
Finally, we use the above expression for communication in
equation (IV.1),

6.52× 1018

Pc
×

tc

η
+ (1.1× 105ts + 1.03× 107tw) < 6.52

ts + 93.62tw < 59.2

�
1−

0.093

η

�
× 10−6

This equation is plotted in Figure 5. If we keep message
latency constant, the bandwidth requirements increase as η

decreases. It has been observed that an optimized version
of ChaNGa delivers about 15% of the theoretical maximum
performance on a single core. Therefore, a value of η = 0.125
is appropriate.

 0.1

 1

 10

 100

 1000

10-3 10-2 10-1 100 101 102

B
an

dw
id

th
 (4

/t w
) i

n 
G

B
/s

Latency (ts) in microseconds

Feasibility Region for Barnes-Hut

η = 0.1
η = 0.125
η = 0.25
η = 0.5

η = 1

Fig. 5. Latency and bandwidth requirements for the Barnes-Hut simulation
of 6.8 trillion uniformly distributed particles.

C. Memory requirements

In addition to its local cell and particle data, a processor
node in our model must store particle and cell data requested
from remote sources. This allows the caching and reuse of
requested data, thereby reducing the amount of communication
that must be performed. At the same time, this cache increases
the transient memory requirements of each processor node.
The local data comprises N/Pn particles and an octree of
depth lg(N/PnB)/3. Furthermore, each processor node stores
the path from the root cell to the cell that represents its
subvolume. The length of this path is lgPn/3 nodes. Assuming
the amount of data stored per local particle to be Sp = 152
bytes and that stored per cell to be Sc = 224 bytes, the amount
of memory required for the local data is:

Mlocal =

�
8

lg(N/PnB)
3 +

lgPn

3

�
Sc +

N

Pn
Sp

=

�
N

PnB
+

lgPn

3

�
Sc +

N

Pn
Sp

Substituting the values for the various variables, we get
Mlocal = 1.08 GB per node. We estimate the amount of
memory required to cache remote data by using the number of

cells and buckets requested from remote sources. Recall that
these values are given by (Ccell

1 +Ccell
2 ) and Cbkts, respectively.

Therefore, the total memory required per processor node to
cache remote data is:

Mremote = (Ccell
1 + C

cell
2 )Sc + C

bkts
BS

�
p

where S�
p = 40 bytes is the amount of memory required

per cached remote particle. Fixing the values of the various
variables, we get Mremote = 171 MB per node.

D. Smaller problem sizes

Not all cosmological simulations conducted at exascale will
use such large systems of particles. In particular, studies
of isolated star clusters and planet disk formation require
far fewer particles for faithful simulation. Such simulations
on small-scale structures are fairly important in themselves.
For this reason, we discuss the feasibility of conducting
experiments of sizes significantly smaller than the large, 6.8
trillion particle simulation discussed previously. In particular,
we analyze the constraints on machine characteristics as we
scale down the problem size and attempt to maintain the same
level of performance as seen with the large simulation.

We consider three particle systems of similar distribution
characteristics to the 6.8 trillion particle data set introduced
previously. The total number of particles for each of these
data sets is given in Table II. The number of particles per
core for each is also shown. In each case, the analysis for
communication volume is roughly the same as outlined in
Section IV-A and Section IV-B. each of the cases, we set η to
a realistic value of 0.125, or ≈ 13%. The equations relating
ts and tw for the three systems are listed below, in order:

ts + 93.56tw < 8.94× 10−6

ts + 93.45tw < 5.16× 10−6

ts + 93.29tw < 2.92× 10−6

# Particles Particles/core Time (s)

6.8 trillion 6350 6.52
1.7 trillion 1588 1.55
0.43 trillion 397 0.37
0.11 trillion 99 0.09

TABLE II
TIME PER STEP FOR BARNES-HUT SIMULATIONS OF DIFFERENT SIZES.

These constraints are depicted graphically in Figure 6. No-
tice that with fewer particles per core, keeping the overhead of
transmission constant, we require more bandwidth to maintain
a performance level of one Exaflop/s.

V. FINITE ELEMENT SOLVERS

Finite element solvers are the ones that are most commonly
employed to solve unstructured grid problems, as their expres-
sion of the solution as a sum of basis functions over elements
dovetails naturally with setup of an unstructured grid problem


