
 1

Highly Scalable Parallel Sorting

Edgar Solomonik and Laxmikant Kale
University of Illinois at Urbana-Champaign

April 20, 2010

 2

Outline

● Parallel sorting background
● Histogram Sort overview
● Histogram Sort optimizations
● Results
● Limitations of work
● Contributions
● Future work

 3

Parallel Sorting

● Input
– There are n unsorted keys, distributed evenly

over p processors

– The distribution of keys in the range is unknown
and possibly skewed

● Goal
– Sort the data globally according to keys

– Ensure no processor has more than
(n/p)+threshold keys

 4

Scaling Challenges

● Load balance
– Main objective of most parallel sorting algorithms

– Each processor needs a continuous chunk of data

● Data exchange communication
– Can require complete communication graph

– All-to-all contains n elements in p² messages

 5

Parallel Sorting Algorithms

Type
● Merge-based

– Bitonic Sort

– Cole's Merge Sort

● Splitter-based
– Sample Sort

– Histogram Sort

● Other
– Parallel Quicksort

– Radix Sort

Data movement

½*n*log²(p)

O(n*log(p))

n

n

O(n*log(p))

O(n)~4*n

 6

Splitter-Based Parallel Sorting
● A splitter is a key that

partitions the global set of
keys at a desired location

● p-1 global splitters needed
to subdivide the data into p
continuous chunks

● Each processor can send
out its local data based on
the splitters

– Data moves only once
● Each processor merges the

data chunks as it receives
them

Proc 3

Proc 2

Proc 1

S
pl

itt
er

 2

S
pl

itt
er

 1
Key

N
um

be
r

of
 K

ey
s

Splitting of Initial Data

key_min key_max

 7

n

key_maxkey_min

 0

Key

N
um

be
r

of
 K

ey
s

S
m

al
le

r
th

an
 x

Splitter k

k*(n/p)

Splitter on Key Density Function

 8

Sample Sort
...... Processor p-1

Combined Sample

Sample

Processor 1

Sample

Combined Sorted Sample

Sort combined sample

Splitters

Broadcast Splitters

......

Extract splitters

...... Processor p-1 sorted dataProcessor 1 sorted data

Splitters Splitters

Apply splitters to data

Extract local samples

Concatenate samples

All-to-All

 9

Sample Sort

● The sample is typically regularly spaced in
the local sorted data s=p-1
– Worst case final load imbalance is 2*(n/p) keys

– In practice, load imbalance is typically very small

● Combined sample becomes bottleneck since
(s*p)~p²
– With 64-bit keys, if p = 8192, sample is 16 GB!

 10

Basic Histogram Sort

● Splitter-based
● Uses iterative guessing to find splitters

– O(p) probe rather than O(p²) combined sample

– Probe refinement based on global histogram
● Histogram calculated by applying splitters to data

● Kale and Krishnan, ICPP 1993
● Basis for this work

 11

Basic Histogram Sort

......Processor 1 Processor 1

Processor p sorted data

Test probe of splitter-guesses

Calculate histograms

Add up histograms
Analyze global histogram

R
ef

in
e

p r
ob

e

Broadcast probe

......
Apply splitters to data

All-to-All

Processor 1 sorted data

If convergedIf probe not converged

 12

Basic Histogram Sort

● Positives
– Splitter-based: single all-to-all data transpose

– Can achieve arbitrarily small threshold

– Probing technique is scalable compared to sample
sort, O(p) vs O(p²)

– Allows good overlap between communication and
computation (to be shown)

● Negatives
– Harder to implement

– Running time dependent on data distribution

 13

Sorting and Histogramming Overlap

● Don't actually need to sort local data first
● Splice data instead

– Use splitter-guesses as Quicksort pivots

– Each splice determines location of a guess and
partitions data

● Sort chunks of data while histogramming
happens

 14

Histogramming by Splicing Data
Unsorted data

Splice data with probe

Sort chunks

Sorted data

Splice data with new probe

Search here
Splice here

 15

Histogram Overlap Analysis

● Probe generation work should be offloaded to
one processor
– Reduces critical path

● Splicing is somewhat expensive
– O((n/p)*log(p)) for first iteration

● log(p) approaches log(n/p) in weak scaling

– Small theoretical overhead (limited pivot
selection)

– Slight implementation overhead (libraries faster)

– Some optimizations/code necessary

 16

Sorting and All-to-All Overlap
● Histogram and local sort overlap is good but

the all-to-all is the worst scaling bottleneck
● Fortunately, much all-to-all overlap available
● All-to-all can initially overlap with local sorting

– Some splitters converge every histogram iteration
● This is also prior to completion of local sorting
● Can begin sending to any defined ranges

 17

Eager Data Movement

Unsorted DataSorted data

Receive message with resolved ranges

Sort chunk

Send to destination processor

Extract chunk

Send to destination processor

 18

All-to-All and Merge Overlap

● The k-way merge done when the data arrives
should be implemented as a tree merge
– A k-way heap merge requires all k arrays

– A tree merge can start with just two arrays

● Some data arrives much earlier than the rest
– Tree merge allows overlap

 19

Tree k-way Merging
Buffer 1

Buffer 2

First chunk Buffer 1First chunk

Two more chunks arrive

Buffer 1First chunk Third chunk

First merged data

Fourth chunk

Second merged data

Buffer 1First chunk Final merged data

First merged data Second merged data

Merge

Merge

Another chunk arrives

Buffer 1First chunkFirst chunk Second chunk

First merged data

Merge
B1

B2

B1

B2

B1

B2

B1

B2

 20

Overlap Benefit (Weak Scaling)

Tests done on Intrepid (BG/P) and Jaguar (XT4) with 8 million 64-bit keys per core.

 21

Overlap Benefit (Weak Scaling)

Tests done on Intrepid (BG/P) and Jaguar (XT4) with 8 million 64-bit keys per core.

 22

Overlap Benefit (Weak Scaling)

Tests done on Intrepid (BG/P) and Jaguar (XT4) with 8 million 64-bit keys per core.

 23

Effect of All-to-All Overlap
N

O
 O

V
E

R
L

A
P

 V
S

 O
V

E
R

L
A

P

MergeSort all data

Histogram
Send data

Idle time

Splice data

S
or

t
by

 c
hu

nk
s

S
en

d
da

ta

Merge

Tests done on 4096 cores of Intrepid (BG/P) with 8 million 64-bit keys per core.

P
ro

ce
ss

o
r

U
til

iz
a

tio
n

100%

P
ro

ce
ss

o
r

U
til

iz
a

tio
n

100%

 24

All-to-All Spread and Staging

● Personalized all-to-all collective
communication strategies important
– All-to-all eventually dominates execution time

● Some basic optimizations easily applied
– Varying order sends

● Minimizes network contention

– Only a subset of processors should send data to
one destination at a time

● Prevents network overload

 25

Communication Spread

Data Splicing Sorting Sending Merging

Tests done on 4096 cores of Intrepid (BG/P) with 8 million 64-bit keys per core.

 26

Algorithm Scaling Comparison

Tests done on Intrepid (BG/P) with 8 million 64-bit keys per core.

Out of memory

 27

Histogram Sort Parallel Efficiency

Tests done on Intrepid (BG/P) and Jaguar (XT4) with 8 million 64-bit keys per core.

 28

Some Limitations of this Work
● Benchmarking done with 64-bit keys rather

than key-value pairs
● Optimizations presented are only beneficial

for certain parallel sorting problems
– Generally, we assumed n > p²

● Splicing useless unless n/p > p
● Different all-to-all optimizations required if n/p is

small (combine messages)

– Communication usually cheap until p>512

● Complex implementation another issue

 29

Future/Ongoing Work

● Write a further optimized library
implementation of Histogram Sort
– Sort key-value pairs

– Almost completed, code to be released

● To scale past 32k cores, histogramming
needs to be better optimized
– As p→n/p, probe creation cost matches the cost

of local sorting and merging

– One promising solution is to parallelize probing
● Can use early determined splitters to divide probing

 30

Contributions

● Improvements on original Histogram Sort
algorithm
– Overlap between computation and communication

– Interleaved algorithm stages

● Efficient and well-optimized implementation
● Scalability up to tens of thousands of cores
● Ground work for further parallel scaling of

sorting algorithms

 31

Acknowledgements

● Everyone in PPL for various and generous
help

● IPDPS reviewers for excellent feedback
● Funding and Machine Grants

– DOE Grant DEFG05-08OR23332 through ORNL LCF

– Blue Gene/P at Argonne National Laboratory, which is supported by DOE
under contract DE-AC02-06CH11357

– Jaguar at Oak Ridge National Laboratory, which is supported by the DOE
under contract DE-AC05-00OR22725

– Accounts on Jaguar were made available via the Performance Evaluation and
Analysis Consortium End Station, a DOE INCITE project.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

