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Abstract

NAMD is a portable parallel application for biomolecular simulatioN&AMD pioneered
the use of hybrid spatial and force decomposition, a technique used by most scalable programs
for biomolecular simulations, including Blue Matter and Desmond which were described at
Supercomputing 2006. This paper describes parallel techniques and optimizations developed
to enhancd&AMD’s scalability, to exploit recent large parallel machine&\MD is developed
using Charm++ and benefits from its adaptive communication-computation overlap and dy-
namic load balancing, as demonstrated in this paper. We describe some recent optimizations
including: pencil decomposition of the Particle Mesh Ewald method, reduction of memory
footprint, and topology sensitive load balancing. Unlike most other MD progrisidas|D not
only runs on a wide variety of platforms ranging from commodity clusters to supercomputers,
but also scales to thousands of processors. We present results for up to 32,000 processors on
machines including IBM’s Blue Gene/L, Cray’s XT3, and TACC's LoneStar cluster.

1 Introduction

Molecular Dynamics (MD) simulations of biomolecular systems constitute an important technique
for our understanding of biological systems, exploring the relationship between structure and func-
tion of biomolecules, and rational drug design. Yet such simulations are highly challenging to par-
allelize because of the relatively small number of atoms involved, and extremely large time-scales.
Due to the high frequencies of bond vibrations, a time-step is typically about 1 femtosecond (fs).
Biologically important phenomena require a time scale of at least hundreds of nanoseconds (ns), or
even a few microseconds (us). In contrast to billion-atom simulations needed in material science,
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Figure 1: The size of biomolecular system that can be studied through all-atom simulation has
increased exponentially in size, from BPTI (bovine pancreatic trypsin inhibitor, upper left, about

3K atoms), through the estrogen receptor (middle left, 36K atoms, 1996) aAd@Hase (lower

left, 327K atoms, 2001), to the ribosome (right, 2.8M atoms, 2006). Atom counts include solvent,

not shown for better visualization.

biological systems require simulations involving only tens of thousands of atoms to a few million
atoms, as illustrated in Fig. 1.

Application scientists (biophysicists) would like to run their simulations on any of the avail-
able machines at the national centers, and would like to be able to checkpoint simulations on one
machine and then continue on another machine. Scientists at different laboratories/organizations
typically have access to different types of machines. An MD program that performs well across a
range of architectures is therefore desirable.

A new challenge is added by the impending arrival of petascale machines: NSF recently an-
nounced plans to deploy a machine with sustained petascale performance by 2011 and provided
a biomolecular simulation benchmark with 100M atoms as one of the applications that must run
well on such a machine. When combined with lower per-core memory (in part due to high cost
of memory) on machines such as Blue Genel/L, this poses the challenge of fitting within available
memory.

This paper describes parallelization techniques that have led to high scaling and performance
on a wide variety (size) of benchmarks. One common theme is that different machines, different
number of processors, and different molecular systems may require a different choice or variation
of algorithm. A parallel design that is flexible and allows the runtime system to choose between
such alternatives, and a runtime system capable of making intelligent choices adaptively is required
to attain high performance over such a wide terrain of parameter space. Also, we show that the
use of measurement based dynamic load balancing is useful in simultaneously minimizing load
imbalance, reducing communication overhead and reducing communication contention.

We also showcase our performance on different machines including Cray XT3 (up to 4000



processors), Blue Gene/L (up to 32,768 processors), TACC Lonestar system (up to 1,024 proces-
sors) and SDSC DataStar cluster (up to 1,024 processors) on molecular systems ranging in size
from 5.5K atoms to 2.8M atoms, although not on all combinations of machine-size and number-
of-atoms. We also compare with other MD programs which have been developed recently such as
Blue Matter and Desmond.

We first describe the basic parallelization methodology adoptedAiMD. We then describe
a series of optimizations, alternative algorithms, and performance tradeoffs that were developed
to enhance the scalability ?§/AMD. For many of these techniques, we provide detailed analysis
that may be of use to MD developers as well as other parallel application developers. We then
showcase the performance NAMD for different architectures and compare it with other MD
programs. We then summarize the contributions in the paper and also talk about the simulations
done usingNAMD (see Appendix).

2 NAMD Parallelization Strategy

Classical molecular dynamics requires computation of two distinct categories of forces: (1) Forces
due to bonds (2) Non-bonded forces. The non-bonded forces include electrostatic and Van der
Waal's forces. A naive evaluation of these forces will takeV®(time. However, by using a cut-

off radiusr,. and separating the calculation of short-range and long-range forces, one can reduce
the asymptotic operation count to ®(og N). Forces between atoms within are calculated
explicitly (this is an O(V) component, although with a large proportionality constant). For long-
range calculation, the Particle-Mesh Ewald algorithm is used, which transfers the electric charge of
each atom to electric potential on a grid and uses a 3D FFT to calculate the influence of all atoms
on each atom. Although the overall asymptotic complexity i8/Qf{g V), the FFT component is

often smaller, and the computation time is dominated by th€)@omputation.

Prior to [5], parallel biomolecular simulation programs used either atom decomposition, spatial
decomposition, or force decomposition (for a good survey, see Plimpton et. aNBWMD was
one of the first programs to use a hybrid of spatial and force decomposition that combines the
advantages of both. More recently, methods used in Blue Matter [3, 4], the neutral territory and
midpoint territory methods of Desmond [1], and those proposed by Snir [9] use variations of such
a hybrid strategy.

NAMD decomposes atoms into boxes called “cells” (see Figure 2(a)). The size of each cell
d..in @long every dimension, is relatedrto In the simplest case (called “1-Away” decomposition),
dmin= 1. + margin, where the margin is a small constant. This ensures that atoms that are within
cutoff radius of each other stay within the neighboring boxes over a few (e.g. 20) time steps. The
molecular system being simulated is in a simulation box of dimengiynsB, x B, typically with
periodic boundary conditions. So, the size of a cell along each dimedsisrihe smallest, such
that B, /m is greater thaw,,,;,,, for some integem. So, ifr. = 12 andmargin = 4, d,;, = 16,
the cells should be of sizi x 16 x 16. However, if the simulation box i808.86 x 108.86 x 77.76
Ain the case of ApoLipoprotein-A1l simulation, this is impossible. Since the simulation box along
X dimension isl08.86 A, one must pickl08.86/6 = 18.15 A as the size along axis for the cell.

(And the size of a cell will bé8.15 x 18.15 x 19.44). This is the spatial decomposition component
of the hybrid strategy.

For every pair of interacting cells, (in our 1-Away decomposition, that corresponds to every
pair of touching cells), we create an object (called a “compute object” or just “compute”) whose
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Figure 2: (a) Placement of cells and computes on a 2D mesh of processors, (b) Performance of
NAMD on consecutive processor numbers

responsibility is to compute the pairwise forces between the two cells. This is the force decom-
position component. Since each cell has 26 neighboring cells, oné4get€’ compute objects
(26/2+1 = 14), where C is the number of cells. These compute objects are assigned to processors
by a dynamic load balancer (see Section 2.2). This gives our program the ability to run on a range
of differing number of processors, without changing the decomposition.

When the ratio of atoms to processors is smaller, we decompose the cells further. In general,
along each axisY, the size of a cell can bé,.;,/k wherek is typically 1 or 2 (and rarely3).

Since the cells that are “2-away” from each other must interaktisf 2 along a dimension, this
decomposition is called 2-away-X, 2-away-XY or 2-awayXYZ etc. depending on which dimension
usesk = 2.

Neither the number of cells nor the number of compute objects need to be equal to the exact
number of processors. Typically, the number of cells is smaller than the number of processors,
by an order of magnitude, which still generates adequate parallelism (because of the separation
of “compute” objects) to allow the load balancer to optimize communication, and distribute work
evenly. As aresulflNAMD is able to exploit any number of available processors. Figure 2(b) shows
the performance of the simulation of ApoAl system (details in section 4) on varying numbers of
processors in the range 207-255. In contrast, schemes that decompose particles into P boxes, where
P is the total number of processors may limit the number of processors they can use for a particular
simulation: they may require P to be a power of two or be a product of three numbers with a
reasonable aspect ratio.

A careful load balancer assigns compute objects to processors so as to minimize the number of
messages exchanged, in addition to minimizing load imbalance. As a N&MD is typically
able to use less than 20 messages per processor (10 during multicasting of coordinates to compute
objects, and 10 to return forces). Table 1 shows the number of messages (in the non-PME portion



[ Processors [ 512 [ 1024] 1024 | 2048 | 4096 | 8192 | 8192 | 16384 | 20480 |

Decomposition X X XY XY XY XY XYZ XYZ XYZ
No. of Messages 4797 | 7577 | 13370| 22458 | 29591 | 35580| 79285| 104469| 110515
Message Size (bytes) 9850 | 9850 | 4761 | 4761 | 4761 | 4761 | 2303 | 2303 2303
Comm. Volume (MB)|| 47.3 | 74.6 | 63.7 107 141 169 182 241 254
Atoms per patch 296 | 296 | 136 136 136 136 60 60 60
Time step (ms) 186 | 11.6 | 10.3 6.9 4.7 3.2 3.22 2.33 2.24

Table 1: Communication Statistics on IBM BG/L

of the computation) as a function of number of processors for the ApoAl benchmark simulation.
The number of cells and the decomposition used is also shown. The load balancer and the use of
spanning trees (Section 3.4) ensures that the variation in actual number of messages sent/received
by different processors is small, and they are all close to the average number. The size of each
message is typically larger than that used by Desmond and Blue Matter. Since many modern
parallel machines use RDMA capabilities, which emphasize per message cost, and hide the per
byte cost (by off-loading communication to co-processors), we believe this to be a better tradeoff.

We now describe a few featuresAMD and analyze how they are helpful in scaling perfor-
mance to a large number of processors.

2.1 Adaptive Overlap of Communication and Computation

NAMD uses a message-driven runtime system to ensure that multiple modules can be composed
concurrently without losing efficiency. In particular, idle times in one module can be exploited
by useful computations in another. Furtherm®@&MD uses asynchronous reductions, whenever
possible (such as in the calculation of energies). As a result, the program is able to continue with-
out sharp reductions in utilization around barriers. For example, Figure 6 shows a time profile of a
simulation of ApoAl (see Table 5) on 1024 processors on Blue Gene/L (This figure was obtained
by using the Performance analysis tool Projections [6] available in the Charm++ framework). A
time profile shows vertical bars for each (consecutive) time interval of 100 us, activities executed
by the program added across all the processors. The red (dark) colored “peaks” at the bottom corre-
spond to the integration step, while the dominant blue (light) colored regions represent non-bonded
computations. The pink and purple (dark at the top) shade appearing in a thin layer every 4 steps
represent the PME computation. One can notice that (a) time steps “bleed” into each other, over-
lapping in time. This is due to lack of a barrier, and especially useful when running on platforms
where the OS noise may introduce significant jitter. While some processor may be slowed down
on each step, the overall impact on execution is relatively small. (b) PME computations, which
have multiple phases of large latencies, are completely overlapped with non-bonded computations.

2.2 Topology Sensitive Load Balancers

NAMD uses a measurement based load balancing. Initially the cells and computes are assigned
to processors using a simple algorithm. After a user-specified number of time-steps, the runtime
system turns on auto-instrumentation to measure the amount of work in each compute object. It
then uses a greedy algorithm to assign computes to processors.

The applicationNAMD can be optimized to specific topologies on architectures where the
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Figure 3: Time profile of ApoAl on Blue Gene/L in Projections

topology information is available to the application. For example the Blue Gene/L machine has a
torus interconnect for application message passing. The dimensions of the torus and the mapping
of ranks to the torus is available through the personality data structure.

At application startup, the Charm++ runtime reads the personality structure to configure in-
ternal torus optimized map objects. As the periodic molecular systems are 3D Tori, we explored
mapping the cells on the Blue Gene/L torus to improve the locality of cell to cell communication.
We use an ORB scheme to map cells to the processors [7]. First the cell grid is split into two
equally loaded partitions. The load of each cell is proportional to the number of atoms in that cell
and the communication load of the cell. The processor partition is then split into two with the sizes
of two sub-partitions corresponding to the sizes of the two cell sub-partitions. This is repeated
recursively till every cell is allocated to a processor.

The above scheme enables locality optimizations for cell-to-cell communication. The Charm++
dynamic load-balancer places compute objects that calculate the interactions between cells near the
processors which have the cell data. The load-balancer tries to allocate the compute on the least
loaded processor that is within 8 hops of the midpoint of the two cells. We have observed that
locality optimizations can significantly improve the performanc&aMD on Blue Gene/L.

3 Recent Optimizations

3.1 2D Decomposition of Particle Mesh Ewald

NAMD uses the Particle Mesh Ewald method [2] to compute long range Coulomb interactions.

PME is based on real-to-complex 3D Fast Fourier Transforms, which require all-to-all communi-

cation but do not otherwise dominate the computatidAMD has used a 1D decomposition for

the FFT operations, which requires only a single transpose of the FFT grid and it is therefore the
preferred algorithm with slower networks or small processor counts. Parallelism for the FFT in

the 1D decomposition is limited to the number of planes in the grid, 108 processors for ApoALl.

Since the message-driven execution model of Charm++ allows the small amount of FFT work to



Molecular System || No. of atoms No. of signatures Memory Footprint (MB)
Bonded Info| Non-bonded Info| Original | Current
IAPP 5570 102 117 0.290 0.022
DHFR (JAC) 23558 389 674 1.356 0.107
Lysozyme 39864 398 624 2.787 0.104
ApoaAl 92224 423 729 7.035 0.125
F1-ATPase 327506 737 1436 20.460 0.215
STMV 1066628 461 713 66.739 0.120
Bar Domain 1256653 481 838 97.731 0.128
Ribosome 2820530 1026 2024 159.137 0.304

Table 2: Number of Signatures and Comparison of Memory Usage for Static Information

be interleaved with the rest of the force calculatibiMD can scale to thousands of processors
even with the 1D decomposition. Still, we observed that this 1D decomposition limited scalability
for large simulations on Blue Gene/L and other architectures.

We implemented a 2D decomposition for PME, where the FFT calculation is decomposed
into thick pencils with 3 phases of computation and 2 phases of transpose communication. The
FFT operation is computed by 3 arrays of objects in Charm++ with a different array for each
of the dimensions. PME has 2 additional computation and communication phases that send grid
data between the patches and the PMIEarm++ objects. One of the advantages on the 2D
decomposition is that the number of messages sent or received by any give processor is greatly
reduced compared to the 1D decomposition for large simulations running on large numbers of
processors.

3.2 Compression of Molecular Structure Data

The design oNAMD makes every effort to insulate the biophysicist from the details of the parallel
decomposition. As such, the molecular structure is read from a single file on the head node and the
data replicated across that machine. This structure assumes that each node of a parallel machine has
sufficient memory to perform the simulation serially, as has historically been the case. The design
of NAMD has, therefore, been based on using parallelism to gain additional processing power but
not additional memory. Simulations now stretch into the millions of atoms, and future simulations
have been proposed with 100 million atoms. At the same time, the design of highly scalable
machines, such as Blue Gene/L, has begun to assume that the problem is completely distributed in
memory and hence 512 MB or less per process is sufficient. This limited the simulations that could
be run on Blue Gene/L to several hundred-thousand atoms. (This limitation could be partially
alleviated on the Cray XT3 and other machines by adding memory to particular nodes, which were
then reserved for thAMD processes responsible for input, output, and load balancing.)

The molecular structure file read BYAMD describes the whole system information, including
atoms’ physical attributes, bonded structures (tuples of atoms such as bonds, angles, dihedrals .. .),
etc. Itis convenient to have this information available on every node, since when atoms move from
one cell to another, i.e., very likely from one node to another, it would be complex and inefficient
to migrate static data of arbitrary size as well. In order to reduce the memory footprint for this
static information, we have developed a compression method that reduces memory usage by orders



pl p2 p3 p4

Reduction in L1 Cache Misses 7.45 | 2.76 | 4.18 | 3.12
Reduction in L2 Cache Misses17.03| 15.25| 12.34| 18.83
Reduction in L3 Cache Misses 1.57 | 2.06 | 2.09 | 2.82

Table 3: Reduction in Cache Misses Due to Structure Compression for ApoAl on 4 Processors of
SGI Altix

of magnitude while slightly improving performance due to reduced cache misses. The method
leverages the common building blocks (amino acids, nucleic acids, lipds, water, etc.) from which
large biomolecular simulations are assembled. Each tuple that pertains to a given atom is converted
from absolute to relative atom indices, and the set of tuples for a given atom is definined as its
signature Atoms playing identical roles in the molecular structure will have identical signatures,
and each unique signature need only be stored once, while the signature index for each atom is
trivially distributed. Extracting signatures requires loading the entire structure, which is done on a
separate large-memory workstation, producing a compressed molecular structure file which is read
by NAMD on the small-memory Blue Genel/L.

Using structure compression we can now run the largest production simulations yet attempted,
such as the ribosome with 2.8 million atoms, on Blue Gene/L. Table 2 shows the number of signa-
tures for bonded static information and nonbonded static information respectively across a bunch
of atom systems, and the resulting memory reduction ratio. The number of signatures increases
only with the number of unique proteins in a simulation, and hence ApoAl and STMV have similar
numbers of signatures despite an order of magnitude difference in atom count. Thus, the technique
is scalable to even simulations of 100-million atoms. We also observe a reduction in cache misses,
as shown in Table 3, resulting in slightly better performance.

3.3 Flexible Decomposition

As discussed in Section 2, when we approach smaller atoms to processor ratios, we decompose the
cells further into smaller cells to achieve higher parallelism. We can do so along each axis. So the
size of the cell can be reduced by k along x, y, and/or z where k can be 1, 2 or 3 (rarely). These
decompositions are called 1-Away, 2-Away and so on.

We give names to these further decompositions along the different axes: when splitting only
along x, it is called 2-AwayX, when along X and Y, 2-AwayXY and finally 2-AwayXYZ. The
important decision to be made at runtime is whch decomposition to choose for a given atoms to
processors ratio for a given machine. We must create enough objects so that we have expressed the
required concurrency, without undue increase in the overhead of too many small messages. The
specific points where we switch from 1-Away to 2-AwayX or 2-AwayXY to 2-AwayXYZ depends
also on the machine apart from the atoms to processors ratio.

NAMD is flexible in the sense that the user can choose these parameters for a particular run
(taking into consideration the benchmark, number of processors and the machine). On the other
hand, to save the common user from the burden of setting these parameters, the switch from one
decomposition to a finer one has been automated. Once it is observed that we do not have enough
computes for parallelization, the cells are divided along one more dimension.



Nodes| w/o (ms/step)| with (ms/step)
512 6.02 5.01
1024 3.48 2.96
2048 2.97 2.25

Table 4: Comparison dIAMD with and without using spanning trees, ApoAl benchmark, Cray
XT3

3.4 Communication Optimizations

Multicast was found to be a performance bottlenecAMD. Multicasts were previously treated

as individual sends, paying the overhead of message copying and allocation. This is reasonable,
especially on a small number of processors, since almost every processor is an originator of a mul-
ticast, and nothing much is gained by using a spanning tree. However, while running on a large
number of processors, this imposes significant overhead on the multicast root processor (those
processors that have home cells) when it needs to send a large number of messages. This was op-
timized by using a spanning tree implementation for the multicast operation to distribute the send
overhead along the spanning trees node processors. At each level of a spanning tree, an interme-
diate node forwards the message to all its spanning children using an optimized send function to
avoid message copying.

Although using spanning trees potentially improves parallel performance by offloading send
overhead to intermediate nodes in the trees, it may incur higher latency when the depth of the
spanning tree is large. Using the Projections performance analysis tool, we found that the multicast
message may be delayed at the intermediate nodes when the nodes are busy doing computation [7].
To prevent this from happening, we exploited themediate messagesipported inCharm++.
Immediate messages @harm++, when supported on a platform such as Blue Gene/L, bypass
the message-queue, and are processed immediately when a message arrives (instead of waiting
for computation to finish). Using immediate messages for the multicast spanning trees helps to
improve the responsiveness of forwarding messages by the intermediate nodes. Further, we use
only a two-level spanning tree to reduce critical paths.

When load balancing re-assigns compute objects to processors, the spanning trees have to be
updated according to the newly assigned multicast processors. The way spanning trees are con-
structed can effect the load balancing decision since it needs to take into account of the extra com-
munication overhead associated with the intermediate nodes of the spanning tree. However, load
balancing and the construction of the spanning trees are in different phases, therefore load balanc-
ing strategy when making compute-to-processor mapping decisions, does not have the information
ready about the new spanning tree. Worse, load balancing and the spanning tree construction de-
pend on each other — spanning trees can only be determined after load balancing decisions are
made. Our current solution is to preserve the way spanning trees are built across load balancing
steps as much as possible. Such persistent spanning tree helps load balancer evaluate the commu-
nication overhead. In future, we plan to have a separate load balancing step which makes decisions
solely based on the multicast cost. It fine-tunes load balance by taking compute objects away from
those overloaded processors with intermediate nodes. Further, we expect that support from lower-
level communication layers (such as that used in Blue Matter) and/or hardware support for multiple
concurrent multicasts will reduce the load (and therefore the importance) of the intermediate nodes



| Molecular System || No. of atoms| Cutoff (A) | Simulation Box Time step (fs) |

IAPP 5570 12 46.70 x 40.28 x 29.18 2
DHFR (JAC) 23558 9 62.23 x 62.23 x 62.23 1
Lysozyme 39864 12 73.92 x 73.92 x 73.92 1.5
ApoAl 92224 12 108.86 x 108.86 x 77.76 1
F1-ATPase 327506 12 178.30 x 131.54 x 132.36 1
STMV 1066628 12 216.83 x 216.83 x 216.83 1
Bar Domain 1256653 12 195.40 x 453.70 x 144.00 1
Ribosome 2820530 12 264.02 x 332.36 x 309.04 1

Table 5: Benchmarks and their simulation used for runiNAg/D in this paper

of the spanning trees.
With these optimization of the multicast operationd®NAMD, parallel performance was sig-
nificantly improved as shown in Table 4.

4 Performance Results

A highly scalable and portable applicatiddAMD has been tested on a variety of platforms for
several benchmarks. The platforms vary from small-memory and moderate speed machines like the
Blue Genel/L to faster processor machines like the Cray XT3. The results in this paper range from
benchmarks as small as IAPP with 5570 atoms to Ribosome which has 2.8 million atoms. With
the recent techniques for parallelization and memory optimizatizxiyiD has shown excellent
performance in different regimes. Table 5 lists the various molecular systems and their simulation
details which were used for the performance numbers in this paper.

A description of the various architectures on which the results were obtained for this paper
follows:

e IBM’'s Blue Gene/L: The Blue Gene/L machine at IBM T J Watson (referred to as the
“Watson Blue Gene/L” oBG/L in this paper) has 20480 nodes. Each node contains two
700 MHz PowerPC 440 cores and has 512 MB of memory shared between the two. The
nodes on BG/L are connected into a 3D torus. We used the Watson BG/L for most of our
runs. For our 32,678 processors runs, we used the BG/L at Lawrence Livermore National
Laboratory (LLNL) which had 65,536 compute nodes.

e Cray’'s XT3: BigBen at PittsBurgh Supercomputing Center has 2068 compute nodes each
of which has two 2.6 GHz AMD Opteron processors. The two processors on a node share 2
GB of memory. The nodes are connected into a 3D torus by a custom C-star interconnect.

e IBM’s P655+ and P690 cluster: This cluster at the San Diego Supercomputing Center is
calledDataStar and has 272 (8-way) P655+ and 6 (32-way) P690 compute nodes. The 1.5
GHz 8-way nodes have 16 GB, the 1.7 GHz 8-way nodes have 32 GB, while four 32-way
nodes have 128 GB of memory. DataStar has a nominal theoretical peak performance of
15.6 TFlops.

e Dell's Linux Cluster: This machine at the Texas Advanced Computing Center is known as
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Figure 4: Performance NAMD on IBM Blue Gene/L and Cray XT3

ApoAl | F1-ATPase| STMV | Bar D. | Ribosome
#Procs on BG/L 32768 32768 20480 | 20480 1024
IBM BG/L (TFLOPS) | 1.53 2.62 3.13 2.38 0.22
#Procs on Cray XT3 | 4000 4000 4000 | 4000 4000
Cray XT3 (TFLOPS) 1.46 1.94 4.72 4.60 2.64

Table 6: Floating Point Performance of a few benchmarks on BG/L and Cray

LoneStarand has 1300 nodes. Each node contains two 2.66 GHz Xeon dual-core processors
with 4GB of memory each. This cluster has an Infiniband interconnect connecting the nodes.

4.1 Performance Results

Figure 4 shows the performance of the eight representative benchmarks from Table 5 on Watson
BG/L and BigBen. We present performance numbers for the larger benchmarks upto 16,384 pro-
cessors. We just got enough time to run ApoAl and ATPase on up to 32,768 processors on the
LLNL Blue Gene/L and they scale well.

Figure 5 shows the performance of a subset of the benchmarks on two new machines, the
SDSC DataStar and TACC LoneStar clusters. We ran our application on these machines only re-
cently and the numbers are without any specific optimizations for these machines. This exemplifies
that even without any tuning for specific architectutd8MD performs quite well on newer plat-
forms. There is still scope to optimi2¢AMD on DataStar and LoneStar which will improve the
performance even more. The same data is included in TaBlasd?? for BG/L and Cray XT3.

Table 6 shows the floating point operations per second for some of the benchmarks calculated
for BG/L and Cray XT3.



<MOCODE> on TACC LoneStar

(23.5K2

<MOCODE> om SOSC DataStar : éﬂﬁniz?ggﬁ

1024.0 o & IAPF (5.5K S12.0 | o STHY t1H?

4 Lusozure C39K3
<4 a ApoAl (92K)
5120 3 256.0
o STHY CiHX

2960 4 . Barbig (1.25H)

B0 ]
45,0
F2.0 4

16,0

12s.0 |

.
=1
&

= owx 3 =
\\
|
= =
S

Gl

Mo. of steps per second

Mo. of steps per second

2 o4 1hs 256 512 124
Processors

1
3
&
128
132
256
354
512
TeE
1024
1536

Processors

Figure 5: Performance MAMD on SDSC DataStar and TACC LoneStar

4.2 Comparative Evaluation

Blue Matter is a program developed and optimized for the Blue Gene/L machine, and has achieved
excellent scalability. Table 7 compares its performance WAMD. On Blue Gene/L, each node
has two processors, and one has an options of using the second processor as a computational
process (this is called the “virtual node” mode) or just using it as a co-processor. Blue Matter
essentially uses the second processor as a co-processor, but off-loads some computations (PME)
to it. NAMD can use both processors for computation, or just use one processor on each node.
The co-processor mode also has the advantage that the communication hardware is not shared with
the second processor. As the table shaM&MD is about 1.8 times faster than Blue Matter on
1024 processors, even if we were to restrict it to use only one processor per node. If it uses both
processors (in co-processor node), on the same hardware configuration of 1024 node, it performs
about 2.5 times faster than Blue Matter. However, it should be noted\ihistD performs a PME
computation every 4 steps, whereas Blue Matter does it every step. We believe that the numerical
algorithm used ilNAMD ensures that the multiple time-stepping scheme does not lose accuracy.

The advantage dAMD continues through a larger number of processors, but the percentage
difference shrinks. On 16k nodes, it performs better tN&MD in co-processor mode. We don’t
yet have the data-point for the 16k nodes in co-processor mode (which requires almost the entire
machine). Performance data for Blue matter for larger molecular systems was not available.

We compareNAMD with a new programpbesmongdusing a machine similar to that used in
their SC’06 paper, although the TACC machine has slighly faster processors (2.6 GHz vs 2.4 Ghz
on their cluster). Both machines use infiniband. Our performance is better until 512 processors
although Desmond does better at 1024. This in spite of the (surmised) fact that Desmond used
single precision arithmetic, and thereby exploited SSE instructions on the processor.



No of cores 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768
Blue Matter 38.42| 18.95| 997 | 5.39| 3.14 | 2.09

NAMD CO mode| 17.47| 9.56 | 584 | 3.86| 291 | 2.14
NAMD VN mode| 17.98| 9.82 | 6.26 | 4.34 | 3.06| 2.36 | 2.11

Table 7: Comparison dlAMD and Blue Matter. The numbers are benchmark times for ApoAl
in milliseconds.

No of cores 8 16 32 064 128 | 256 | 512 | 1024
Desmond 256.8 | 126.8| 64.3 | 335 | 182 | 94 | 5.2 | 3.0
NAMD on TACC| 207.74| 106.89| 58.06| 30.18| 15.61| 8.23| 4.92| 3.16

Table 8: Comparison dlAMD and Desmond. The numbers are benchmark times for ApoALl in
milliseconds.

4.3 Performance Analysis

4.3.1 Communication Volume

To enable an application to scale to a large number of processors its communication overhead
must be scalable too. Our decomposition algorithm ensures that the total number bytes going on
the network is bounded. However, the communication volunmeA¥ID depends on the dynamic
load-balancer which tries to place compute objects on lightly loaded processors. Table 1 shows
the communication statistics of the ApoAl benchmark from 512 nodes to 20480 nodes of Blue
Genel/L.

Observe that the communication volume rises from 47.3 MB on 512 nodes to about 254 MB
on 20480 nodes. This is a total increase of 5.4 times while the number of processors has increased
40 times and the bisection bandwidth increased 8 times. The 2-Away options are responsible for
keeping the communication volume bounded. It is observed that at 1024 nodes the 2-AwayXY
option actually reduces the total communication volume resulting in the lower time-step.

As the communication volume is bounded, we do observe decreasing step times up to 20480
nodes with a speedup of over 3000. This can be attributed to the increasing communication to com-
putation ratio as we approach higher number of processors. We believe that it is an achievement
for a general purpose application to achieve this performance on Blue Gene/L with a relatively
small problem like ApoAl.

4.3.2 Scaling Analysis

To analyze the bottlenecks in the most efficient parallelizatioNAMD, we used the the sum-
mary data provided by Projections which gives detailed information about the time elapsed in the
execution of each function in the program and also the time for which each processor is idle and
doing no work. This information was collected on the Cray XT3 machine at PSC and the Blue
Gene/L machine at for 1 to 4096 processors. The information is shown in Figure 6.

To simplify the figures, functions involved in communication have been grouped together and
so have been other functions which perform the bonded and non-bonded work. There are two
entries which correspond to the work involved in the integration and communication involved
with the cells. The first observation is that the time for which processors are idle (waiting for
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(ApoAl)

computation to complete on which they are dependent) rises rapidly beyond 256 processors which
is due to load imbalance. This is expected from the efficiency analysis we get from the benchmark
times. There is a jump in the non-bonded work from 256 to 512 which can be attributed to the
change in the decomposition strategy from 2-AwayX to 2-AwayXY at that point which doubles the
number of cells. The other important slowdown is because of the doubling of communication as
we move across the processors. This reason for this was discussed in the previous section and we
think that there might be some room for improvement there.
Similar facts are seen on both BigBen and Watson BG/L. Observe that the scale of y-axis on
the two sub-figures is different. So the difference is that idle time is not as significant on BG/L as
it is on Cray because of slower processors.

5 Summary and Future Work

We described a highly scalable and portable parallel molecular dynamics program for biophysical
simulations. Several of its features and algorithmic choices that are responsible for this scalability
were described, and performance analysis of these features was presented. Some recent optimiza-
tions aimed at enhancing scalability were presented. We then demonstrated portability, scalability
over a number of processors, and scalability across molecular systems ranging from small (5.5k
atoms) to large (2.8M atoms), via performance data on multiple parallel machines, going up to
32k processors. We expect to have performance data on 12,500 processor Cray XT4 in the final

version, once we have access to this new machine.

We believe that with these resuNBAMD has established itself as a high performance program
that can be used at any of the national supercomputing centers; It is already a code that is routinely
used and trusted by biophysicist. With the new techniques presented, it is ready for the next gener-
ation of parallel machines that will be broadly deployed in the coming years. Further optimizations
for long term multi-petascale future machines include a larger reduction in memory footprint to ac-
commodate the NSF 100M atom simulation, parallel 1/0O (especially to avoid memory bottleneck),
and improved load balancers.
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