2009 International Conference on Parallel and Distributed Computing, Applications and Technologies

SMP Based Solver For Large Binary Linear Systems

Nikhil Jain, Brajesh Pande, Phalguni Gupta
Indian Institute of Technology Kanpur
Kanpur - 208016, India
nikhjain @in.ibm.com, {brajesh, pg} @iitk.ac.in

Abstract

Solving a large sparse system of linear equations (SSLE)
over the binary field is an important step in the general
number field seive (GNFS) algorithm that is often used to
factorize large integers used in the RSA algorithm. Block
Lanczos method proposed by Montgomery is an efficient
and reliable method for solving such systems. A number
of implementations of Block Lanczos method on distributed
systems have been proposed in past. This paper discusses
the parallel Montgomery’s Block Lanczos method for solv-
ing binary system of equations on shared multiprocessors
(SMP). A simple experiment shows that the speed of con-
vergence of this algorithm is dependent on a wise choice
of initial guess for kick-starting the algorithm. A some-
what dense choice of the initial guess is suggested rather
than a random choice for faster convergence. Devoid of any
communication overheads of a loosely coupled system, the
improved method gives good performance on SMP systems
which can provide an able alternative to the more popular
distributed systems. Details of implementation of this algo-
rithm on SMP and experimental results are also provided in
the paper:

1. Introduction

RSA [1] is the first algorithm known to be suitable for
signing as well as encryption. High level of security of a
RSA system is owing to difficulties faced in factoring very
large integers. Factoring of large integers is either compu-
tationally very expensive or too complicated to implement.
GNFS [2] is the most efficient and easy to implement algo-
rithm for factoring large integers.

GNEFS consists of two computationally intensive steps:
sieving and solving a large SSLE over GF(2). It takes sev-
eral months to factor large integers of using these two steps.
Montgomery’s Block Lanczos method [3] is the most com-
mon method used to solve large sparse linear systems over
GF(2). In this paper, an improved parallel Montgomery’s

978-0-7695-3914-0/09 $26.00 © 2009 IEEE
DOI 10.1109/PDCAT.2009.70

426

block Lanczos method for SMP is proposed. The method
leads to selection of almost all the columns in invertible
subspace in each iteration. Implementation on SMP helps in
eliminating communication overheads which are immense,
and assists in building an efficient and good alternative to
DS based implementations. OpenMP, which has unified in-
dustry protocol for SMP, has been used to facilitate the us-
age of implementation across the community.

2 Preliminaries

RSA can be attacked directly by factorizing publicly
available n using GNFS [2]. This produces the integers p
and g and the private key can then be generated. GNFS uses
six steps to factorize a given composite number. First two
steps of GNFS require selection of a polynomial and fac-
tor bases. Sieving is the next step that involves generation
of pairs (x,y) to build a linear dependence which is filtered
in the fourth step. Using the generated data, a large SSLE
over GF(2) is built and solved in the next step. Finally, the
solution of SSLE is used to factorize n in the sixth step.

Step 3 and Step 5 are the most time consuming steps in
GNFS. The size of the SSLE produced in Step 5 is depen-
dent on the number of digits in n. A SSLE of dimension of
the order of O(10° x 10%) is produced for a 110 digit num-
ber. A 120 digit number requires SSLE of size in excess
of 10% x 10%. However the number of non zero entries in
the SSLE is extremely low. The density of such SSLE lies
in the region of 0.001% to 0.005%. As such, an iterative
method can be used to solve the equations.

2.1 Lanczos Algorithm

Suppose A = BTB is a symmetric positive definite ma-
trix over GF(2) satisfying b = BTb. The standard Lanczos
algorithm [4] can be used to solve Ax = b by iterating

1—1
v = Avi_q — Zcijvj (D
j=0

IEEE
computer
psouety

where coefficients ¢;; are defined as

UTAQ’l)Z‘,l
Cij =)
v; Av;

The iteration continues until v; = 0 for some i = m. The rela-
tion v} Av; = 0if i # j can be easily verified by an induction
on max(i,j) and using the symmetry of matrix A. If a solu-
tion x to Ax = b exists in K(A,b) = span{b, Ab, A%b- -},
it can be recovered by projecting b onto each of the Krylov
basis vectors:

m—1 T
vib
= 2 l 3
. Z_z:; viTAvZ-U)

Lanczos algorithm has a critical issue when applied over
finite fields. All the operations in prime field GF(p) are
modulo p. In such a case, v1 Av,, = 0 may hold even when
vm # 0. This forces a breakdown of the algorithm and
it halts long before termination condition is achieved. The
probability of such a breakdown is inversely proportional to
the size of the field. While working on GF(2) such a situ-
ation arises half the times and can be handled using Block
Lanczos algorithm [3].

2.2 Block Lanczos Algorithm

Block Lanczos algorithm [3] computes a sequence of
subspaces Wy, Wy --- W, (combination of independent
column vectors) such that

e W, is A-invertible i.e. the subspace has a basis of col-
umn vectors V; such that V.7 AV; is invertible.

e W; and W; are A-orthogonal if 7 # j.

e AWC Wwhere W =Wy + Wi +---+ W, _1.
The solution vector x can be recovered by projecting b
onto the basis vectors V;’s of the subspaces W;’s using

m—1
Vi(V;FAV) Vb (4)

j=0

The computer word size — N —is a good candidate for the
number of column vectors in W; owing to possible usage of
bit vector operations to perform parallel computation. How-
ever A invertibility of the subspace needs to be ensured by
special means. The first vector subspace, W, consists of N
randomly generated vectors. The basis, Vj, is constructed
by selecting as many columns of W) as possible subjected
to A-invertibility requirement. Mathematically this can be
represented as post multiplication of Wy by a matrix Sy

ie. Vo = WySp. Using the recurrence W1, which is A-
orthogonal to Vj, is constructed. V; is obtained from Wy us-
ing the same method which has been used for obtaining 1}
from Wy. In general in the it" iteration, matrix TW; which is
A-orthogonal to all earlier V} is constructed followed by se-
lection of V; from W;. Denoting V;"* = S;(V;T AV;)~1ST,
the three terms recurrence relation can be reduced to

Wiy1 = AW;SiST +WiDip1 + Wi1 B + WioFiyq

)
Dir= Iy — Vi (WEA2W,8,57 + W AW;)
Bii= —Vi"WTAW,S;ST
Fip= =V (In — W AW V)

(WL AW, 181 SE, + WL, AW, _1)S; ST

The details of this derivation are presented in [3]

Selection of N vectors in a subspace results in usage of
bit vectors - vectors which are bit packed form of matrices.
Every entry in a bit vector represents N entries of the origi-
nal matrix. As such, position of a bit in an entry of a bit vec-
tor determines its position in original matrix. Usage of bit
vectors facilitate parallel operations using bit wise operators
and save storage space. Algorithm 1 presents the pseudo for
the Block Lanczos algorithm. In the pseudo code, matrices
D, E, F, prod and val are bit vectors of dimension N x N
and matrices W and V are bit vectors of dimension n x N.

Algorithm 1 Block Lanczos Algorithm

Input: Matrix B of size n x n and vector b.
Output Vector x such that Bx = b.
Initialize i = 0, count =0,x=0, S_1 = I, Wp = Random value.
prodlg = B x W.
prod2g = proleT * prodlg.
while W; # 0 and count < n do
{Viinv, Sz} = findVinvS (pT‘OdQZ', Sifl).
x=x+ (W x (Vim0 s« WT « Wy)).
prod3; = BT x prodl;.
val; = ((prodl? « B x prod3;) = S;ST) + prod2;.
Diy1=1In— (VZ””’ * val;).
Eit1 ==V xprod2; » S;ST.
Fipq = —ViWx(Iy — (prod2;—1* V™)) xval;—1 xS; ST
Wit1 = (prod3; * S; ST)+ (Wi* Dit1)+(Wi—1 xEiy1) +
(Wi—2 * Fit1).
13: prodli;1 = B Wiy1.
14: prod2;y1 = prodlZT_’_1 *prodl;yq.
15: i=i+1.
16: end while
17: if count < n then
18: return Xx.

19: end if

- =
A 3 AN A > e

._
»

3 Implementation Details

This section discusses the implementation of the algo-
rithm discussed in the previous section on SMP machines.

The algorithm is sensitive to the initial choice of the sub-
space Wy. Implementation on SSLE over GF(2) has impli-
cations on the storage structure, addition and multiplication
of packed bits and data distribution. Discussion on such is-
sues form the core part of this section.

3.1 Initializing W,

Montgomery’s Block Lanczos algorithm [3] does not
specify any module or constraint for initializing subspace
Woy. The algorithm correctly solves an independent sys-
tem of equations irrespective of the value of Wy. How-
ever, value of subspace W has an effect on the number of
columns that gets selected in the basis V; from the subspace
W;. This selection in turn has a direct effect on the number
of iterations performed before the termination condition is
achieved. As such, initialization routine of the subspace W
has a major influence on the run time of the algorithm.

Density of Wy | Iterations Required
0.01% 263
0.02% 190
0.05% 184
0.10% 169
1.00% 158
5.00% 158

Table 1. Iteration count on system with n =
10 and density 0.1%

Initialization using very sparse subspace (which may
happen in case of random initialization) results in selection
of only % columns in basis V; from subspace W;. Usage of
Wy based on vector b suffers from similar problem. As is
clear from Table 1, selection of a random subspace W, with
density greater than 1% is recommended for a faster con-
vergence of the algorithm. If the density of W) is greater
than 1%, selection of greater than N-2 columns can be en-
sured in basis V; from subspace W;. Hence, the number of
iterations required for achieving termination condition is re-
duced drastically which in turn results in reduction of total
execution time of the algorithm.

3.2 Storage of Sparse Matrix

The sparse matrix can be represented by a set of variables
- integer ‘n and m’ for storing dimensions, integer array
‘nonZero[]’ for storing number of non zeroes cumulatively
in rows and a 2-dimensional array ‘vals[][]’ for storing the
non zero column numbers. The array nonZero in its i*" en-
try stores the number of non zero entries in the first ¢ rows
of the matrix. Matrix vals stores the non zero column num-
bers in the i row of the matrix B in its i row as shown in
Figure 1. Storing a sparse matrix with .1% non zero entries
takes 1000 GB if a standard 2-dimensional character array

is used. This format provides huge memory gains by storing
the same matrix in 8 GB of memory.

n=4m=4

nonZero

vals

olo|w|e

Figure 1. Storage of Sparse Matrix

3.3 Addition and Multiplication

Addition and subtraction of two bits is performed using
XOR operation as a general practise while multiplication of
bits can be achieved using AND operation. Addition using
XOR can be directly extended to bit packed vectors. Given
two bit vectors A and B of dimension n x N, addition (or
subtraction) can be done as follows:

¢ = a; XORb; fori=1,2,---n (6)

Given matrices A (n x m) and B (m x N), matrix C (n x N)
= A * B can be obtained using bit vector operations in an
indirect manner. Algorithm 2 illustrates the usage of outer
product methodology and bit vector operations to multiply
two matrices. Outer product has been used whenever possi-
ble as the cost of multiplication using outer product is much

less than the cost using other methods.

Algorithm 2 Multiplication Algorithm

Input: Matrices A (n x m) and B (m x N) where B is a bit vector.
Output: Bit vector C (n x N) such that C = A * B.

428

Initialize ¢; =0 fori=1,2---n.
fori=1,2---ndo
for j = non zero column numbers in ¢
C; :CiXOij. ifC=A*B
cj=c; XOR b;. if C= AT *B
end for

th row do

end for

3.4 Algorithm for Finding V™

Algorithm 3 presents the algorithm used for finding V"
and S with the help of the row-echelon process and row
operations. To find the inverse of matrix WiTAW,», the left
half of the matrix [W AW;|| Ix] needs to be brought into
row-echelon form. Then the matrix [Iy| (W1 AW;)™!]
contains the inverse of the input matrix in the right half.

Algorithm 3 findVinvS - Algorithm to find V" and S

Input: prod; = W BT BW; and S;_1.
Output: S; and Vii"“’ such that VZ"“’ = Si(SZ.T * prod; * Sq;)*ISZ.T‘
1: Initialize M[1- - -N] = prod;[1- - -N] and M[N- - -2N] = In[1- - -N].
2: Initialize S; = NULL, columnCount = 0.
3: fori=1toNdo
4 forj=ito N do
5: if M;; # 0 then
6: Exchange row i and j. Break the loop.
7.
8

end if
: end for
9: if M“ 75 0 then

10: Zero rest of the column i.

11: SZ:SZU{I}

12: columnCount = columnCount + 1.
13: else

14: forj=ito N do

15: if M; ;1 n # 0 then

16: Exchange row i and j. Break the loop.
17: end if

18: end for

19: Zero rest of the column i+N.

20: Set row i to zero.

21: end if

22: end for

23: Set Vin¥ = M[N+1- - -2N].

24: return columnCount. =0

4 Parallelization

Computationally intensive steps of Algorithm 1 can
be parallelized for substantial gains in computation time.
These steps are: reading of the input matrix; multiplication
of sparse matrix with bit vectors i.e. multiplication of a n
x m matrix with a m x N matrix ; multiplication of bit vec-
tors with bit vectors i.e. multiplication of a n x N matrix
with a N x N matrix or of N x n matrix with b matrix; and
the corresponding transpose multiplications. Computations
like addition, simple multiplication and pivot search take a
very small fraction of the total time. Any attempt to paral-
lelize them may lead to small gains (or may be small losses).

4.1 Distribution of Matrices

A major advantage of working on SMP is availability
of the global data set to all the processing units. Com-
munication overheads are minimal as there is no physical
distribution of data among processors. However, a logical
distribution of data set among the processors is needed for
distribution of tasks among processors. A standard method
is to distribute equal number of consecutive rows to every

— (nxpid) —
processor. In such a case, rows start = Tap to end =

("*(’;Z%l)) of the matrix are assigned to the processor with

id as pid from np total processors. Such a distribution may
result in elongated synchronization periods if the matrix un-
der consideration is a sparse matrix. A distribution that aims
at equal division of number of non zeroes (nZ) among the

429

processors should be done. A processor with id stored in

pid is alloted rows start to end where values of nZ|[start]
(nZxpid) (nZx(pid+1))
= and re-

and nZ[end] are closest to
spectively as shown in Figure 2.

Row

Number Zeroin non Zero

Allotted to P1 — 19 entries

} Allotted to P2 — 19 entries

} Allotted to P3 — 16 entries
:I» Allotted to P4 — 19 entries

Figure 2. Distribution of rows of sparse ma-
trix among processors

© N @O 0 s W N B O
a0 0 0 N ow
w
o

e
o
»

4.2 Parallel Read

Instead of employing one processor to read elements
from the file, each processor is used to read some part of
the file simultaneously. Every processor can directly access
the start row of matrix B alloted to it by a file seek. There-
after all the processors can read till end row of matrix B in
parallel. However huge gains can only be obtained if the
filesystem does not serialize the request onto the disk.

4.3 Parallel Multiplication

Algorithm 2 suggests that if all entries of i row of ma-
trix A are being processed by a processor, then no other
processor should make any changes to i*" row of resultant
matrix C. Hence parallelization of multiplication of the type
C = A*B can be done by an interleaved division of rows of

matrix A as shown in Algorithm 4.

Algorithm 4 Parallel Multiplication Algorithm

Note: This method is to be run on all processors simultaneously.

1: Initialize ¢; = 0 for i = start - - - end.

2: fori=start - - - end do

3 for j = non zero column numbers in 7*
4: C; =C4 XOR b]'.
5
6

" row do

end for
: end for =0

Multiplication of type C = AT % B can not be extended
directly. Row major storage of matrix A does not provide
an assorted list of entries of a particular column. However
every processor can make necessary changes to a local copy
of the resultant matrix C based on the non zero entries in the
rows allocated to it. Thereafter, every processor can update
the global copy as shown in Algorithm 5. The reordering of
the operations is possible as XOR is commutative.

Algorithm 5 Parallel Transpose Multiplication Algorithm

Note: This method is to be run on all processors simultaneously. EXCLU-

SIVE STEP is a step which can be executed by only one processor at
a time (critical section of the code).

1: Initialize local copy d; =0 fori=0,1-- - n.

2: fori=start - - - end do

3: for j = non zero column numbers in ¢

4

5

th row do

dj =dj XOR b;.
end for
EXCLUSIVE STEP - FOR LOOP
6 forj=1,2---ndo
7. Cj=¢j XOR dj.
8 end for
9: end for

4.4 Synchronization & Mutual Exclusion

Correctness of the synchronized program and maintain-
ing mutual exclusion are key concerns in a program for
SMP machines. Synchronization is needed if a value being
evaluated is to be used in subsequent code or if a value being
used is to be evaluated in the following code. In either case,
absence of barriers results in erroneous output. Current im-
plementation of the Block Lanczos Algorithm ensures cor-
rectness by putting a barrier after all the parallelized func-
tion calls. Barriers have also been put after function call
made by only one of processors incase the changes made
are being used by other processors. Mutual exclusion has
been ensured by adopting two measures - division of writ-
ing space and use of critical block. An attempt has been
made to divide the writing space whenever possible as it
saves a lot of time (like in multiplication). However in cer-
tain cases, such a division is not possible and in those places
mutual exclusion has been ensured via use of critical blocks
(like in transpose multiplication).

5 Experimental Results

The solver has been evaluated on systems of size vary-
ing from n = 10000 to n = 1000000 i.e O(10%) to O(10°).
The Intel SMP machine considered for this purpose is a
Xeon(R) CPU E5450 @ 3.00 GHz with a 64 bit machine
architecture, 8 core SMP, 6144 kb Cache per core and a 32
GB Memory that runs on Mandriva. Matrix B and vector
x are generated independently for a given density and size.
Using B and x, right hand side vector b is computed. The
solver code checks for correctness by solving a given sys-
tem (B, b) and comparing the obtained solution x with the
generated X. The solver code has found the correct solu-
tion whenever it exists for the experiments undertaken. The
data-sets have been classified into small, moderate and large
sized systems based on matrix size. The performance of the
solver on these systems has been evaluated by varying the
density of the matrices and studying the speed-up.

430

5.1 Small Sysems
Processors 1% 5% 1% dense 2% dense
dense (s) dense (s) (s) (s)
1 6.2 7.1 8.4 11.1
2 3.7 4.2 4.7 5.9
4 3.2 3.6 3.2 3.7
6 2.7 2.9 2.9 29
8 2.4 2.6 2.8 2.6

Table 2. Run time for 10% x 10* system

6 A 5 /
210% /

: s b ag

.

B-050% ?5 010%
& =050
s ﬁ)/-/é -100%
3 Z =H-ldeal

3 6 8

—4-0005%

1.00%

A

== 200%

- Ideal

e

1 1 1 6 8

number of processars number of protessors

Figure 3. Performance on system with n = 10*
and n = 10°

Table 2 presents the run time taken for solving a sparse
system of size 10 x 10*. Such systems occur in factor-
izing composite numbers of less than 100 digits. Table 2
shows that variation of density has no major effect on the
run time. This can be attributed to the small size of the ma-
trix. All the graph lines in Figure 3 appear to be coincident,
which indicates non dependence of speed up on change in
density. However, a closer look suggests that the perfor-
mance has improved with increase in density. Graph line
for 2% density overlaps with other lines at the start but ends
much higher in terms of speed up. The results also suggest
an overall poor performance of the parallelized code as the
speed up never goes beyond 3 for most of the cases. This
is largely due to the small number of non zeroes per equa-
tion (10 to 200 non zeroes per row) which results in a very
small amount of computation between two synchronization
points. As such synchronization losses overhauls the gains
made by parallelization.

5.2 Moderate Systems

Performance on system with n = 10 has been presented
in Table 3 and Figure 3. The amount of computational task
has increased as a result of increase in number of non zeroes
(due to increase in size of matrix). The imminent effect can
be seen in the improved performance of the parallelized pro-
gram. Speed up, which was below 3 previously, has crossed

the barrier mark of 5. A steady increase in run time with
increase in density of the matrix can be observed. The run
time becomes almost 1.6 times as the density of the matrix
is doubled from 0.5% to 1%. However a proportionality
relation cannot be framed merely on the basis of results ob-
tained.

Processors .005% 1% 5% 1% dense
dense dense dense (min)
(min) (min) (min)

1 9.9 14.4 33.3 55.9

2 54 7.7 17.1 28.81

4 3.8 5.3 10.1 16.6

6 3.2 44 7.5 12.1

8 2.9 39 6.3 10.1

Table 3. Run time for 10® x 10° system

5.3 Large Systems

Sieving phase of integers with more than 115 digits pro-
duce systems with size of the order of O(10%). The solver
has taken approximately 70 hours to solve a system of size
n = 10% and density .1% which is better than any publicly
available implementation. Approximately 260 hours are re-
quired to solve such a system using one processor while
four processors have taken 77 hours. Gains of only 7 hours
has been made for 4 more processors. Table 4 and Figure 4
suggest the same. The reason for this kind of saturating be-
havior is the global updation discussed earlier and warrants
further study.

No. of Processors | .1% Dense (hours)
1 259.76
2 138.25
4 77.77
6 73.44
8 69.128

Table 4. Run time for 10¢ x 10¢ system
5.4 Space Requirements

Table 5 presents the RAM required for the execution of
the proposed parallel solver. Space requirement is indepen-
dent of the number of processors used. Most of the memory
required is for the storage of matrix B. The formula for ap-
proximating the memory requirement on a machine, which
takes 4 bytes to store an integer, is

memory required = 4 * nonZeroes bytes (7)
6 Conclusion

This paper discusses a SMP based parallel solver for
solving sparse systems over GF(2). System of size 10 and

431

0.10%

—m—1deal

number of processors

Figure 4. Performance on system with n = 106

n (size of system) | Density | Memory required (MB)

10000 0.1% 5
10000 1.0% 5
10000 2.0% 10

100000 0.1% 50

100000 1.0% 500

100000 2.0% 1000

1000000 0.1% 5000

1000000 1.0% 50000

1000000 2.0% 100000

Table 5. Memory Requirement

density .1% has been solved in approximately 70 hours us-
ing 8 processors. SMP has been used to avoid the com-
munication time losses which become very significant with
repetitive matrix vector multiplications. The experimental
results show that the optimizations and parallelization have
resulted in an efficient SMP based implementation. The
solver finds its application in breaking of large RSA keys
using GNFS.

References

[1] R.L.Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosys-
tems,” Commun. ACM, vol. 21, no. 2, pp. 120-126,
1978.

M. Briggs, “An introduction to the general number field
sieve,” Master’s thesis, Virginia Polytechnic Institute,
Blacksburg, Virginia, 1998.

[3] P. L. Montgomery, “A block lanczos algorithm for find-
ing dependencies over GF(2),” in Advances in Cryptol-

ogy EUROCRYPT 95, vol. 921, 1995, pp. 106 —120.
[4]

C. Lanczos, “Solution of systems of linear equations
by minimized iterations,” J. Res. Nat. Bur. Standards,

vol. 45, pp. 255 — 282, 1952.

