
Optimizing a Parallel 
Runtime System for 
Multicore Clusters: 
A Case Study
Chao Mei, Gengbin Zheng, Fillipo Gioachin, 
Laxmikant V. Kale
08/03/2010, TeraGrid’10

Chao Mei (chaomei2@illinois.edu) 
Parallel Programming Lab, UIUC 1



Motivation

 Almost all clusters consist of multicore nodes
 Node size continues to grow

 The whole software stack needs to be adapted to the 
multicore architecture
 Application-level
 Parallel languages  (including its runtime system)
 System-level

 Potential benefits
 Latency is much reduced for intra-node messages
 Shared-memory data structure

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Initial porting of a runtime system doesn’t necessarily lead to benefits!

2



Outline

 Introduction to the runtime system
 Charm++

 Experiment Setup
 Benchmark
 5 multicore machines

 Issues and Optimization Techniques
 Synchronization overhead
 Affinity settings
 …

 Performance for real applications

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 3



The Runtime System Case: Charm++

 Objected oriented C++ 
based

 Message driven execution
 Asynchronous non-blocking 

remote method invocation

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 4



Architectures of Runtime System

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

 non-SMP, process
 Network stack
 POSIX shared memory

 SMP, process + system 
thread
 Shared memory address 

space

5



Initial Experiments Result

Chao Mei (chaomei2@illinois.edu) Parallel 
Programming Lab, UIUC

 Applications do not have any performance improvement
 NAMD: ~10% degradation
 ChaNGa: ~2% degradation

 Attack the problem in two steps
 Issues on a single node
 Issues on multiple nodes



6



Experiment Setup: Benchmark

 kNeighbor (k=3 in our study)

 Benchmark one iteration time
 Touch every byte of the message when received
 Emphasize the performance of message latency in the presence 

of contention

Chao Mei (chaomei2@illinois.edu) Parallel 
Programming Lab, UIUC 7



Experiment Setup: Multicore Machines 

 Five multicore machines
 A: AIX 6.1/IBM Power 5, a 16-core (SMT=2) node

 B: Ubuntu 8.04/Intel Nehelem Xeon E5520, a 8-core (SMT=2) 
node

 C: Ubuntu 8.04/Intel Harpertown Xeon E5405, a 8-core node

 D: Ubuntun 8.04/AMD Barcelona Opteron 2356, a 8-core node

 E: CentOS 5.4/Intel Dunnington Xeon E7450, a 24-core node

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 8



Initial Comparison for kNeighbor

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 9



Network Progress Engine Issue

 Network progress engine
 Process incoming messages and send outgoing message 

immediately
 Expensive

 Initial Usage
 Invoked every time a message is sent

 contention on the engine

 Current Usage
 Not necessary for intra-node message
 Only invoke network progress engine if it is an inter-node 

message

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 10



Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Avg. 35% gain

Not simply change processes to threads and make it thread safe, 
but re-think the overall design of the architecture

11



Multi-threaded Performance Issues

 Efficient locking and synchronization among threads 
 key factor for fast fine-grained intra-node communication

 Three issues
 Memory management
 Granularity of critical sections
 Message queues

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 12



Memory Management
 Charm++ uses its own memory allocator

 Based on a GNU memory allocator developed seven years ago
 Every malloc/free is protected with a lock 

 Switched to OS 
provided memory
module

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Avg. 2.4X!

13



Performance of OS-provided Memory Module

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

 Synthetic benchmark: every thread simultaneously allocates 
memory of the same size for 100,000 times, then free 

14



Performance of OS-provided Memory Module

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

 Synthetic benchmark: every thread simultaneously allocates 
memory of the same size for 100,000 times, then free 

15



Granularity of Critical Sections
 Trade-off between productivity and performance

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Avg. 35.1%

16



Message Queues

 Producer-Consumer Queues (PCQueue)
 Commonly used data structure for implementing scheduler queues

 Scenario in Charm++
 Single consumer, multiple producers

 Use memory fence instead of locks
 A general API across multiple platforms for read/write fence
 Two steps of optimizations

 Remove locks for consumer
 Remove locks for producers by having a queue pair between 

the single consumer and each producer
 Polling overhead increased

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 17



Perf. of Optimizing Message Queues

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

v3 vs. v4:  avg. 9.7% gain

v4 vs.  v5: avg. 19.5% gain

18



Handling Processor Private Variables
 Similar to the thread private variables in OpenMP

 “Cpv” macros providing transparent usage in non-SMP/SMP 
mode, e.g. CpvAccess(var)

 Initial implementation is array-based: 
 CpvAccess(var)  var[myrank] 
 false sharing 

 Solution: Thread Local Storage (TLS): explict or implicit
 pthread_setspecific/pthread_getspecific on Unix-like
 TlsSetValue/TlsGetValue on Windows
 “__thread” if supported by compiler and assembler

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 19



Perf. Improvement After Using TLS

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Avg. 26.5% gain

20



CPU Affinity (1)

 OS adopts natural affinity
 Keep process/thread on the same CPU as long as possible

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 21



CPU Affinity (2)

 Just fixing the affinity shows performance improvement
 Fewer L1 cache misses
 Performance better and more stable

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 22



CPU Affinity (3)

 How to set the CPU affinity generally?
 A cross-platform function API in Charm++
 Some TeraGrid sites also provide such functionality when 

lunching the job

 What’s the optimal affinity setting?
 Depends on the communication pattern of the program

 Example
 kNeighbor in the case of k=1 with 7 elements
 Message size: 256 bytes
 Immediate neighbor communication

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 23



 Elem(0,1,2,3,4,5,6)  CPU(0,2,4,6,1,3,5): 11.66 us
 Elem(0,1,2,3,4,5,6)  CPU(0,1,2,3,4,5,6): 13.37 us
 Why?

 Inter-chip: 8 vs. 24
 Inter-die: 8 vs. 4
 Intra-die: 12 vs. 0

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 24



Other Issues
 Reducing memory accesses in operations of message queues

 Very fine-grained performance tuning 

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 25

Avg. 8.1% gain



Overall Improvement for kNeighbor

 14.4X over initial SMP

 4.87X over non-SMP

 1.21X over non-SMP in PXSHM

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 26



Application Performance: NAMD

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 27

75

80

85

90

95

100

105

110

115

non-SMP PXSHM SMP 
original

SMP 
optimized

T
ot

al
 T

im
e 

pe
r 

It
er

at
io
n 

(n
or

m
al
iz
ed

)

Platform E (24-core)

75

80

85

90

95

100

105

110

115

non-SMP PXSHM SMP 
original

SMP 
optimized

T
ot

al
 T

im
e 

pe
r 

It
er

at
io
n 

(n
or

m
al
iz
ed

)

Platform C (8-core)



Application Performance: ChaNGa

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 28

75

80

85

90

95

100

105

non-SMP PXSHM SMP 
original

SMP 
optimized

T
ot

al
 T

im
e 

pe
r 

It
er

at
io
n 

(n
or

m
al
iz
ed

)

Platform C (cube300)

75

80

85

90

95

100

105

non-SMP PXSHM SMP 
original

SMP 
optimized

T
ot

al
 T

im
e 

pe
r 

It
er

at
io
n 

(n
or

m
al
iz
ed

)

Platform C (dwf1)



Conclusion

 Studied the parallelization of a parallel language runtime 
system for mutlicore platforms via Charm++
 Described various issues for the initial implementation
 Applied optimization techniques correspondingly

 Lock and synchronization overhead
 CPU affinity
 False sharing

 Should be general enough and useful to other runtime system

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 29



Thank you !


Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

http://charm.cs.uiuc.edu

30


	Optimizing a Parallel Runtime System for Multicore Clusters: �A Case Study
	Motivation
	Outline
	The Runtime System Case: Charm++
	Architectures of Runtime System
	Initial Experiments Result
	Experiment Setup: Benchmark
	Experiment Setup: Multicore Machines 
	Initial Comparison for kNeighbor 
	Network Progress Engine Issue
	Slide Number 11
	Multi-threaded Performance Issues
	Memory Management
	Performance of OS-provided Memory Module
	Performance of OS-provided Memory Module
	Granularity of Critical Sections
	Message Queues
	Perf. of Optimizing Message Queues
	Handling Processor Private Variables
	Perf. Improvement After Using TLS
	CPU Affinity (1)
	CPU Affinity (2)
	CPU Affinity (3)
	Slide Number 24
	Other Issues
	Overall Improvement for kNeighbor
	Application Performance: NAMD
	Application Performance: ChaNGa
	Conclusion
	Slide Number 30

