
Adaptive Runtime Support
for Fault Tolerance

Laxmikant (Sanjay) Kale
Celso Mendes

Esteban Meneses

Wednesday, October 14, 2009

Presentation Outline

•Object-based decomposition

• General benefits with Charm++ and AMPI

• Useful features for Fault Tolerance

•Fault Tolerance in Charm++ and AMPI

• Checkpoint/Restart

• Message Logging

•Future directions

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Object-based
over-decomposition

•Objects:

• Locality of data references
(performance)

• A parallel object can
access only its own data

• Asynchronous method
invocation

•Over-decomposition:

• Decompose computation
into objects

• Work units, data-units,
composites

• Let an intelligent RTS
assign objects to
processors

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Charm++

• Multiple “indexed collections” of C++ objects

• Multidimensional

• Dense or sparse

• Object-based Virtualization leads to Message Driven
Execution

• Permits to overlap communication with computation

• Programmer expresses communication between objects
with no reference to processors

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Charm++ (cont.)

LACSS 2009, Santa Fe

Scheduler

Message
Queue

CPU

User View

System Implementation

CPU A CPU B CPU C

Wednesday, October 14, 2009

AMPI

• Each MPI process is
implemented as a user-level
thread (virtual processor)

• Threads are light-weight, and
migratable!
(<1 microsecond contex
tswitch time, potentially
>100k threads per core)

• Each thread is embedded in a
Charm++ object (chare)

LACSS 2009, Santa Fe

MPI Processes

CPU A CPU B

Wednesday, October 14, 2009

Fault Tolerance
• Common Features:

• Based on dynamic runtime
capabilities

• Use of object-migration

• Can be used in concert
with load-balancing
schemes

• Independence on the
number of processors

• Four Approaches
Available:

• Disk-based checkpoint/
restart

• In-memory double
checkpoint/restart

• Proactive object migration

• Message-logging

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Disk-Based Checkpoint/
Restart

• Similar to traditional checkpoint/restart; “migration” to disk

• Implemented by a blocking coordinated checkpoint:
MPI_Checkpoint(DIRNAME)

+Simple scheme, effective for common cases

+Virtualization enables restart with any number of processors

- Checkpointing and data reload operations may be slow

- Work between last checkpoint and failure is lost

- Job needs to be resubmitted and restarted
LACSS 2009, Santa Fe

Wednesday, October 14, 2009

Double In-Memory
Checkpoint/Restart

• Avoid overhead of disk access for keeping saved data
(allow user to define what makes up the state data)

• Implementation in Charm++/AMPI:

–Coordinated checkpoint (SYNCFT)

–Each object maintains two checkpoints:

•on local processor’s memory

•on remote buddy processor’s memory

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Double In-Memory
Checkpoint/Restart (cont.)

–A dummy process is created to replace crashed process

–New process starts recovery on other processors

•use buddy’s checkpoint to recreate state of failing
processor

•perform load balance after restart

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Recovery Performance
• Molecular Dynamics LeanMD code, 92K atoms, P=128

–Load Balancing (LB) effect after failure:

0

1.0000

2.0000

3.0000

4.0000

1 101201301401501601

With LB

Si
m

ul
at

io
n

tim
e

pe
r s

te
p

(s
)

Timestep

0

1.0000

2.0000

3.0000

4.0000

1 101201301401501601

Without LB

Si
m

ul
at

io
n

tim
e

pe
r s

te
p

(s
)

Timestep
LACSS 2009, Santa Fe

Wednesday, October 14, 2009

Summary (SYNCFT)

+Faster checkpointing than disk-based

+Reading of saved data also faster

+Only one processor fetches checkpoint across network

- Memory overhead may be high

- All processors are rolled back, despite individual failure

- All the work since last checkpoint is redone by every
processor

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Message-Logging

• Basic Idea: messages are stored by sender during execution

– Periodic checkpoints still maintained

–After a crash, reprocess “recent” messages to regain state

• Implementation in Charm++/AMPI:

–New receptions occur in the same order

–No need to roll back all the processors!

–Restart can be parallelized

–Virtualization helps fault-free case as well

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Time

Progress
Pow

er

Normal
Checkpoint-Resart
method

Progress is slowed
down with failures

Power
consumption is
continuous

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Our Checkpoint-
Restart method

(Message logging +
Object-based
virtualization)

Faster recovery

Power
consumption is
lower during
recovery

LACSS 2009, Santa Fe

Progress

Time

Pow
er

Wednesday, October 14, 2009

Fault-free Performance
• Test: NAS benchmarks, MG/LU

–Versions: AMPI, AMPI+FT, AMPI+FT+multipleVPs

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Bad scenario

LACSS 2009, Santa Fe

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250

P
ro

g
re

s
s
 (

it
e
ra

ti
o
n
s
)

Time (seconds)

Jacobi 3D (Abe,p=64,n=512,b=64)

NOFT
SYNCFT
MLOGFT

Wednesday, October 14, 2009

Memory Consumption

LACSS 2009, Santa Fe

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0 20 40 60 80 100 120 140 160 180 200

M
e
m

o
ry

 (
M

B
)

Progress (iteration)

Jacobi 3D (Abe,p=64,n=512,b=64)

MLOGFT
SYNCFT

Wednesday, October 14, 2009

Summary (MLOGFT)

+No need to roll back non-failing processors

+ Restart can be accelerated by spreading work to be redone

+No need of stable storage

- Protocol overhead is present even in fault-free scenario

- Increase in latency may be an issue for fine-grained applications

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Team-based Message Logging

• Group processors in teams and
avoid logging intra-team
messages

• Each team recovers as a unit

• Compromise between memory
demand and recovery time

• Load balancer in charge of
assigning objects to processors

• Cores per node = natural team
size

LACSS 2009, Santa Fe

Team A

Team B

Wednesday, October 14, 2009

Allocated Memory

LACSS 2009, Santa Fe

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0 20 40 60 80 100 120 140 160 180 200

M
e
m

o
ry

 (
M

B
)

Progress (iteration)

Jacobi 3D (Abe,p=64,n=512,b=64)

SIZE = 1
SIZE = 8

Wednesday, October 14, 2009

Proactive Object Migration
• Basic Idea: use knowledge about impending faults

–Migrate objects away from processors that may fail soon

– Fall back to checkpoint/restart when faults not predicted

• Implementation in Charm++/AMPI:

– Each object has a unique index

– Each object is mapped to a home processor

• objects need not reside on home processor

• home processor knows how to reach the object

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Proactive Object
Migration (cont.)

–Upon getting a warning, evacuate the processor

• reassign mapping of objects to new home processors

• send objects away, to their home processors

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

MPI Application Performance
•Sweep3d code, 150x150x150 dataset, P=32, 1 warning

•5-point stencil code in Charm++, IA-32 cluster

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Summary (Proactive)

+No overhead in fault-free scenario

+Evacuation time scales well, only depends on data and
network

+No need to roll back when predicted fault happens

- Effectiveness depends on fault predictability mechanism

- Some faults may happen without advance warning

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Obstacles to FT on Existing Machines

• Current systems too strict and inflexible

• Entire application is killed when one process dies

• Most MPI implementations behave like this

• True in other scenarios as well (e.g. IBM’s POE+LAPI)

• Typical situation today

• System software (OS, scheduler) controls the whole
machine

• Job is aborted when something goes bad

• No option for application to continue running after faults,
even for applications that could proceed!

• But Charm++ net version can handle faults today, and
other Charm++ versions can follow a similar scheme

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Obstacles to FT on Existing Machines

• Desired scenario

• System software optionally allows job to proceed
beyond faults

• It must be a community effort: includes vendor
participation !

• Broader Need:

• Scheduler that allows flexible, bi-directional
communication between jobs and scheduler

• Scheduler may notify job to shrink or expand, and job
adapts accordingly

• Job may ask scheduler for more resources when
needed, or return partial resources no longer needed

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Current PPL Research Directions

• Multiple concurrent failures

• Message-Logging Scheme

–Decrease latency overhead and memory overhead

–Stronger coupling to load-balancing

–Newer schemes to reduce message-logging overhead

–Team-based: a set of cores are sent back to their
checkpoint (Greg Bronevetsky)

–Implementation of other protocols (Franck Capello)

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

But, we are not experts in FT
• The message-driven objects model provides many benefits

for fault tolerance schemes

–Not just our schemes, but your schemes too

–Multiple objects per processor: latencies of protocols
can be hidden

–Parallel recovery by leveraging “multiple objects per
processor”

–Can combine benefits by using system level or BLCR
schemes specialized to take advantage of objects (or
user-level threads)

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Conclusions
• We have interesting fault tolerance schemes (read about them)

• We have an approach to parallel programming

–That has benefits in the era of complex machines, and
sophisticated applications

–That is used by real apps

–That provides beneficial features for FT schemes

–That is available via the web

– SO: please think about developing new FT schemes of your own
for this model

• More info, papers, software: http://charm.cs.uiuc.edu

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

http://charm.cs.uiuc.edu
http://charm.cs.uiuc.edu

Acknowledgements
• Dep. of Energy – FastOS Program

• Colony-1 and Colony-2 projects

• Collaborators: ORNL (Terry Jones) & IBM (Jose Moreira)

• Fullbright Scholarship

• Interim support between Colony phases

• NSF/NCSA

• Deployment efforts specific for Blue Waters

• Machine allocations

• TeraGrid MRAC – NCSA, TACC, ORNL

• Argonne Nat. Lab – BG/P
LACSS 2009, Santa Fe

Wednesday, October 14, 2009

Thank you!

Wednesday, October 14, 2009

Overflow slides

Wednesday, October 14, 2009

Well Established Systems

• The Charm++/AMPI model has succeeded in CSE/HPC
(because resource management,...)

• 15% of cycles at NCSA, 20% at PSC, were used on
Charm++ apps, in a one year period

• So, work on fault tolerance for Charm++ and AMPI is
directly useful to real apps

• Also, with AMPI, it applies to MPI applications

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Application Performance

• Molecular Dynamics LeanMD code, 92K atoms, P=128

–Checkpointing every 10 timesteps; 10 crashes inserted:

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Memory vs Disk

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

6.4 25.6 102.4 409.6 1638.4 6553.6

Ch
ec

kp
oi

nt
 o

ve
rh

ea
d

(s
)

Problem size (MB)
double in-memory (Myrinet)
double in-memory (100Mb)
Local Disk
double in-disk (Myrinet)
NFS disk LACSS 2009, Santa Fe

Wednesday, October 14, 2009

Checkpoint Overhead
• 3D-Jacobi code in AMPI, 200 MB data, IA-32 cluster

–Execution of 100 iterations, 8 checkpoints taken

0

50.0000

100.0000

150.0000

200.0000

4 8 16 32 64 128

100Mbit

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Number of processors

Normal Charm++/AMPI
FT-Charm++ w/o checkpointing
FT-Charm++ with checkpointing

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Evacuation Time vs Number of
Processors

• 5-point stencil code in Charm++, IA-32 cluster

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Fast restart performance
• Test: 7-point 3D-stencil in MPI, P=32, 2 ≤ VP ≤ 16

• Checkpoint taken every 30s, failure inserted at t=27s

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Protocol Optimization
–Combine protocol messages: reduces overhead and

contention

–Test: synthetic compute/communicate benchmark

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

Evacuation Time vs Data Size
• 5-point stencil code in Charm++, IA-32 cluster

LACSS 2009, Santa Fe
Wednesday, October 14, 2009

