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Motivation

Different programming paradigms fit 
different algorithms and applications

Adaptive Run-Time System (ARTS) 
offers performance benefits 

Goal: to support ARMCI and global 
address space languages on ARTS
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Common RTS
Motivations for common run-time system

Support concurrent composibility 
Support common functions: load-balancing, checkpoint
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Outline

Motivation
Adaptive Run-Time System
Adaptive ARMCI Implementation
Preliminary Results

Microbenchmarks
Checkpoint/Restart
Application Performance: LU

Future Work
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ARTS with Migratable Objects

Programming model
User decomposes work to parallel objects (VPs)
RTS maps VPs onto physical processors 
Typically, number of VPs >> P, to allow for 
various optimizations

User View

System Implementation
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Features and Benefits of ARTS
Adaptive overlap

Automatic load balancing

Automatic checkpoint/restart

Communication optimizations

Software engineering benefits
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Adaptive Overlap

Completion time and CPU overhead of 2-way ping-pong communication on Apple G5 Cluster

Challenge: Gap between completion time and CPU overhead

Solution: Overlap between communication and computation
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Automatic Load Balancing

Challenge
Dynamically varying applications
Load imbalance impacts overall performance

Solution
Measurement-based load balancing

Scientific applications are typically iteration-based
The Principle of Persistence
RTS collects CPU and network usage of VPs

Load balancing by migrating threads (VPs)
Threads can be packed and shipped as needed

Different variations of load balancing strategies
Eg. communication-aware, topology-based
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Features and Benefits of ARTS
Adaptive overlap

Automatic load balancing

Automatic checkpoint/restart

Communication optimizations

Software engineering benefits
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ARMCI

Aggregate Remote Memory Copy Interface 
(ARMCI)

Remote memory access (RMA) operations (one-sided 
communication) 
Contiguous and noncontiguous (strided, vector); 
blocking and non-blocking

Supporting various global-address space models 
Global Array, Co-Array Fortran compiler, Adlib

Built on top of MPI or PVM 
Now on Charm++
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Each ARMCI virtual process is implemented by a light-weight, 
user-level thread embedded in a migratable object

Virtual 
Processes

Real Processors

Virtual 
Processes

Virtualizing ARMCI Processes
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Isomalloc Memory
Isomalloc approach for 
migratable threads

Same iso-address area in all 
nodes’ virtual address space

Separate regions globally 
reserved for each VP

Memory allocated locally

Thread data moved, without 
pointer or address update 
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Microbenchmarks
Contiguous Operations
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Microbenchmarks
Strided Operations
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Checkpoint Time

P
Total Data

(MB)
Time 
(ms)

Bandwidth
(MB/s)

2 20.05 221 90.8

4 22.29 249 89.7

8 26.5 303 87.6

16 35.43 366 96.9

32 53.27 533 100

On-disk checkpoint time of LU, on 2 to 32 PEs on IA64 Cluster

Checkpoint/restart automated at run-time level
User inserts simple function calls

Possible NFS bottleneck for on-disk scheme
Alternative: in-memory scheme
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Application Performance

LU
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Application Performance

LU-Block
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Future Work

Performance Optimization
Reduce overheads

Performance Tuning
Visualization and analysis tools

Port other GAS languages
GA and CAF compiler
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