
manner. To solve these problems, finite element method (FEM)
solvers are most commonly employed. A detailed treatment of
the finite element method can be found in [12], but the basic
principle is to represent the solution to the problem as a sum of
basis functions over elements in a mesh, and this matches up
well with the setup of an unstructured grid problem. There are
many ways to apply finite element solvers, but they generally
center around assembling and solving a sparse linear system,
which can be done once or repeated several times depending
on the problem being solved. This is the approach we consider
in this study.

We first introduce the performance model used in the paper.
Each application class is then analyzed for its computation and
communication requirements for weak scaling. The analysis
helps derive constraints on the hardware, and then the analysis
is repeated for smaller problem instances. We also analyze
peak memory requirements of each application at scale. A
recent paper by Gahvari et al. [13] does a similar analysis
studying the feasibility of 3D FFT and multigrid at exascale.

II. MACHINE PARAMETERS AND ASSUMPTIONS

This section describes the methodology we use to model
the computation and communication behavior of parallel al-
gorithms. The amount of computation for each problem is
described in terms of the number of calculations, which is a
function of the problem size, N , and the number of processing
cores, Pc. For each calculation, we estimate the number of
floating point operations, n and multiply that by the time
for computing a flop, tc. Since the sequential performance
often does not achieve the peak flop/s rating, we multiply the
expression by an efficiency factor 1/η, This gives the equation
for computation time as,

Tcomp =
1

η
× f(N,Pc)× n× tc (II.1)

Communication on parallel machines can be described in
terms of three parameters:

• Start-up time (ts): This is the time required for handling
of a message at the sender and receiver. It is often referred
to as overhead and is incurred once per message.

• Per-hop time (th): This is the time spent at every
switch/router on the network that the message goes
through. It is multiplied by the number of hops or links,
l, traversed by the message.

• Per-word time (tw): If the bandwidth of each link on the
network is Bw GB/s and the size of a word is 4 bytes,
each word spends tw = 4/Bw time to traverse the link.
This is referred to as the per-word transfer time.

Using these three parameters, we can express the time for
sending a message on the network as,

ts + l × th +m× tw

where m is the size of the message in words. We assume that
the exascale machine will use wormhole routing to send flits
on the network (as is the case for most supercomputers today).
This suggests that, in absence of contention and for messages

of sufficiently large size, the second term in the equation above
will be significantly smaller than the third term. Also, it should
be possible to limit the number of links traversed to a few
hops using an intelligent topology aware mapping [14]. So,
for the analysis in this paper we ignore the second term in the
equation. If an application sends M = g(N,Pc) messages and
each message is of size h(N,Pc), the time for communication
will be given by:

Tcomm = M × (ts + h(N,Pc)× tw) (II.2)

We want to make as few assumptions as possible about
the architectural details of an Exaflop/s machine. However,
we must fix a few parameters for our analysis. Most large
supercomputers today have multiple cores per node and the
number of cores on each node is expected to rise. Let
us assume that our hypothetical machine will have 1 GHz
processing cores and each node will contain 1024 such cores.
The peak performance of the machine will be 10.74 Exaflop/s,
requiring Pc = 230 10 Gflop/s processing elements (number
of nodes, Pn = 220). The compute time per floating point
operation, tc = 0.1 ns (assuming 10 flops per cycle).

Using the parameters and assumptions described above, we
estimate the range of values for network latency and bandwidth
and memory requirements for performing exascale simulations
for the three application classes.

III. MOLECULAR DYNAMICS

Molecular dynamics (MD) codes constitute an important
class of parallel applications. We will focus on MD codes that
are used for simulating the life of biomolecules to understand
their structure and facilitate drug design. Over the years, a
plethora of parallel codes have been written to simulate MD
– NAMD [3], AMBER [4], Gromacs [15], Desmond [6] and
Blue Matter [7] to name a few.

MD is a difficult problem to parallelize because of the small
number of atoms and extremely small time scales (typically
1 to 2 femtoseconds) involved. Over the years, various par-
allelization techniques have been developed for scaling MD.
Plimpton gives a detailed overview of different approaches to
parallelizing MD in [16]. The traditional methods of paral-
lelizing classical MD computations are atom decomposition
and force decomposition. In atom decomposition, the atoms
involved in the simulation are distributed among the proces-
sors, in no particular order and each processor is responsible
for calculating forces for its atoms. In force decomposition, the
force matrix for the atoms is distributed among the processors.
If the number of atoms in the simulation is N and the number
of processing cores is Pc, the communication to computation
ratios for the two methods are:

C/C ratioatom =
N

N/Pc
= Pc

C/C ratioforce =
N/

√
Pc

N/Pc
=

�
Pc

Both of these approaches are non-isoefficient and hence not
used in modern, highly scaling MD codes. So, we focus on


