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Motivation

 Almost all clusters consist of multicore nodes
 Node size continues to grow

 The whole software stack needs to be adapted to the 
multicore architecture
 Application-level
 Parallel languages  (including its runtime system)
 System-level

 Potential benefits
 Latency is much reduced for intra-node messages
 Shared-memory data structure
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Initial porting of a runtime system doesn’t necessarily lead to benefits!
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Outline

 Introduction to the runtime system
 Charm++

 Experiment Setup
 Benchmark
 5 multicore machines

 Issues and Optimization Techniques
 Synchronization overhead
 Affinity settings
 …

 Performance for real applications

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 3



The Runtime System Case: Charm++

 Objected oriented C++ 
based

 Message driven execution
 Asynchronous non-blocking 

remote method invocation
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Architectures of Runtime System
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 non-SMP, process
 Network stack
 POSIX shared memory

 SMP, process + system 
thread
 Shared memory address 

space
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Initial Experiments Result
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 Applications do not have any performance improvement
 NAMD: ~10% degradation
 ChaNGa: ~2% degradation

 Attack the problem in two steps
 Issues on a single node
 Issues on multiple nodes


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Experiment Setup: Benchmark

 kNeighbor (k=3 in our study)

 Benchmark one iteration time
 Touch every byte of the message when received
 Emphasize the performance of message latency in the presence 

of contention
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Experiment Setup: Multicore Machines 

 Five multicore machines
 A: AIX 6.1/IBM Power 5, a 16-core (SMT=2) node

 B: Ubuntu 8.04/Intel Nehelem Xeon E5520, a 8-core (SMT=2) 
node

 C: Ubuntu 8.04/Intel Harpertown Xeon E5405, a 8-core node

 D: Ubuntun 8.04/AMD Barcelona Opteron 2356, a 8-core node

 E: CentOS 5.4/Intel Dunnington Xeon E7450, a 24-core node
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Initial Comparison for kNeighbor
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Network Progress Engine Issue

 Network progress engine
 Process incoming messages and send outgoing message 

immediately
 Expensive

 Initial Usage
 Invoked every time a message is sent

 contention on the engine

 Current Usage
 Not necessary for intra-node message
 Only invoke network progress engine if it is an inter-node 

message
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Avg. 35% gain

Not simply change processes to threads and make it thread safe, 
but re-think the overall design of the architecture
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Multi-threaded Performance Issues

 Efficient locking and synchronization among threads 
 key factor for fast fine-grained intra-node communication

 Three issues
 Memory management
 Granularity of critical sections
 Message queues
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Memory Management
 Charm++ uses its own memory allocator

 Based on a GNU memory allocator developed seven years ago
 Every malloc/free is protected with a lock 

 Switched to OS 
provided memory
module
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Avg. 2.4X!
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Performance of OS-provided Memory Module
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 Synthetic benchmark: every thread simultaneously allocates 
memory of the same size for 100,000 times, then free 
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Performance of OS-provided Memory Module

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

 Synthetic benchmark: every thread simultaneously allocates 
memory of the same size for 100,000 times, then free 
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Granularity of Critical Sections
 Trade-off between productivity and performance
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Avg. 35.1%
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Message Queues

 Producer-Consumer Queues (PCQueue)
 Commonly used data structure for implementing scheduler queues

 Scenario in Charm++
 Single consumer, multiple producers

 Use memory fence instead of locks
 A general API across multiple platforms for read/write fence
 Two steps of optimizations

 Remove locks for consumer
 Remove locks for producers by having a queue pair between 

the single consumer and each producer
 Polling overhead increased
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Perf. of Optimizing Message Queues
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v3 vs. v4:  avg. 9.7% gain

v4 vs.  v5: avg. 19.5% gain
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Handling Processor Private Variables
 Similar to the thread private variables in OpenMP

 “Cpv” macros providing transparent usage in non-SMP/SMP 
mode, e.g. CpvAccess(var)

 Initial implementation is array-based: 
 CpvAccess(var)  var[myrank] 
 false sharing 

 Solution: Thread Local Storage (TLS): explict or implicit
 pthread_setspecific/pthread_getspecific on Unix-like
 TlsSetValue/TlsGetValue on Windows
 “__thread” if supported by compiler and assembler
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Perf. Improvement After Using TLS
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Avg. 26.5% gain
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CPU Affinity (1)

 OS adopts natural affinity
 Keep process/thread on the same CPU as long as possible
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CPU Affinity (2)

 Just fixing the affinity shows performance improvement
 Fewer L1 cache misses
 Performance better and more stable
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CPU Affinity (3)

 How to set the CPU affinity generally?
 A cross-platform function API in Charm++
 Some TeraGrid sites also provide such functionality when 

lunching the job

 What’s the optimal affinity setting?
 Depends on the communication pattern of the program

 Example
 kNeighbor in the case of k=1 with 7 elements
 Message size: 256 bytes
 Immediate neighbor communication
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 Elem(0,1,2,3,4,5,6)  CPU(0,2,4,6,1,3,5): 11.66 us
 Elem(0,1,2,3,4,5,6)  CPU(0,1,2,3,4,5,6): 13.37 us
 Why?

 Inter-chip: 8 vs. 24
 Inter-die: 8 vs. 4
 Intra-die: 12 vs. 0
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Other Issues
 Reducing memory accesses in operations of message queues

 Very fine-grained performance tuning 
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Avg. 8.1% gain



Overall Improvement for kNeighbor

 14.4X over initial SMP

 4.87X over non-SMP

 1.21X over non-SMP in PXSHM
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Application Performance: NAMD
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Application Performance: ChaNGa

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 28

75

80

85

90

95

100

105

non-SMP PXSHM SMP 
original

SMP 
optimized

T
ot

al
 T

im
e 

pe
r 

It
er

at
io
n 

(n
or

m
al
iz
ed

)

Platform C (cube300)

75

80

85

90

95

100

105

non-SMP PXSHM SMP 
original

SMP 
optimized

T
ot

al
 T

im
e 

pe
r 

It
er

at
io
n 

(n
or

m
al
iz
ed

)

Platform C (dwf1)



Conclusion

 Studied the parallelization of a parallel language runtime 
system for mutlicore platforms via Charm++
 Described various issues for the initial implementation
 Applied optimization techniques correspondingly

 Lock and synchronization overhead
 CPU affinity
 False sharing

 Should be general enough and useful to other runtime system
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Thank you !

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http://charm.cs.uiuc.edu
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