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Parallel Sorting

● Input
– There are n unsorted keys, distributed evenly 

over p processors

– The distribution of keys in the range is unknown 
and possibly skewed

● Goal
– Sort the data globally according to keys

– Ensure no processor has more than               
(n/p)+threshold keys 
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Scaling Challenges 

● Load balance
– Main objective of most parallel sorting algorithms

– Each processor needs a continuous chunk of data

● Data exchange communication
– Can require complete communication graph 

– All-to-all contains n elements in p² messages



  5

Parallel Sorting Algorithms

Type
● Merge-based

– Bitonic Sort 

– Cole's Merge Sort 

● Splitter-based
– Sample Sort 

– Histogram Sort 

● Other
– Parallel Quicksort 

– Radix Sort 

Data movement
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Splitter-Based Parallel Sorting
● A splitter is a key that 

partitions the global set of 
keys at a desired location

● p-1 global splitters needed 
to subdivide the data into p 
continuous chunks

● Each processor can send 
out its local data based on 
the splitters

– Data moves only once
● Each processor merges the 

data chunks as it receives 
them
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Sample Sort
...... Processor p-1

Combined Sample

Sample

Processor 1

Sample

Combined Sorted Sample

Sort combined sample

Splitters

Broadcast Splitters

...... 

Extract splitters

...... Processor p-1 sorted dataProcessor 1 sorted data

Splitters Splitters

Apply splitters to data

Extract local samples

Concatenate samples

All-to-All
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Sample Sort

● The sample is typically regularly spaced in 
the local sorted data s=p-1 
– Worst case final load imbalance is 2*(n/p) keys 

– In practice, load imbalance is typically very small

● Combined sample becomes bottleneck since 
(s*p)~p²
– With 64-bit keys, if p = 8192, sample is 16 GB!
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Basic Histogram Sort

● Splitter-based
● Uses iterative guessing to find splitters

– O(p) probe rather than O(p²) combined sample

– Probe refinement based on global histogram
● Histogram calculated by applying splitters to data

● Kale and Krishnan, ICPP 1993
● Basis for this work
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Basic Histogram Sort

......Processor 1 Processor 1

Processor p sorted data

Test probe of splitter-guesses

Calculate histograms 

Add up histograms
Analyze global histogram
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Basic Histogram Sort

● Positives
– Splitter-based: single all-to-all data transpose

– Can achieve arbitrarily small threshold

– Probing technique is scalable compared to sample 
sort, O(p) vs O(p²)

– Allows good overlap between communication and 
computation (to be shown)

● Negatives
– Harder to implement

– Running time dependent on data distribution
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Sorting and Histogramming Overlap

● Don't actually need to sort local data first
● Splice data instead 

– Use splitter-guesses as Quicksort pivots

– Each splice determines location of a guess and 
partitions data

● Sort chunks of data while histogramming 
happens
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Histogramming by Splicing Data
Unsorted data

Splice data with probe

Sort chunks

Sorted data

Splice data with new probe

Search here
Splice here
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Histogram Overlap Analysis

● Probe generation work should be offloaded to 
one processor
– Reduces critical path

● Splicing is somewhat expensive
– O((n/p)*log(p)) for first iteration

● log(p) approaches log(n/p) in weak scaling

– Small theoretical overhead (limited pivot 
selection)

– Slight implementation overhead (libraries faster)

– Some optimizations/code necessary
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Sorting and All-to-All Overlap
● Histogram and local sort overlap is good but 

the all-to-all is the worst scaling bottleneck
● Fortunately, much all-to-all overlap available
● All-to-all can initially overlap with local sorting

– Some splitters converge every histogram iteration
● This is also prior to completion of local sorting
● Can begin sending to any defined ranges
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Eager Data Movement

Unsorted DataSorted data

Receive message with resolved ranges

Sort chunk

Send to destination processor

Extract chunk

Send to destination processor



  18

All-to-All and Merge Overlap

● The k-way merge done when the data arrives 
should be implemented as a tree merge
– A k-way heap merge requires all k arrays

– A tree merge can start with just two arrays

● Some data arrives much earlier than the rest
– Tree merge allows overlap 
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Tree k-way Merging
Buffer 1

Buffer 2

First chunk Buffer 1First chunk

Two more chunks arrive

Buffer 1First chunk Third chunk

First merged data

Fourth chunk

Second merged data

Buffer 1First chunk Final merged data

First merged data Second merged data

Merge

Merge

Another chunk arrives

Buffer 1First chunkFirst chunk Second chunk

First merged data

Merge
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Overlap Benefit (Weak Scaling)

Tests done on Intrepid (BG/P) and Jaguar (XT4) with 8 million 64-bit keys per core.
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Overlap Benefit (Weak Scaling)

Tests done on Intrepid (BG/P) and Jaguar (XT4) with 8 million 64-bit keys per core.
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Effect of All-to-All Overlap
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All-to-All Spread and Staging

● Personalized all-to-all collective 
communication strategies important
– All-to-all eventually dominates execution time

● Some basic optimizations easily applied
– Varying order sends

● Minimizes network contention

– Only a subset of processors should send data to 
one destination at a time

● Prevents network overload
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Communication Spread

 

Data Splicing Sorting Sending Merging

Tests done on 4096 cores of Intrepid (BG/P) with 8 million 64-bit keys per core.
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Algorithm Scaling Comparison

Tests done on Intrepid (BG/P) with 8 million 64-bit keys per core.

Out of memory
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Histogram Sort Parallel Efficiency

Tests done on Intrepid (BG/P) and Jaguar (XT4) with 8 million 64-bit keys per core.



  28

Some Limitations of this Work
● Benchmarking done with 64-bit keys rather 

than key-value pairs
● Optimizations presented are only beneficial 

for certain parallel sorting problems
– Generally, we assumed n > p²

● Splicing useless unless n/p > p
● Different all-to-all optimizations required if n/p is 

small (combine messages)

– Communication usually cheap until p>512 

● Complex implementation another issue
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Future/Ongoing Work

● Write a further optimized library 
implementation of Histogram Sort
– Sort key-value pairs

– Almost completed, code to be released

● To scale past 32k cores, histogramming 
needs to be better optimized
– As p→n/p, probe creation cost matches the cost 

of local sorting and merging

– One promising solution is to parallelize probing
● Can use early determined splitters to divide probing
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Contributions

● Improvements on original Histogram Sort 
algorithm
– Overlap between computation and communication

– Interleaved algorithm stages

● Efficient and well-optimized implementation
● Scalability up to tens of thousands of cores
● Ground work for further parallel scaling of 

sorting algorithms
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