
the spatial decomposition method in this paper. In this method,
the three-dimensional (3D) simulation box is spatially divided
among the processors. Let us assume that the simulation box
has dimensions Bx × By × Bz; then, each processor holds
a cell of dimensions Bx/
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is responsible for calculating forces for the atoms within its
cell. For most MD simulations, we can safely assume that the
density of atoms in any cell is roughly the same, which leads
to approximately the same number of atoms per processor.
For the spatial decomposition method, the communication to
computation ratio is given by:

C/C ratiospatial =
N/Pc

N/Pc
= 1

Modern methods of parallelizing MD, which are a hybrid
between spatial and force decomposition [17] (also known
by other names such as the midpoint method and the neu-
tral territory method [18]) improve the communication to
computation ratio as the cell size decreases, compared to
the spatial decomposition method. However, their asymptotic
complexities are similar to the spatial decomposition method
and hence, we will not consider them separately.

To aid our complexity analysis, let us understand the parallel
set-up of a “short-range” molecular dynamics simulation. The
simulation time is broken down into a large number of small
time steps (typically 1 fs each). At each time step, each
processor calculates forces on the atoms that reside on it due
to all other atoms within a certain distance, rc + margin ,
where rc is the cutoff radius and margin accounts for atom
movements between migration steps. To calculate the forces,
each processor communicates with its neighbors in the 3D
space to obtain the current positions of atoms within this
radius. New positions and velocities are then calculated and
updated, based on the force calculations within a time step.
Based on the new positions, some atoms may move into a
cell assigned to a different processor and they have to be
migrated. Typically, migrations are not done every time step
and to account for this, the size of each cell is chosen to be
rc+margin . Algorithm 1 shows the pseudocode for one time
step of an MD simulation.

Algorithm 1 Computation in one time step of MD
Receive atoms from neighboring processors
for i = 1 to Np do

for j = 1 to Ni do
if atoms are within cutoff radius, rc then

Compute forces on pairs of atoms
end if

end for
end for
Update atom positions and velocities

A. Weak Scaling

We begin with analyzing the weak scaling behavior of the
spatial decomposition method. For this analysis, we need a

lower bound on the number of atoms assigned to each core
for maintaining good efficiency. Both Blue Matter [7] and
NAMD [3] have demonstrated that for ratios of atoms to
cores greater than 100, the non-bonded force calculation is
the dominant contribution to the step time. And in this regime,
the performance follows a “universal curve” irrespective of the
molecular system, only depending on the number of atoms
per core. This is achievable for short-range MD computations
because the number of floating point operations per core is
a linear function of the number of atoms. Assuming that our
hypothetical system will have 100 atoms per core for achieving
10% of the peak which will be ≈ 1 Exaflop/s, total size of the
molecular system would be 230 × 100 ≈ 107 billion atoms.
Total number of floating point operations for a simulation
system with N atoms is 33547×N (empirically obtained value
for NAMD for a 12 Å cutoff). Considering that we want the
flop/s to be greater than or equal to 1 Exaflop/s, dividing the
total number of flops by the time for one time step gives:

flops

T
> 1018 (III.1)

33547×N

1018
> T

Putting the value of N = 230 × 100,

T < 3.6× 10−3 (III.2)

This says that, to achieve 1 Exaflop/s performance for a
107 billion atom system running on 230 cores, the time per
step should be smaller than 3.6 ms. The time per step for each
application class is the performance target to attain 1 Exaflop/s
performance. Since all applications considered in the paper are
iterative, the equations derived for T , Tcomm and Tcomp are
for one time step.

Let us now estimate the amount of communication per node
for this molecular system of 107 billion atoms. For a standard
MD simulation, the size of each cell in the simulation box
is 16 Å in each dimension (for a cutoff rc = 12 Å and a
margin = 4 Å) and the number of atoms in each cell is
400 (see Figure 1, extreme left). Since for the 100 billion
atom system, we will have only 100 atoms on each core, this
necessitates splitting each cell into half in two of the three
dimensions (see Figure 1, center). In this mode, each cell
communicates with approximately 5×5×3 = 75 other cells to
obtain the atoms necessary for calculating forces on its atoms.
However, having multiple (1024) cores on each node implies
that most of these messages are not sent on the network. If we
assign a three-dimensional space containing 8×8×16 = 1024
cells to a node, inter-node messages will be required only
for cells on the surface. The number of messages will be
12 × 10 × 20 − 8 × 8 × 16 = 1376 (two “ghost” layers of
cells each in two dimensions and one layer of cells in the
third dimension).

Based on the above derivations for communication and
computation in an MD code for weak scaling, we can now use
equations (II.1) and (II.2) to obtain the time for one time step
of MD. In the case where there is no overlap of communication


