
 1

 10

 100

 1000

 10000

10-2 10-1 100 101 102

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for Barnes-Hut

6.8 trillion
1.7 trillion

0.43 trillion
0.11 trillion

Fig. 6. Constraints on machine characteristics for Barnes-Hut simulations
of different data sets. A value of η = 0.125 was used for each data set.

as a domain partitioned into a mesh of elements. A typical
application of a finite element solver involves two phases to
consider. There is an assembly phase, in which a linear system
is put together, and a solve phase in which that system is
solved. For a linear problem, there is just one assembly phase,
and one or more solve phases – one for a time-independent
problem, and one per time step for a time-dependent problem.
For a nonlinear problem, for which the solution process is an
iterative scheme comprised of the formation and solution of
multiple linear systems, the process of assembly and solve for
linear problems is repeated until convergence.

The problem setup in our analysis is based on the recent
work [20], which strongly scales a finite element solver to
near-petascale machines. Problem partitioning is by elements,
so that each processor has complete information about the
elements in its individual domain. Shared degrees of freedom,
which occur wherever there are mesh points on a processor
boundary, are stored redundantly. Figure 7 gives a simple
example. Assuming a good partitioning of the problem among
processors, the amount of shared degrees of freedom will
just be the surface area of the individual processor domains,
O

��
N
P

�
for a 2D problem and O

��
N
P

�2/3� for a 3D prob-
lem, assuming N global degrees of freedom. System assembly,
which involves summing the contributions of each element into
a global sparse matrix, can be accomplished with just nearest-
neighbor communication of local values for shared degrees
of freedom. As the matrix and vector entries themselves are
integrals, the number of floating-point operations depends on
the specific integration rule used.

There is a concern of scalability in terms of the amount
of data transferred. Completely assembling the matrix entries
requires the square of the surface area. However, this is not
necessary. Completely assembling only the vector entries,
which involves data transfer that is just linear in the surface
area, is sufficient if a Krylov subspace method, which is based
on matrix-vector multiplication, is used for the linear solve.

P1

P2

Fig. 7. Example of redundant storage of an unstructured mesh. The triangles
belong to two different processors, P1 and P2, and each node represents a
degree of freedom. Red entries are stored on P1, blue entries on P2, and
purple entries on both processors.

If only the non-shared degrees of freedom are assembled, a
nearest-neighbor exchange and summation of shared degrees
of freedom after the product of this matrix with a completely
assembled vector will give the same result as a product
between a completely assembled matrix and completely as-
sembled vector. With nearest-neighbor communication and
a scalable amount of data being transferred, we turn our
attention to the solve phase.

In the solve phase, a linear solver is used to solve the
previously assembled linear system. Krylov subspace meth-
ods, which are based on matrix-vector multiplication, are a
popular choice, and in fact the only choice when performing
assembly as previously outlined. There are many different
Krylov subspace methods [21], and the choice of method
depends on the specific problem being solved. As our study
is introductory, we examine here the simplest Krylov method,
conjugate gradient (CG), which is the method of choice for
problems that are symmetric and positive definite. Pseudocode
is given in Algorithm 3.

Algorithm 3 CG(A,b,x0,rtol)
r0 ← b−Ax0

p0 ← r0

k ← 0
while ||rk||2 ≥ rtol do

αk ←
rTk rk
pT
k Apk

xk+1 ← xk + αkpk

rk+1 ← rk − αkApk

βk ←
rTk+1rk+1

rTk rk
pk+1 ← rk+1 + βkpk

k ← k + 1
end while
return xk

The setup to CG requires one matrix-vector product (Ax0),
one vector subtraction (b−Ax0), and one dot product (rT0 r0).
The iteration loop requires one matrix-vector product (Apk),
two vector additions (xk+αkpk and rk+1+βkpk), one vector
subtraction (rk − αkApk), and two dot products (pTkApk and
rTk+1rk+1). We define the terms we will use to construct a
performance model below:

• N – global number of degrees of freedom
• ni – number of degrees of freedom stored on processor

i

