communication latencies among
processes, ignoring application load imbalance.

VII. CONCLUSION

The complexity of the memory subsystem of multi-core
with NUMA design introduces new challenges to the problem
of load balancing. In this context, an efficient load balancer
algorithm must take into account the existing asymmetries in
memory latencies and bandwidth.

To deal with load imbalance in this context, we designed
NUMALB, a NUMA-aware load balancer that combines appli-
cation statistics provided by CHARM++ and information about
the NUMA machine topology. The machine’s topology and
memory penalties were synthesized as the NUMA factor. It
represents the machine topology in a generic fashion while
aggregating the different features of NUMA machines. The
chosen approach does not make any assumptions about the
application nor requires prior executions.

Our experimental results showed that the proposed load
balancer enhances the performance of CHARM++ applications.
We obtained an average speedup of 1.51 on the iteration time
with NUMALB (with a minimum of 1.22) when compared to
not balancing the load at all. This represents a 10% improve-
ment over most of the considered load balancers. In addition,
NUMALB obtained this performance while migrating only up
to 33% of the chares, which results in a migration overhead
up to 7 times smaller than the other load balancers. These
results are obtained by distributing the load over the cores
while maintaining proximity of the communicating chares with
regard to the NUMA topology.

Future work includes the extension of the load balancing
algorithm to include the cache hierarchy in its decisions. This
would require the measurement of the different communication
latencies among cores. As a base, we plan to use the repre-
sentation of the cache hierarchy provided by HWLOC [26]. By
gathering and organizing this information, we can also provide



it to other libraries and algorithms, such as SCOTCH [18], to
improve the quality of their scheduling decisions.
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