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Overview

 Subnormal values make computations slow.

 Serial programs are affected.
 Parallel programs are affected.
 Parallel programs may exhibit amplified slowdowns

due to load imbalances between processors.
 How do I detect and fix the problem in Serial?
 How do I fix the problem in parallel?
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Denormalized or Subnormal
Floating Point Values

IEEE754 Standard specifies a class of values with small
magnitudes: 2-1074 to 2-1022.

Subnormals contain the smallest possible exponent, and
mantissa with a leading zero.

A loss of precision may occur when subnormals are used in
operations.

Programs should be notified when these operations occur.
The worst case implementation involves expensive software

traps to the OS on each operation.
It has been claimed that occurrences of subnormals is rare

and thus of no concern.
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Subnormals are Bad

“Underflows occur infrequently, but when they do
occur, they often come in convoys. Whatever causes
one underflow will usually cause a lot more. So
occasionally a program will encounter a large batch
of underflows, which makes it slow.”

W. Kahan

IEEE 754R minutes from September 19, 2002
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Serial Example*

*Code available at http://charm.cs.uiuc.edu/subnormal/

// initialize array
for (i = 0; i<SIZE; i++) a[i] = 0.0;
a[0] = 1.0;

// perform iterative averaging
for (j=0; j< ITER; j++)
    for (i = 2; i<SIZE-1; i++)

      a[i] = (a[i]+a[i-1]+a[i-2])*(1.0/3.0);

Jacobi(Stencil), Relaxation, and Gauss-Seidel type methods can
give rise to many subnormals.
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Serial Example*

*Code available at http://charm.cs.uiuc.edu/subnormal/

// initialize array
for (i = 0; i<SIZE; i++) a[i] = 10E-50;
a[0] = 1.0;

// perform iterative averaging
for (j=0; j< ITER; j++)
    for (i = 2; i<SIZE-1; i++)

      a[i] = (a[i]+a[i-1]+a[i-2])*(1.0/3.0);

Jacobi(Stencil), Relaxation, and Gauss-Seidel type methods can
give rise to many subnormals.
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Serial Test : Worst Case Slowdown
Processor OS Slowdown

PowerPC G4(in an iBook) Darwin / OSX 1.4

PowerPC G4(PowerMac) Linux 1.6

PowerPC G4(PowerMac) Darwin / OSX 1.7

IBM Power4 AIX 5.1 2.1

PowerPC 970 (Apple G5) Darwin / OSX 2.2
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Serial Test : Worst Case Slowdown
Processor OS Slowdown

PowerPC G4(in an iBook) Darwin / OSX 1.4

PowerPC G4(PowerMac) Linux 1.6

PowerPC G4(PowerMac) Darwin / OSX 1.7

IBM Power4 AIX 5.1 2.1

PowerPC 970 (Apple G5) Darwin / OSX 2.2

AMD Athlon Linux 6.0

AMD AthlonXP Windows XP 7.1

Intel Pentium 3 Linux 15.8

AMD Athlon64 Linux 21.4

AMD Opteron64 Linux 23.8

Intel Pentium 4 Linux 92.2

Alpha EV6.8CB Tru64 Unix 95.1

Intel P4 Xeon Linux 98.2

Itanium 2 (IA-64) Linux 183.2

UltraSPARC IV 64-bit Solaris 520.0
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Parallel Program where this phenomenon was observed.
Simulating a 1D wave propagating through a finite 3D bar in
parallel. The wavefront (left) and partitioning (right).
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Parallel Program Timeline Overview:
32 Alpha processors(PSC Lemieux Cluster)
with Linear Partitioning
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Parallel Program:
32 Alpha processors with Linear Partitions and
Processor Mapping

Average CPU
Utilization
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Parallel Program:
32 Alpha processors  with Normal METIS Partitioner

Average CPU
Utilization
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Flushing Subnormals to Zero

 Some processors have modes that flush any
subnormal to zero.

 No subnormal will ever be produced by any
floating-point operation.

 Available on some processors.
 Can be enabled by:

 Compiler flags
 Explicit code
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Parallel Program:
32 Alpha processors  with Normal METIS Partitioner
Flush Subnormals to Zero

Average CPU
Utilization
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Summary of execution times on Alpha cluster

522.6sLinear Partitioning
(Subnormals Enabled “-fpe1”)

392.4sMetis Partitioning
(Subnormals Enabled “-fpe1”)

50.3sMetis Partitioning with Flush To Zero
(Subnormals Disabled by default)

Execution timeProcessor mode
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Parallel Program:
32 Xeon processors (NCSA Tungsten Cluster)

Average CPU
Utilization
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Parallel Program:
32 Xeon processors, Flush Subnormals to Zero

Average CPU
Utilization
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The Anatomy of The Parallel Problem

 Each processor can only proceed one step ahead of its
neighbors. If the program uses any global
synchronization, it will be significantly worse than the
asynchronous.

 If one processor is slow, it will interfere with the
progress of the rest of the processors.

 Essentially a load imbalance occurs between the
processors.

 Systems built with message driven execution,
virtualization / migratable objects, or loadbalancing may
fix the parallel interference.
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ParFUM: A Parallel Framework for
Unstructured Mesh Applications

 Makes parallelizing a serial code faster and easier
 Handles mesh partitioning and communication
 Load balancing (via Charm++)
 Parallel Incremental Mesh Modification:

 Adaptivity
 Refinement

 Visualization Support
 Collision Detection Library
 High Processor Utilization even for Dynamic Physics codes
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Instrument Based Load Balancing on Xeon Cluster

Average CPU
Utilization
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Parallel Program on Xeon Cluster

45.6s (20%)Load Balanced

33.1s (42%)Flush to Zero mode

56.8sDefault

Execution time(speedup)Processor mode
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How do I detect subnormals?

 Some compilers give an option which generates code that
counts all occurrences of subnormals. E.g. DEC’s “-fpe1”
option

 Many compilers have options to generate IEEE compliant
code. Try using such a flag and compare the results to a
version with a non-IEEE compliant version.

 Explicitly scan through your data and count number of
denormals. This method may yield false positives.

 It may be possible to monitor OS traps to determine if any
floating-point exception handling code is executing.
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How do I elminate these slowdowns?

 Use a computer system where the operations are
less impacted by subnormals.

 Scale/translate data to different range if possible.
 Use a compiler option or additional code to put the

processor in a mode where subnormals are flushed
to zero(FTZ).

 If your numerical code cannot tolerate FTZ, then
in parallel use some type of load balancing to
distribute the subnormals across all processors.
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Conclusion

 Subnormals are increasingly slower on modern
processors.

 Parallel applications will have greatly amplified
slowdowns due to the interference caused by one
processor’s slowdown.

 These factors may no longer be as negligible as
previously thought.

 We believe there are probably many other
applications with similar slowdowns.
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Thank You

Parallel Programming Lab
at University of Illinois

http://charm.cs.uiuc.edu

Additional Resources and Results:

http://charm.cs.uiuc.edu/subnormal/


