
Support for Adaptivity in ARMCI
Using Migratable Objects

Chao Huang, Chee Wai Lee, Laxmikant Kale
Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

4/29/2006 2

Motivation

Different programming paradigms fit
different algorithms and applications

Adaptive Run-Time System (ARTS)
offers performance benefits

Goal: to support ARMCI and global
address space languages on ARTS

4/29/2006 3

Common RTS
Motivations for common run-time system

Support concurrent composibility
Support common functions: load-balancing, checkpoint

4/29/2006 4

Outline

Motivation
Adaptive Run-Time System
Adaptive ARMCI Implementation
Preliminary Results

Microbenchmarks
Checkpoint/Restart
Application Performance: LU

Future Work

4/29/2006 5

ARTS with Migratable Objects

Programming model
User decomposes work to parallel objects (VPs)
RTS maps VPs onto physical processors
Typically, number of VPs >> P, to allow for
various optimizations

User View

System Implementation

4/29/2006 6

Features and Benefits of ARTS
Adaptive overlap

Automatic load balancing

Automatic checkpoint/restart

Communication optimizations

Software engineering benefits

4/29/2006 7

Adaptive Overlap

Completion time and CPU overhead of 2-way ping-pong communication on Apple G5 Cluster

Challenge: Gap between completion time and CPU overhead

Solution: Overlap between communication and computation

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1e+06

T
im

e
(s

)

Msg Size (B)

Completion Time
CPU Overhead

4/29/2006 8

Automatic Load Balancing

Challenge
Dynamically varying applications
Load imbalance impacts overall performance

Solution
Measurement-based load balancing

Scientific applications are typically iteration-based
The Principle of Persistence
RTS collects CPU and network usage of VPs

Load balancing by migrating threads (VPs)
Threads can be packed and shipped as needed

Different variations of load balancing strategies
Eg. communication-aware, topology-based

4/29/2006 9

Features and Benefits of ARTS
Adaptive overlap

Automatic load balancing

Automatic checkpoint/restart

Communication optimizations

Software engineering benefits

4/29/2006 10

Outline

Motivation
Adaptive Run-Time System
Adaptive ARMCI Implementation
Preliminary Results

Microbenchmarks
Checkpoint/Restart
Application Performance: LU

Future Work

4/29/2006 11

ARMCI

Aggregate Remote Memory Copy Interface
(ARMCI)

Remote memory access (RMA) operations (one-sided
communication)
Contiguous and noncontiguous (strided, vector);
blocking and non-blocking

Supporting various global-address space models
Global Array, Co-Array Fortran compiler, Adlib

Built on top of MPI or PVM
Now on Charm++

4/29/2006 12

Each ARMCI virtual process is implemented by a light-weight,
user-level thread embedded in a migratable object

Virtual
Processes

Real Processors

Virtual
Processes

Virtualizing ARMCI Processes

4/29/2006 13

Isomalloc Memory
Isomalloc approach for
migratable threads

Same iso-address area in all
nodes’ virtual address space

Separate regions globally
reserved for each VP

Memory allocated locally

Thread data moved, without
pointer or address update

P0 P1

i

j

m

n

i

j

m

n

...
...

...

...
...

...

4/29/2006 14

Microbenchmarks
Contiguous Operations

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

12
8

64
8

20
48

46
08

12
80

0
21

63
2

48
67

2
86

52
8

16
13

12
35

28
00

72
00

00
12

80
00

0
18

12
60

8

Byte

Ti
m

e
(s

)

Get (Adaptive)
Get (Native)
Put (Adaptive)
Put (Native)

Performance of contiguous operation on IA64 Cluster

4/29/2006 15

Microbenchmarks
Strided Operations

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

12
8

64
8

20
48

46
08

12
80

0
21

63
2

48
67

2
86

52
8

16
13

12
35

28
00

72
00

00
12

80
00

0
18

12
60

8

Byte

Ti
m

e
(s

)

Get (Adaptive)
Get (Native)
Put (Adaptive)
Put (Native)

Performance of strided operation on IA64 Cluster

4/29/2006 16

Checkpoint Time

P
Total Data

(MB)
Time
(ms)

Bandwidth
(MB/s)

2 20.05 221 90.8

4 22.29 249 89.7

8 26.5 303 87.6

16 35.43 366 96.9

32 53.27 533 100

On-disk checkpoint time of LU, on 2 to 32 PEs on IA64 Cluster

Checkpoint/restart automated at run-time level
User inserts simple function calls

Possible NFS bottleneck for on-disk scheme
Alternative: in-memory scheme

4/29/2006 17

Application Performance

LU

1000

10000

100000

1 2 4 8 16 32 64
P

Ex
ec

 T
im

e
(m

s)

Native
Adaptive

Performance of LU application on IA64 Cluster

4/29/2006 18

Application Performance

LU-Block

1000

10000

100000

1 2 4 8 16 32

P

Ex
ec

 T
im

e
(m

s)

Native
Adaptive

Performance of LU-Block application on IA64 Cluster

4/29/2006 19

Future Work

Performance Optimization
Reduce overheads

Performance Tuning
Visualization and analysis tools

Port other GAS languages
GA and CAF compiler

	Support for Adaptivity in ARMCI Using Migratable Objects
	Motivation
	Common RTS
	Outline
	ARTS with Migratable Objects
	Features and Benefits of ARTS
	Adaptive Overlap
	Automatic Load Balancing
	Features and Benefits of ARTS
	Outline
	ARMCI
	Virtualizing ARMCI Processes
	Isomalloc Memory
	Microbenchmarks
	Microbenchmarks
	Checkpoint Time
	Application Performance
	Application Performance
	Future Work

