
• ñi – number of degrees of freedom stored on processor
i that are shared with other processors

• si – average number of neighbors for degrees of freedom
stored on processor i

• pi – number of processor neighbors of processor i
On processor i, each matrix-vector multiply requires 2sini

flops, and pi sends each consisting of ñi floating-point values.
The vector additions and subtractions require ni flops in the
setup and 2ni flops in the loop, with no communication.
The dot products, which are accomplished using allreduce
operations, require N

P + lgP flops and 2 × lgP sends of
one floating-point value for the allreduce and another ñi flops
coupled with pi sends of ñi floating-point values for the
completion of the result.

A. Weak Scaling

We now analyze a simple weak-scaling scenario. We con-
sider a problem solved on a 3D cubic mesh consisting of
cubes each cut into five tetrahedra, as shown in Figure 8. We
give each core 4K cubes, or 20K tetrahedra, to correspond to
common elements per core counts for problems being solved
today, with each processor’s portion a 16×16×16 cube. This
results in ni = 173 = 4, 913 degrees of freedom stored on
each processor, and N = 163853 ≈ 4.4 trillion global degrees
of freedom. Each processor would send messages to at most
pi = 6 neighbors during point-to-point communication, with a
total of ñi = 173−153 = 1538 floating-point entries sent. The
average number of neighboring degrees of freedom is si = 18
excluding points on the boundary of the global domain.

Fig. 8. Base unit of mesh, cube cut into five tetrahedra. Four tetrahedra
surround the one in the center, with one of those four hidden behind the
center tetrahedron.

Since there are 1024 cores per node on our hypothetical
exascale machine, we for each node group the portions of all
the cores on that node into an 8× 8× 16 cube. This requires
us to modify the numbers given above when writing down
the performance model equation. The computation terms are
unchanged; however, the number of sends becomes the surface
area of the node, which is 8×8×16−6×6×14 = 520. The
number of elements sent is multiplied by this amount for point-
to-point messages. The logarithmic terms in the allreduce
time become logarithms of the number of nodes instead of

the number of cores. Assuming a binary tree pattern for the
allreduce, we get that the setup time for CG is

T
setup
CG =

1

η
×

�
(2si + 1)ni +

N

Pc
+ lgPn

�
tc

+ 2(520 + lgPn)ts

+ 2(520ñi + lgPn)tw

and the solve time is, per iteration

T
iter
CG =

1

η
×

�
(2si + 6)ni +

N

Pc
+ 2 lgPn

�
tc

+ 2(520 + 2 lgPn)ts

+ 2(520ñi + 2 lgPn)tw

Allowing ts and tw to vary and fixing all other parameters,
we plot the region

Pc(2si + 1)ni +N + 2 lgPn

T iter
CG

≥ 1018

which simplifies to

1120ts + 1599600tw ≤ 2.26× 10−4
−

1

η
× 2.10× 10−5

to see what machine parameters are required to achieve
exascale performance for an iteration of CG. The plot, which
is in Figure 9, shows a latency requirement on the order of
tenths of microseconds and a node bandwidth requirement of
tens of gigabytes per second.

101

102

103

104

10-6 10-5 10-4 10-3 10-2 10-1 100

B
an

dw
id

th
 (4

/t w
) i

n 
G

B
/s

Latency (ts) in microseconds

Feasibility Region for CG

η = 0.1
η = 0.124
η = 0.25

η = 0.5
η = 1

Fig. 9. Feasibility region for conjugate gradient iteration.

B. Memory Requirements

Finite element codes require storage of the mesh and the
(sparse) linear system. This is not a scalability concern, as the
storage of each scales with the number of degrees of freedom.
The storage beyond this is not a concern either. The redundant
storage in the scheme presented above is proportional to the
surface area of the elements, and beyond the linear system, CG
keeps only four additional vectors in memory. Even if another
Krylov solver were used, the memory used by the solver is not


