
or T < 6.52 (IV.1)

This suggests that we need a time per step of 6.52 seconds to
achieve 1 Exaflop/s performance.

B. Communication

Now, we estimate the volume of communication generated
by the Barnes-Hut algorithm. Recall that particles are grouped
into buckets of size B each. The even distribution of N

particles among Pn processor nodes results in N/(PnB)
buckets per processor node. Furthermore, given the even
distribution of particles, each node receives an approximately
cubic subdomain of edge length a = c/

3
√
Pn. This is depicted

as the striped area in Figure 4. Let nb be the number of buckets
along an edge of the cube. Then, n3

b = N/(PnB), so that
nb = 3

�
N/(PnB). The processor cores that perform traversals

for buckets within this volume request data in the form of cells
and particles, both from remote nodes and local cores within
the same node. However, buckets closer to the center of this
cube request strictly a subset of the remote cells and particles
requested by buckets closer to the faces. This observation
is leveraged in production quality simulators by “caching”
cells and particles fetched from remote sources, resulting in
the reuse of remote data, and reducing the communication
cost of the algorithm. Therefore, we attribute the aggregate
remote communication generated by a processor node to the
union of all cells and particles requested by the buckets along
the faces of the cube. As shown in Figure 4, with a bound
of θT = 0.5, buckets along the faces of the cube expand
a total of 12n2

b + 12 × 3nb + 8 remote buckets of edge
length c

3
�

B/N . Therefore, each node requests the particles
of Cbkts = 12n2

b + 36nb + 8 buckets. The buckets along the
faces also expand a total of 12(nb/2)2 + 36(nb/2) + 8 cells
with edge length 2c 3

�
B/N , 12(nb/4)2 + 36(nb/4) + 8 cells

with edge length 22c 3
�
B/N , etc. Therefore, the number of

cells requested from remote nodes up to size a = c/
3
√
Pn is:
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lgnb�

i=0
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�2
+ 36

�
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2i

�
+ 8

�

= 16n2
b + 72nb + 8 lg nb − 32 cells

For i ≤ lg nb, the above reasoning is valid since there are
multiple cells (or for i = lg nb, a single cell of edge length
a) lining a processor node’s subvolume. We must consider
cells with edge length greater than a separately. Notice that
there is an asymmetry of communication volume between
processor nodes: two nodes may request slightly different
numbers of higher-level cells depending on their positions
within the simulated space. The greatest difference in the
number of cells expanded occurs between the eight central
processor nodes and the ones situated at the eight corners of
the simulated universe. Even so, with θT = 0.5, the number of
cells expanded by the processor nodes in the corners equals 31,
whereas 30 cells are expanded by the eight central processor
nodes. We assume that each processor stores the root cell
representing the entire simulation space. Therefore, we bound

2b

4b

8b

b

Fig. 4. Communication pattern of a single node at the bottom three depths
in the Barnes-Hut tree. The striped region in the center represents the cubic
subvolume of particles assigned to the node, and the immediate squares
surrounding it represent the buckets along its faces. Progressively larger
squares represent remote cells at different depths that are requested by the
node for θT = 0.5. Circles of radii 2b, 4b and 8b described around the
centers of corner buckets determine which cells are requested.

the amount of communication generated per processor by the
expansion of higher-level cells as follows:

C
cell
2 = 31

�
lgPn

3
− 1

�
cells

The expansion of each cell yields eight children. We assume
that for each expanded cell, a single message is generated
which contains all its children. This model may be extended
so that whenever a cell is expanded by a processor node, it
receives a subtree of depth m below that cell. The tradeoff to
consider there is that between the number of messages (fewer
for larger m) and the amount of network bandwidth wasted
(more for larger m) because of requests for cells that are
never needed by the traversal. We keep our analysis simple
by setting m = 1. This results in about (Ccell

1 + Ccell
2 )/8

messages containing eight cells each, and Cbkts messages to
communicate B particles each.

We now use Ccell
1 , Ccell

2 and Cbkts to calculate constraints on
ts and tw. In the following, we assume that the total number of
flops are distributed evenly across processors (i.e. we assume
perfect load balance). By setting Pn = 220, we get nb ≈ 87.
Therefore, the total number of cell expansion messages equals
(Ccell

1 + Ccell
2 )/8 ≈ 15946, and the total number of particle

messages is Cbkts = 93968. We take the multipole moments
of each cell to require 224 bytes (56 words) and each particle’s
coordinate information to be 40 bytes. This leads to 100 words
for 10 particles in one bucket (these values are taken from
ChaNGa). Assuming a network free of contention, this results
in a communication time of

Tcomm = 15946(ts + 56tw) + 93968(ts + 100tw)


