
it is important to analyze how MD codes will perform in this
regime, which we can loosely call “strong scaling”.

We will consider three cases for smaller problem sizes
where the ratio of number of atoms to cores is 50, 20 and
5 respectively. Each of these cases will require the splitting of
the basic cell of dimensions 16× 16× 16 Å, containing 400
atoms, into a number of smaller cells:

• 50 atoms per core (50 billion atoms) – Dimensions of
each cell will be 8× 8× 8 Å.

• 20 atoms per core (20 billion atoms) – Dimensions of
each cell will be 5.33× 5.33× 8 Å.

• 5 atoms per core (5 billion atoms) – Dimensions of each
cell will be 4× 4× 4 Å (see Figure 1, extreme right).

Based on the total number of atoms in each of these smaller
simulations, we can calculate the time per step for these cases
(see Table I).

Atoms Atoms/core Time (ms)

107 billion 100 3.602
53.6 billion 50 1.801
21.5 billion 20 0.720
5.4 billion 5 0.180

TABLE I
TIME PER STEP BOUNDS FOR MD SYSTEMS OF VARYING SIZES

Each case leads to different amounts of computation and
communication and we can write equations for the smaller
problems, similar to the weak scaling case:

T50 =
1

η
×

N50

Pc
× 33547× tc + 1856×

�
ts +

N50

Pc
4tw

�

T20 =
1

η
×

N20

Pc
× 33547× tc + 2672×

�
ts +

N20

Pc
4tw

�

T5 =
1

η
×

N5

Pc
× 33547× tc + 5120×

�
ts +

N5

Pc
4tw

�

Putting the values of N50/Pc = 50, N20/Pc = 20, N5/Pc = 5
and tc = 0.1 ns,

ts + 200tw < 9.7× 10−7
−

1

η
× 9.04× 10−8

ts + 80tw < 2.69× 10−7
−

1

η
× 2.51× 10−8

ts + 20tw < 3.52× 10−8
−

1

η
× 3.28× 10−9

Using these equations, we plot the feasibility regions for 5 to
107 billion atoms in Figure 3. It is evident that smaller problem
sizes put stronger constraints on the network. For example,
doing a 5.4 billion atom simulation at exascale would require
a latency in the range of 10 nanoseconds and a bandwidth in
the range of 10 GB/s.

IV. COSMOLOGICAL SIMULATIONS

Cosmological simulations are used to understand the origin
and evolution of stars, galaxies and the universe. The uni-

 1

 10

 100

 1000

10-5 10-4 10-3 10-2 10-1 100

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for MD

5 atoms per core
20 atoms per core
50 atoms per core

100 atoms per core

Fig. 3. Latency and bandwidth requirements for MD (smaller problem sizes)

verse consists of two basic types of matter–baryonic matter
composed of atoms and molecules and non-baryonic “dark”
matter whose composition is unknown. Baryonic matter forms
the part of the universe that astronomers can see directly and
requires gas dynamics simulations. Dark matter, the dominant
constituent of the universe for a significant portion of the time
scales of interest, can be considered a collisionless fluid and
can be simulated using N -body dynamics.

For the purpose of discussion in this paper, we will concen-
trate on N -body simulations which are performed by codes
known as gravity solvers. There are different approaches
to solving the N -body problem: 1. Direct methods where
all particle interactions are considered explicitly leading to
O(N2) computation, 2. Tree methods which involve a hi-
erarchical multipole expansion reducing the complexity to
O(N lgN), and 3. Particle-mesh or “grid” methods where
forces are calculated on a structured mesh. Examples of
applications which use tree methods are PkdGRAV [8] and
ChaNGa [9]. Examples of grid/AMR codes are Enzo [10]
and FLASH [11]. We conduct our analysis in the context
of the tree-based Barnes-Hut method [19], which gives an
O(N lgN) algorithm for simulating self-gravitating systems.

We begin by presenting an overview of N -body compu-
tations with the Barnes-Hut algorithm. First, particles are
divided among cores through domain decomposition of the
simulated universe, represented by a cube. We perform our
analysis in the context of Oct decomposition, which entails the
division of the simulation space into geometrically uniform
subregions (or cells) in a recursive manner. This division
places a tree-structure on the simulation space: the root of the
tree represents the entire simulation space, which we assume
to be a cube of length c. This cube is divided into eight
cells of length c/2, each representing a child of the root cell.
Each of these eight cells has eight children of its own, and so
on. Particles are grouped into appropriately sized buckets of
particles, which form the leaves of this tree. Each of the Pc

cores holds a section of the space represented by a contiguous
set of buckets. Therefore, the tree is distributed across cores.

