
Flexible Hardware Mapping for Finite Element
Simulations on Hybrid CPU / GPU Clusters

Aaron Becker
abecker3@illinois.edu

Isaac Dooley
idooley2@illinois.edu

Laxmikant V. Kalé
kale@illinois.edu

I. INTRODUCTION

The ever increasing peak floating-point performance and
memory bandwidth of GPUs is making them increasingly
ubiquitous in the high performance computing community.
With increasing adoption of GPUs in cluster environments,
applications that cannot take advantage of this hardware will
be at a distinct disadvantage. For the class of applications that
can achieve massive speedups of 100x or more on the GPU,
the way forward is clear: maximum performance will depend
on utilizing all available GPUs as efficiently as possible, with
the CPU most likely relegated to managing the data flowing
into and out of the GPU. However, for applications that can
benefit from GPU execution, but may experience speedups that
are only in the range of 5-10x, the appropriate relationship
between the CPU and GPU is more difficult to determine, and
may depend upon the specifics of the algorithm and hardware
in question.

Finite element applications generally fit the description of
codes that benefit from GPUs, but probably not by more than
15-20x even in the best case. In a cluster environment where
data must be transferred to the CPU at regular intervals for
synchronization, speedups less than 10x are typical. When
cluster nodes have 8 CPU cores and more, it is clear that
maximum performance will require taking full advantage of
execution on both CPU and GPU.

We present an API and supporting software layer for
finite element applications on unstructured meshes in hybrid
CPU/GPU environments that allows runtime mapping of mesh
partitions to either CPU or GPU hardware and effectively
overlaps CPU and GPU work. This layer sits on top of
the ParFUM [6] framework for unstructured meshes and
takes advantage of its support for synchronization of shared
nodes between mesh partitions. ParFUM in turn relies on
the Charm++ parallel runtime system [4]. This software layer
manages the creation and deletion of GPU memory buffers and
the transfer of node and element data to and from the GPU
at each synchronization point. It also provides a consistent
API for accessing that data in both CPU and GPU functions,
allowing very similar code for equivalent CPU and GPU
kernels. We demonstrate the effectiveness of this scheme by
presenting a functionally graded material simulation that scales
to 128 nodes of the National Center for Supercomputing
Applications (NCSA) Lincoln cluster, with a speedup of 2023
over a single CPU core.

II. API

We provide a software layer between ParFUM and the
application which manages memory buffers on the GPU
that correspond to ParFUM node and element fields. Mesh
partitioning and distribution is handled by ParFUM, and at
runtime a partition can determine which type of hardware
it has been mapped to through a function call. We provide
iterators that yield all nodes or elements on the local mesh
partition and data access functions to extract associated data.
A typical CPU kernel implementation loops over nodes or
elements, applying an update rule to each. In the following
example, a, F, and dt are variables representing acceleration,
force, and time step size, respectively.

n o d e I t e r a t o r i t r ;
f o r (n o d e I t r B e g i n (i t r) ;

n o d e I t r I s V a l i d (i t r) ;
n o d e I t r N e x t (i t r)) {

n d a t a = node GetData (i t r) ;
f o r (i n t i =0 ; i<dof ; ++ i) {

c o n s t FP TYPE a o l d = n da ta−>a [i] ;
n da ta−>a [i] = −n da ta−>F [i] / n da ta−>mass ;
n da ta−>v [i] += 0 . 5∗ d t ∗ (n da ta−>a [i] + a o l d) ;

}
}

The type FP_TYPE can be resolved to either float or
double at compile time to facilitate testing and validation at
both levels of precision. Although current GPUs suffer a large
performance penalty to peak FLOPs in double precision, we
have observed that many unstructured mesh codes are strongly
bandwidth limited (for example, both [5] and our own code
described here) and may suffer far less from the use of double
precision than the difference in peak rates suggests.

Kernel implementations targeted to the GPU are generally
very similar to their CPU equivalents, with the exception
that each GPU thread is only responsible for one node or
element. The nodes or elements (depending on the kernel in
question) are broken into thread blocks of uniform size, and
we define my_node and my_element macros to identify
the node or element a thread is responsible for based on
its thread and block indices. A GPU-specific implementation
of the function that acquires node or element data fetches a
pointer to the relevant data from device global memory. The
result is essentially the same as the inner loop of the CPU
implementation. Depending on the memory access patterns of
the kernel and the memory layout of mesh data structures,

padding to ensure coalesced reads or use of shared memory
may also be points of departure from the CPU implementation.
The following code fragment shows the GPU equivalent of the
CPU kernel above.

n d a t a = node GPU GetData (my node) ;
f o r (i n t i =0 ; i<dof ; ++ i) {

c o n s t FP TYPE a o l d = n da ta−>a [i] ;
n da ta−>a [i] = −n da ta−>F [i] / n da ta−>mass ;
n da ta−>v [i] += 0 . 5∗ d t ∗ (n da ta−>a [i] + a o l d) ;

}

III. HARDWARE MAPPING

Effective mapping of work onto hardware resources is
critical for high performance in a hybrid environment. We
expect unstructured mesh application kernels to vary widely
in terms of their relative speed on the CPU and the GPU.
Published results show speedups from approximately 2x to
30x when run on the GPU [1], [2], [5], [8], depending on
the amount of data per element or node, the order of the
method used, and the phenomenon being modeled. Hardware
configurations will vary widely in terms of the number of CPU
cores available per node, the capability of those cores, and
the number and quality of attached GPUs. In some clusters
hardware capabilities will vary from node to node, including
possibilities such as a the use of nodes from both NCSA’s Abe
and Lincoln clusters by a single application run.

In light of the variability in relative CPU/GPU performance
and quantity, we aim to be as flexible as possible when
mapping mesh partitions to hardware resources. Aside from
initial mesh import and partitioning, which we confine to
the CPU, and synchronization between partitions, which in
a cluster environment must take place on the CPU, we allow
any part of the application to execute on either CPU or GPU
hardware on a per-partition basis.

Rather than attempting to determine the optimal partition
size for each hardware resource that minimizes iteration time,
we overdecompose the mesh and map multiple partitions onto
each CPU or GPU. This greatly simplifies the task of initial
partitioning, because we need only produce a large number
of uniform size partitions, rather than attempting a multi-
constraint partition that produces an appropriately sized parti-
tion for each hardware resource while still respecting locality.
It also decouples the partitioning problem from the application
and the particular hardware it will run on, which simplifies the
task of tuning the application for new hardware and makes
features like migration of mesh partitions to improve load
balance possible [3].

Our approach does have some drawbacks relative to the
strategy of creating a custom size partition for each type of
hardware. Each mesh partition introduces some amount of
memory overhead, and there is scheduling overhead associated
with colocating multiple partitions on the same processor.
In addition, the increased number of partitions means an
increase in the total size of inter-partition boundaries and a
corresponding increase in communication volume. However, if
our partition respects locality most of the increase in boundary

size will be among partitions located on the same hardware
node. The cost of synchronization operations is determined by
the amount of inter-node communication, greatly decreasing
the performance impact of increased intra-node boundaries, if
not eliminating it altogether.

When we map mesh partitions on GPU hardware, those
partitions will still need to execute code on a CPU during
synchronization phases. We therefore designate one CPU core
per GPU to act as a manager for that GPU’s partitions. All
GPU kernel invocations and memory transfers are conducted
asynchronously, and we associate a user-level thread with each
partition. The thread yields after its operations have been
enqueued, allowing the CPU to enqueue a large amount of
GPU work and then poll for completion at synchronization
points. To avoid wasting resources while waiting for the GPU
partitions to complete, we can assign CPU partitions to the
GPU manager cores that they execute after enqueuing all GPU
work. With a good hardware mapping, the CPU partitions on
the manager core will finish just as the GPU partitions are
finishing, leading to efficient overlap of work on the CPU and
the GPU.

IV. APPLICATION STUDY

We have used this framework to develop a simple unstruc-
tured mesh code for simulating functionally graded materials
(FGM). FGM simulations handle materials whose properties
vary spatially, and are used in areas from structural materials
to optoelectrical devices [7], [9]. In the case of our application
this leads to a unique stiffness matrix for each element. Our
timestep loop consists of (1) updates to nodal displacements
based on velocity and acceleration, followed by (2) calculation
of the forces on each element computed from its displacement
vector and the stiffness matrices of its surrounding elements,
(3) synchronization to update forces on boundary nodes which
have element neighbors on multiple partitions, then (4) update
of nodal velocity and acceleration based on net forces, and
finally (5) application of boundary conditions.

The most significant point of departure in our GPU im-
plementation is in the force summation step. Because forces
are computed by each element in its own GPU thread and
these forces are accumulated onto nodes with many element
neighbors, this step would suffer from data races if we simply
summed the forces onto the nodes, as in the CPU version.
Instead, on each node we reserve a separate memory location
for each neighboring element to place its force contribution,
and these forces are summed in a subsequent node kernel. This
approach trades off some memory overhead in order to avoid
synchronization. In a recent implementation of earthquake
simulations on the GPU [5], the authors address the same
issue using a graph coloring technique to execute only sets of
elements that are known not to conflict simultaneously. This
alternate approach avoids extra memory use at the cost of some
locality and a smaller set of threads that can run concurrently.

We ran this application on the Lincoln cluster at the NCSA,
a heterogeneous cluster consisting of 192 nodes with an
Infiniband interconnect. Each node consists of two quad core

Intel Harpertown CPUs two NVIDIA Tesla GPUs (half of a
Tesla S1070 unit).

To characterize the performance of our CPU and GPU
kernels, we prepared modified versions in which areas of
interest are eliminated. We time the modified versions against
the original kernels to identify their impact on performance.
To prevent the compiler from optimizing away operations
which we wish to time in our modified kernels, we insert a
simple arithmetic expression that depends on the calculation
of any otherwise unused values. This prevents the compiler
from optimizing out the instructions we wish to time without
meaningfully changing the performance characteristics of the
kernel.

The force calculation kernel occupies 93% of execution
time for CPU kernels and 61% of execution time for GPU
kernels (for which 21% of the time is spent transferring data
to and from the host CPU). This kernel consists of three steps:
assembling nodal displacements into a vector, performing a
matrix-vector update with the element’s stiffness matrix, and
writing back the resulting forces to the nodes.

We find that on CPU partitions, reading displacement data
takes 24% of run time, matrix-vector update takes 39%, and
force write-backs take 24%. For GPU partitions, reading dis-
placement data takes 37% of the time, the matrix-vector update
is only 9%, and force write-backs are 54%. These numbers
somewhat under-count the impact of force write-backs, as
they must still be accumulated in a subsequent kernel. We
conclude that the GPU mesh partitions are bandwidth limited,
which is corroborated by the fact that a double precision
version of our application is only about two times slower
than the single precision version, despite the fact that double
precision arithmetic is approximately 12 times slower than
single precision on these GPUs.

We determined the best mapping of mesh partitions to
hardware resources via hand tuning. In principle an autotuning
framework could be used to determine a good static mapping,
and the Charm++ load balancer could be extended to support
hybrid environments, but for this application a static mapping
was sufficient. We achieved the best performance with two
mesh partitions per normal CPU, one partition per GPU-
managing CPU, and 17 partitions per GPU.

To analyze scalability, we perform weak scaling. On one
node we use a mesh with 235K elements split into 48
partitions. On 128 nodes the simulation uses a 30.1M element
mesh split into 6144 partitions. Figure 1 shows scaling for both
single and double precision variants, with parallel efficiency
of 97%.

V. CONCLUSIONS

Efficient use of all available CPU and GPU resources is
critical in attaining the best possible performance in unstruc-
tured mesh codes in hybrid clusters. We provide supporting
software that allows a flexible assignment of work to CPUs
and GPUs on a per-partition basis. Any portion of the solution
procedure can be executed on either CPU or GPU, and work
can be effectively overlapped between synchronization points.

20 40 60 80 100 120
Number of Nodes

20

40

60

80

100

120

Sp
ed

up
 O

ve
r 1

 N
od

e

Single-Precision
Double-Precision

Fig. 1. Weak scaling of the application relative to 1 node. Each node contains
48 mesh pieces, with 4900 tetrahedral elements in each piece.

This software layer has proven effective in the development of
a simulation of functionally graded materials on the Lincoln
cluster.

REFERENCES

[1] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. H. Buijssen,
M. Grajewski, and S. Turek. Exploring weak scalability for fem calcu-
lations on a gpu-enhanced cluster. Parallel Computing, 33(10-11):685 –
699, 2007. High-Performance Computing Using Accelerators.

[2] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, H. Wobker,
C. Becker, and S. Turek. Using GPUs to improve multigrid solver
performance on a cluster. International Journal of Computational Science
and Engineering (IJCSE), 4(1):36–55, 2008.

[3] L. V. Kalé. The virtualization model of parallel programming : Runtime
optimizations and the state of art. In LACSI 2002, Albuquerque, October
2002.

[4] L. V. Kalé. Performance and productivity in parallel programming
via processor virtualization. In Proc. of the First Intl. Workshop on
Productivity and Performance in High-End Computing (at HPCA 10),
Madrid, Spain, February 2004.

[5] D. Komatitsch, D. Michéa, and G. Erlebacher. Porting a high-order
finite-element earthquake modeling application to NVIDIA graphics cards
using CUDA. Journal of Parallel and Distributed Computing, In Press,
Corrected Proof:–, 2009.

[6] O. Lawlor, S. Chakravorty, T. Wilmarth, N. Choudhury, I. Dooley,
G. Zheng, and L. Kale. Parfum: A parallel framework for unstructured
meshes for scalable dynamic physics applications. Engineering with
Computers, 22(3-4):215–235.

[7] B. Shen, M. Hubler, G. H. Paulino, and L. J. Struble. Functionally
graded fiber-reinforced cement composite: Processing, microstructure,
and properties. Cement and Concrete Composites, 30(8):663–673, 2008.

[8] M. Woolsey, W. Hutchcraft, and R. Gordon. High-level programming of
graphics hardware to increase performance of electromagnetics simula-
tion. pages 5925–5928, June 2007.

[9] M. Wosko, B. Paszkiewicz, T. Piasecki, A. Szyszka, R. Paszkiewicz, and
M. Tlaczala. Application and modeling of functionally graded materials
for optoelectronic devices. pages 87–89, July 2005.

	Introduction
	API
	Hardware Mapping
	Application Study
	Conclusions
	References

