© Copyright by Mani Srinivas Potnuru, 2003

AUTOMATIC OUT-OF-CORE EXECUTION SUPPORT FOR
CHARM-++

BY
MANTI SRINIVAS POTNURU

B.Tech., Regional Engineering College,Warangal,India, 2001

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2003

Urbana, Illinois

Abstract

Many of the computationally intensive parallel applications are also memory intensive. The
Operating System’s Virtual Memory System will let the application run even when the re-
quired memory is beyond the available physical memory. However this comes at a substantial
cost of taking a page fault, whenever there is a memory access for the swapped out pages.
Normally, an application does not have any control of this memory system. But since the
application will have a better idea of what pages will be needed in near future, out-of-core
techniques for each application are developed seperately to deal with this issue. We present
a generic, application independent, technique as part of the application’s runtime library to
improve the paging performance of these memory-intensive parallel applications. We exploit
the message-driven execution style of parallel programming along with the virtualization
provided by Charm++ objects. The data driven objects provide the prediction mecha-
nism necessary for an effective prefetching scheme. The implementaion of this automatic
out-of-core execution technique inside the Charm++ runtime libray is described along with

experimental data using a real-world application.

il

To my Dad.

v

Acknowledgments

First and foremost, I would like to express my gratitude to my advisor, Professor Laxmikant
Kale for his generous support, guidance, encouragement and understanding. He was a con-
stant source of insight and motivation to strive for betterment. This work would not have
been possible without him.

Thanks to my senior collegues at Parallel Programming Laboratory: Gengbin Zheng,
Orion Lawlor and Sameer Kumar. They have provided valuable inputs to this work. I
thank Orion for helping me understand charm++ internals and guiding me in the required
modifications. I particularly thank Gengbin for his enormous patience in answering my
innumerable questions related to Converse. Without his help in the final stages, this work
would not have finished in time.

I would also like to thank my colleagues in the PPL for their insight. Specifically, I would
like to thank Sayantan, Cheewai, Terry for the fun times in PPL.

Throughout my years at the University of Illinois I have met many influential and sup-
portive colleagues and friends. All of whom I would like to thank for their support and
friendship and without which, my experience at the University of Illinois would have truely
been lacking. In particular, I would like to thank Sindhura for her endless support and
encouragement in my difficult times.

A special thanks to my parents who have always encouraged me throughout my studies.

Table of Contents

List of Tables e viii
List of Figures e ix
Chapter 1 Introduction L 1
1.1 Thesis Contributions 3
1.2 Thesis Organization o e 3
Chapter 2 Charm—++ e 4
Chapter 3 Converse e 6
3.1 The Scheduler 6
Chapter 4 Schemes for Out of Core Execution Support 9
4.1 Object Touching e 9
4.1.1 Theoretical Discussion, 11

4.1.2 Large Computation Time 12

4.1.3 Small Computation Time 16

4.1.4 Asymptotic Behaviour 0 0oL 18

4.1.5 Different Leash Sizes 19

4.2 Object Managemento 20
Chapter 5 The Pack/Unpack Framework 22
Chapter 6 Implementation 29
6.1 Converse - Charm++ Interface 29
6.2 Charm++ Side Implementation 34
6.3 Converse Side Implementation 38
6.3.1 Converse Scheduler 39

6.3.2 Memory Management Lo L 42

6.4 Limitations e 42
Chapter 7 Performance Evaluation 44
Chapter 8 Summary and Future Work 45

vi

References

vii

List of Tables

viii

List of Figures

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
9.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

The main Converse Scheduler (CsdSchduleForever) Implementation
CsdNextMessage Implementation

Pseudo Code for Scheduler with Object Prefetching
Timeline: Computation time higher than the page fault servicing time
Large Computation Time: Time per Object Vs Problem Size
Timeline: Computation time smaller than the page fault servicing time . . .
Small Computation Time: Time per Object Vs Problem Size
Asymptotic analysis for different computation time per object
Pseudo Code for Scheduler with Object Management

A simple class declaration showing the pup
Packing and unpacking a foo objecto
Declaration of the bar class showing the pup method.

Structure Definition of CooPrefetchManager
Code for Prefetch Manager Inititialization in Charm++
Implementation of touchObject service in the Prefetch Manager
Implementatiion of the Prefetcher PUP:er
Class Hierarchy of the user’s Chare Array class
Implementation of writeToSwap service in the Prefetch Manager
Implementation of readFromSwap service in the Prefetch Manager
Initial Design of the Scheduler
Revised Design of the Scheduler for Implementation

X

Chapter 1

Introduction

Parallel programs often deal with complex large problems. Besides being computation and
communication intensive, often parallel applications have huge memory requirements. In
spite of the relatively large amount of memory available in today’s computer systems, more
and more parallel applications are being developed that require more memory than the
available physical memory. This problem is more perceivable in Cluster’s environment,
where the nodes are off-the-shelf computer systems which typically contain much less memory
compared to the supercomputers.

Operating System’s Virtual Memory mechanism satisfies the memory requirement of
these applications by paging the required pages of memory from physical memory. So the
operating system tries to figure out which pages of the memory are used less frequently
and which are used more often, and swaps out the less frequently used pages to the disk.
If there is a memory access for any of these swapped out pages, the access takes a page
fault, which essentially involves a interrupt generated by the hardware and a access to the
swapped out pages on the disk inside the interrupt handler. Hence these page faults take
several milliseconds compared to a few nanoseconds for memory accesses to the in-memory
(in-core) pages. In addition, the application’s process will be then removed from the runnable
processes queue, while the page-fault handler is executed and the application looses some
more time due to the process context switch. In case there are no other competing processes,

the CPU sits idle during this peroid. Therefore, reducing or hiding page faults is crucial in

achieving high performance. We aim at improving performance of such applications by
exploring and analyzing the concept of Out-of-Core execution.

Software Prefetching is a technique for tolerating memory latency by explicitly getting
data into memory before it is actually required. Thus when the program makes a memory
access to a page, the page is likely to be available instantaneously instead of going through
a expensive page fault. This thesis explores a multi-threaded approach for data prefetching.
It creates one or more threads that will fetch the data into memory. When one thread is
blocked on a page fault, system passes control to other threads [1]. Thus the performance
loss due to paging can be reduced by overlapping it with computation.

One step beyond the above prefetching scheme, is managing the application’s pages by
itself, rather than reling on the OS’s virtual memory system. In this approach either the
application or the runtime system maintains data structures similar to the OS’s page tables
and does the page management by itself. In a way, in this approach the application takes
complete charge of its memory management.

Both of the above approaches present a major challenge. To fetch the required data or to
effectively manage the pages, the program should correctly predict what data is going to be
accessed in near future. Data-driven object oriented paradigms overcome this challenge of
predicting memory-access pattern easily. In such systems, the execution of object’s methods
is triggered by the availability of messages (method invocations) under the control of a
prioritized scheduler. Thus the scheduler has the knowledge of the objects that are going
to receive messages in near future. So the Out-of-Core schemes can deal with at the objects
level instead of at the pages level. Though this is a lot coarser than the page management,
we show that for our purposes this will be enough. In the following sections, we discuss one
such data-driven object oriented paradigm and the above mentioned schemes for supporting

Automatic Out-Of-Core Fxcecution in detail.

1.1 Thesis Contributions

The contributions of this thesis are:

e Application independent Automatic-Out-Of-Core execution support is added to the
Converse runtime system and the interface between the Charm+-+ language system

and the Converse system is modified appropriately.

e Exisiting applications can use the Out-of-Core support without any modifications to the
code. The application can even control the parameters of the runtime system through
the new set of parameters possible to pass to the Charmrun(which is used to load the

executable onto the parallel machine).

1.2 Thesis Organization

This thesis comprises of eight chapters. Chapter 2 provides a basic foundation of the
Charm++ programming language. Chapter 3 gives a overview of Converse runtime system
and Chapter 4 discusses the schemes for Out-of-Core support in detail. The Pack/Unpack
framework is discussed in Chapter 5. Details of the implementation are provided in Chapter
6. Chapter 7 contains a performance analysis of Out-of-Core schemes. Finally, conclusions

and future work are the topics of Chapter 8.

Chapter 2

Charm++

Charm++ is an object-oriented portable parallel language [5],[2] based on C++ . What
sets Charm+-+ apart from traditional programming models such as message passing and
shared variable programming is that the execution model of Charm++4 is message-driven.
Therefore, computations in Charm-++ are triggered based on arrival of associated messages.
These computations in turn can fire off more messages to other (possibly remote) processors
that trigger more computations on those processors.

Charm++ is based on a concept of parallel objects called Chares, which are similar to
a C++ object; however, a Chare object may be accessed remotely from other processors.
Collection of Chares is also available for the programmer’s use in the form of Chare Groups
and Chare Arrays. A Group has one Chare on each processor in the system; whereas, chare
arrays are a collection of arbitary number of chares where each chare has its own index but
all share the same global identifier. The distribution of the chares in a chare array among
processors is upto the Charm++4 runtime system, which provides the notion of Virtualization.
This notion allows the runtime system to use different load balancing strategies for improved
performance without the programmer’s conscious effort. Tough individual chares in a group
or array still function as an individual parallel unit, they are organized in a collection in
order to improve the clarity of applications developed in Charm++ .

Each Chare contains a number of entry methods, which are methods that can be invoked

from remote processors. The Charm++ runtime system has to be explicitly told about these

methos, through an interface in a seperate file. Charm++ provides system calls to asyn-
chronously create remote chares and to asynchronously invoke entry methods on remote
chares by sending messages to those chares. This asynchronous message passing is the basic
interprocess communication mechanism in Charm++ . This allows to reduce the proces-
sor’s idle time by overlapping computation with communication delay. The latency is also
minimized by allowing the sending process to continue on its own work rather than waiting
for the actual delivery of the message to the remote processor or the execution of the mes-
sage’s corresponding entry method. Charm-++ also lets the users associate priorities to the

messages, so that high priority messages can be handled before the lower priority ones.

Chapter 3

Converse

Converse [4] is a multi-lingual, interoperable runtime framework. It supports the SPMD pro-
gramming style, message-driven programming, parallel object-oriented programming and
thread-based paradigms. Converse provides portable, efficient implementations of all the
functions typically needed by a parallel language library. For example, Converse provides
an architecture-independent interface to most thread functions, thread scheduling, sycnchro-
nization of variables, and message passing. This runtime enviroment can run on any of many
different operating systems, including Linux, Solaris, Irix, Dec-alpha, Windows N'T as well
as many specialized super computers like IBM’s SP, SGI Origin 2000, etc. Charm++ is built

on top of this runtime framework.

3.1 The Scheduler

Each processor in the Converse runtime system runs a scheduler, which is responsible for
receiving all the messages and scheduling them. The converse scheduler is based on the
notion of schedulable entities, called Generalized Messages. A generalized message is an
arbitrary block of memory, with the first few bytes specifying a function that will handle
the message and the rest containg the user data. The scheduler dispatches a generalized
message by invoking its handler with the message pointer as a parameter. The function may

be specified by a direct pointer or by an index into a table of functions. Any function that

is used for handling messages must first be registered with the converse environment. The
scheduler’s(Figure 3.1) job is to repeatedly pick and process the messages in the order of
their priority. A generalized message may be used as a message sent from a remote processor
or as a scheduler entry for a ready thread or object.

There are two kinds of messages in the system waiting to be scheduled-messages that
have come from the network, and those that are locally generated. The scheduler’s job is
to repeatedly deliver these messages to their respective handlers. Since issues related to
buffer-management demand timely processing of messages sitting at the network interface,
the scheduler first extracts as many messages as it can from the network, calling the handler
for each of them. These handlers may enqueue the messages for scheduling (optionally with
a priority) if they desire such a functionality. Once there are no more network messages,
the scheduler dequeues one message from its priority queue (Figure 3.2) and delivers to the
corresponding handler. This process continues until the Converse function to terminate the
scheduler is called by the user program. The scheduler’s queue is written as a seperate
entity so that users can plug-in different queueing strategies. The handler for a particular
message may be a user-written function, or a function in the runtime system of the particular
language.

In Figure 3.1 the SCHEDULE_IDLE gives some time to the Converse Machine Layer to
poll the network for any incoming messages. This is called whenever there are no messages
to schedule and the scheduler is effectively in idle state. Similarly CsdPeriodic takes care of

any periodic call-backs on the objects need to be made in the system.

void CsdScheduleForever (void)
{

int isIdle=0;

SCHEDULE_TOP

while (1) {
msg = CsdNextMessage(&state);
if (msg) { /*A message is available-- process it*/

if (isIdle) {isIdle=0;CsdEndIdle();}

SCHEDULE_MESSAGE
} else { /*No message available-- go (or remain) idlex*/

SCHEDULE_IDLE

}
CsdPeriodic();

}

}

Figure 3.1: The main Converse Scheduler (CsdSchduleForever) Implementation

void *CsdNextMessage(CsdSchedulerState_t *s) {

void *msg;

if (NULL!=(msg=CmiGetNonLocal())
|| NULL!=(msg=CdsFifo_Dequeue(s->localQ))) {
CpvAccess(cQdState)->mProcessed++;

return msg;

}
#if CMK_NODE_QUEUE_AVAILABLE
if (NULL!=(msg=CmiGetNonLocalNodeQ())) return msg;

if (!CqsEmpty(s->nodeQ) &&
1CqsPrioGT(CgsGetPriority(s->nodeQ), CqsGetPriority(s->schedQ))) {

CmiLock (s->nodeLock) ;

CqsDequeue (s->nodeQ, (void **)&msg) ;
CmiUnlock(s->nodeLlock) ;

if (msg!=NULL) return msg;

}

#tendif
CqsDequeue (s->schedQ, (void **)&msg) ;

if (msg!=NULL) return msg;
return NULL;

Figure 3.2: CsdNextMessage Implementation

Chapter 4

Schemes for Out of Core Execution
Support

In this section we will discuss two software prefetching schemes - Object Touching and Object
Management in detail. In particular we will discuss the feasibility of each scheme, the
motivation behind the scheme and provide some theoretical support for it. We also discuss

the two schemes using a model of the Converse scheduler.

4.1 Object Touching

The main function of the Converse scheduler is to pick up a message from the Queues,
and execute the message on an object. In the Touching scheme a Prefetch Thread is cre-
ated in addition to the main Scheduler Thread in the Converse scheduler. The Prefetch
Thread dequeues a message using CsdNextMessage. Then it tries to prefetch the object
that belongs to the message and enques that message into a temporary Producer-Consumer
queue. This queue is mainted between the Prefetch Thread and the Scheduler Thread to
hold the prefetched-messages. The main Scheduler Thread picks up a message from the
above Producer-Consumer Queue and schedules the message to do the required computa-
tion on the already prefetched object. Prefetch thread maintains a leash such that it will
prefetch objects only when the queue size is less than the leash size. This can be used as

a programmable parameter to study the effect of different leash sizes on prefetching. The

psuedo code for both the threads is shown in Figure 4.1.

void* PrefetchThread (void *info)
{
while (true) {
msg = CsdNextMessage() ;
if (msg !'= NULL) {
if (PCQueuelLength(bufQ) >= Leash) {
sched_yield();
continue;
}
objPtr = getObjectPtr(msg);
TouchObject (objPtr) ;
PCQueuePush (bufQ,msg) ;
}
}
}

void* SchedulerThread (void *info)
{
while (true) {
if (PCQueueEmpty (bufQ) {
sched_yield();
continue;
}
msg = PCQueuePop (bufQ) ;
Schedule_Message (msg) ;
}
}

Figure 4.1: Pseudo Code for Scheduler with Object Prefetching

The main idea behind the above approach is that as the Prefetch Thread accesses the
objects corresponding to the messages, any page faults will be taken by it. As the Computaion
Thread/Scheduler Thread comes to a point to access that object, it is already brought into
memory and hence it will not incur a page fault (assuming that object is not paged out by the
time it is accessed). Keeping the leash size to some reasonable value such as 10-30, one can
statistically assume that pages will not be swapped out between the time Prefetch Thread

brings it into memory and Scheduler Thread access them. Especially, if the page replacement

10

algorithm used in the operating system is LRU (Least Recently Used),it becomes even less
likely. When the queue gets filled up to the leash size, Prefetch Thread yields to the Scheduler
Thread and similarly when the queue is empty, scheduler thread yields to prefetch thread.
The Producer-Consumer Queue between the two threads allows some work to be queued
up for the Scheduler Thread . Whenever the Prefetch Thread is blocked in the page fault,
the OS (or the thread package scheduler) will schedule other available threads. Meanwhile,
Scheduler Thread can keep working on the already prefetched objects in memory. If the page
fault time and the computation time overlap exactly, the process performs as though there

are no page faults, and achieves optimum performance.

4.1.1 Theoretical Discussion

In this section we try to analyze how paging effects the system performance and how the
Object Prefetching schemes can improve it. Let us make following assumptions about the
access pattern of an application which repeatedly accesses some object and performs some
computation on it. (This section is taken from [6], for the sake of completeness of this

document)

e N = The number of objects
e S = Size of each object in bytes

e M = The available physical memory

t = Total completion time

t. = The computation time per object

fp = Page fault frequency

t, = Page fault service time.

e t, = -, Effective time taken per object.

t
N?

11

We use above eight parameters to discuss the different scenarios possible in this scheme.

Two major scenarios are one with large computation time with respect to the page fault

service time and the other one being the computation time smaller than the page fault

service time.

4.1.2 Large Computation Time

In this scenario the computation time per object is larger compared to page fault time, i.e.

te >ty

(a) No Paging

(b) Paging Behaviour

S S

=

(c) Prefetching Behaviour

Figure 4.2: Timeline: Computation time higher than the page fault servicing time

In the ideal case when all the necessary data fits into the available physical memory,

access time for the data (Object) wil be very small compared to the computation time.

When most of the time is spent in computation, the behaviour looks like in Figure 4.2 (a).

12

The total time taken for the completion of the program can be given by the equation

2|~ =

Il
~
o

(4.1)

But as the memory usage of the application increases, some of the data will not fit in
memory and the application might start paging. When a page fault occurs, the access time
will increase and becomes significant with respect to the computation time of the object.
This behaviour degrades the overall performance of the application. Figure (b) models this

kind of paging behaviour of the application.

t = N(tc+ fptp)
t

ty = —

N
= to+ fotp (4.2)

We can estimate f,, as follows:

RequiredMemory = S.N

AvailableMemory = M

When S.N < M, there will not be any page faults and every access will be in memory.

fr =0, SN<M (4.3)

One can define the probability of a page not being in physical memory as,

SN—-—M

= 5N

13

M

= 1-
S.N’

SN >M (4.4)

So as the amount of required memory asymptotically increases to infinity, page fault

frequency approaches to 1.
=1, SN-—o (4.5)
Combining equations 4.2, 4.3, 4.4 and 4.5 we have

t, = t.,, SN<M

S.—N) tp, SN>M

— t.+t,, SN0 (4.6)

= t.+(1—

From equation 4.6 we can conclude that effective time per object remains constant at ¢,
when the available memory is sufficient to fit the given problem, but starts increasing with f,
for sometime and then finally asymptotically approaches ¢, +?, for infinetely large problems.
The equations can be plotted as shown in the Figure 4.3

As seen in Figure 4.2 (b), computation thread has to wait for the data to be brought
into memory. In Figure 4.2 (b), if one can overlap page access times with some actual
computational time, peformance can be improved. To achieve that, a new prefetch thread is
introduced whose only work is to access the data before computation takes place on it. At
any point, when the prefetch thread gets blocked on a page fault, computaion thread can still
continue to perform computation on the data prefetched earlier. If this happens to be as in
Figure 4.2 (c), most of the page fault servicing time is overlapped with useful computation
time, as computation thread need not wait for the next object access as in Figure 4.2 (b).

In essence, in this scenario the computation time ¢, domintes the total time taken, thus one

14

t-~ + t
¢ P No Prefetch
Prefetch
tC
Time/Object (t)

M
Problem Size(S.N)

Figure 4.3: Large Computation Time: Time per Object Vs Problem Size

can conclude that

ty = te (4.7)

From equations, 4.6 and 4.7, we can conclude that asymptotically, ¢, will reach ¢.+%, without
prefetching, while with prefetching it remains constant at .. Figure 4.3 shows the above
analysis pictorially.

In the above figure the slight difference between ¢, for prefetching and ¢. is due to over-
heads of thread creation,thread context switches and thread synchronization.

Some of the second-order effects ignored in the above analysis are:

e Even if the average page fault rate remains constant, the prefetch thread can encounter
multiple page faults in succession. This can make the computation thread wait for a

while.
o A prefetched page can get swapped out by the operating system, before it is accessed

15

by the computation thread.

4.1.3 Small Computation Time

The discussion in the previous section assumed that ¢, > ¢,. This section analyzes the other
scenario when the computation time is small compared to page fault time. This section
argues that prefetching has advantages even in this scenario.

Figure 4.4 models the application behaviour with small computation time. When there
is no prefetching the equation 4.6 still holds in this case.

t
c
tc

N A A o I | B U | |
N O O O [|
(a) No Paging

tp te tp
CIC I IE I S 1IN

(b) Paging Behaviour

Prefetch Thread t
bl = bl SSs =
RS S
tC
T Ir1ri C I Il LTI
) head_H_H_H_H_H_I T T LI T
Worker Thri

(c) Prefetching Behaviour

Figure 4.4: Timeline: Computation time smaller than the page fault servicing time

When prefetching is introduced in this scenario, an overlap can be achieved between the
page fault service time and the computation time as shown in Figure (c). If f,.t, < .,
by the time the computation thread finishes executing K objects in time K.t., the prefetch
thread incurs f,.K page faults, and taking K.f,.t, time units. If we assume that the access

time spent by the prefetch thread is negligible and so is the context switching time, the

16

computation thread will never be kept waiting by the prefetch thread. We can summarize

as,

t = N .t iff,. t,<t,

lo = 1 if fp Sty <t (48)

The above equation does not account for the second-order effects as in the previous section.

On the other hand, if f,.t, > t., the total time taken will be decided by the page fault
time rather than the computational time. For K accesses, the prefetch thread incurs K.f,.t,
time in servicing the page faults. The computation thread can finish its work in time K.%.,

which is less than the all page faults time together,K.f,.t,. Hence,

t = N.(fp . tp), if fol,>t,

te = (f, 1), if foty > te (4.9)

If we rewrite the condition f, . t, < ¢, as,

fr -t < t
M
(- o)ty < t
ie. S.N < M(—2) (4.10)
t, — 1.

Since we assumed that t. < t,, the quantity (tpt_p tc) is greater than 1. When f, approaches

1,

to — tc+t,, Without Prefetching

to — tp, With Prefetching (4.11)

Thus, when computation time is high (¢, & t,), prefetching makes the program twice as

17

fast as the original program. The expected performace can be plotted as show in Figure 4.5

below.

No Prefetch

Prefetch

Time per Object (t,)

te

M M(tp

)
1

Problem Size (S.N)

Figure 4.5: Small Computation Time: Time per Object Vs Problem Size

4.1.4 Asymptotic Behaviour

By keeping N constant at a very large value such that f, — 1, if we vary ¢., the graph shown
in Figure 4.6 can be plotted.

Without prefetching, effective time per object is given as t, = ¢, +t,, which is plotted as
a straight line in Figure 4.6. With prefetching introduced, ¢, depends on the relative values
of computation time per object and page fault service time. When ¢, < 1, effective time
taken is dominated by the page fault service time, ¢, = t,, which is independent of t.. When

tc > tp, 1, 1s dominated by the computation time, ¢, = ..

18

No Prefetch

Prefetch

tp

to

Effective Time per Object

t

Computation time per object (to)

Figure 4.6: Asymptotic analysis for different computation time per object

4.1.5 Different Leash Sizes

Prefetch thread maintains a leash so that even when it is blocked on a page fault, the
computation thread can continue working. If the leash is 1, computation thread has to wait
for every message until the prefetch thread enqueues the message into the Prefetch Queue.
As the leash is increased, computation thread will have more work to do when the prefetch
thread is waiting on a page fault. Thus, computation thread needs to wait little or no time
for work to be enqueued. But at the same time, leash size should not be selected so high
that prefetch thread prefetches too much data which might get paged out before it is used,

thus causing even more page faults.

19

4.2 Object Management

As described earlier in section 4.1, Object Touching method does not have complete control
over which objects will be in memory and which will be paged out since it pretty much relies
on the virtual memory for this. Object Management mechanism tries to gain explicit control
of the objects. This is one step ahead on the previous prefetching mechanism. Objects are
serialized and stored on the disk. To prefetch an object, the object is read, deserialized
and brought into memory. Since all these operations take place in the preferch thread, the
computational thread is not effected and it does not have to wait for work, by maintaining
a leash between the two threads.

Since the available physical memory is limited, whenever a new object is brought into
memory another less frequently used object may have to be replaced. This problem is similar
to the Operating System’s virtual memory management component. Here instead of the
pages, we are using replacement algorithms to deal with objects. In effect, the application
(or the runtime system on behalf of the application) is taking control of its memory, since
at this time there is no mechanism to convey information to the OS about the application’s
memory access patterns. Any of the OS virtual memory page replacement algorithms can be
used to do the object replacement. Whereas the memory accesses to different pages provide
hints for the page replacement algorithms, the messages for different objects provide the
useful hints for the object replacement algorithms. But since the objects are much bigger
than a page, our replacement mechanism works at a much coarser level compared to the
OS’s virtual memory system.

As shown in the Figure 4.7 the prefetch thread differs from the prefetch thread in object
touching mechanism in the call to MakesureInMemory instead of the TouchObject. The
MakesureInMemory method runs the object replacement algoritm, swaps out a object (if
necessary) and brings in the required object as needed. The discussion in the Section 4.1.1

is still valid for this scheme, since the time taken by MakesureInMemory is similar to Tou-

20

void* PrefetchThread (void *info)
{
while (true) {
msg = CsdNextMessage();
if (msg !'= NULL) {
if (PCQueuelLength(bufQ) >= Leash) {
sched_yield();
continue;
}
objPtr = getObjectPtr(msg);
MakesureInMemory (objPtr) ;
PCQueuePush (bufQ,msg) ;
}
}
}

void* SchedulerThread (void *info)
{
while (true) {

if (PCQueueEmpty(bufQ) {
sched_yield();

continue;

}
msg = PCQueuePop (bufQ) ;
Schedule_Message (msg) ;
}
}

Figure 4.7: Pseudo Code for Scheduler with Object Management

chObject. So t, can still represent the page fault service time and hence all the equations

and the graphs are still valid.

21

Chapter 5
The Pack/Unpack Framework

As discussed in the previous section, the Object Touching scheme needs a mechanism of
touching all the pages belonging to the object. Similarly the Object Management mechanism
needs, a way of serializing and deserializing the object to and from the disk. For this
functionality the PUP framework in the Charm+-+ system is used and it is described at
length in this section.

The pack/unpack or “pup” framework [2]is a collection of efficient and elegant classes
that enable the Chare Arrays of Charm++ to be migrated from one processor to another
processor or to the disk (checkpointing). The pup framework can be extended to provide
services to any operation that requires a traversal of the object state (typically a traversal
over the objects data members).

To migrate concurrent objects such as chare array elements the following steps need to

be done,

1. The state of the object must be ‘packed’ into a memory buffer.

2. The memory occupied by the object should be released on the processor where the

object resided.

3. The object state should be transported to the new processor where the object is to be

migrated.

4. The object should be recreated at the new location.

22

The state of sequential objects associated with the Chare Arrays is subsumed by the state of
the concurrent objects since, in a Charm-++ program, every sequential object is a member of
or is pointed to by a member of a concurrent object. Chare Arrays may contain dynamically
allocated data the size of which varies at runtime. All of this data needs to be packed at the
time of migration from the source processor and unpacked at the destination processor.

To checkpoint a Charm-++ program, we need to save the state of all the concurrent
objects in the system on the disk. We chose to view checkpointing as a variant of migration.
When a checkpoint is made, the Charm++ objects are seen as ‘migrating’ to disk, and upon
restart they return to their respective processors. To migrate an object, its data needs to
be ‘packed’, i.e. serialized either into a memory buffer or to disk, and then ‘unpacked’ into
memory.

Migration for objects can be handled in several ways. A possible approach is to require
each class to implement pack and unpack methods. If an object is required to migrate to
another processor while the program is executing, the method pack is invoked on the object.
The pack method allocates a memory buffer large enough to hold all the object’s data and
then proceeds to serialize the objects data into the memory buffer. The memory buffer is
then inserted into a message and sent to the processor where the object is to be migrated.
When this message containing the object state is received by the new processor, a new
instance of the class is created by calling a special migration constructor. The migration
constructor’s task is to simply create an uninitialized instance of the class. The unpack
method is invoked with a pointer to the migration message. The unpack method proceeds to
stuff the new object with data from the old one. At the end of the unpack method, migration
is complete.

The problem with this approach is that most of the functionality in the pack and unpack is
similar in nature, i.e., in the pack function, the data is copied to a serial buffer in a particular
order and in unpack the data is copied from the serial buffer in the same order as it was

packed. Thus there is code duplication as both the methods share a common skeleton, with

23

only the actual operation that the methods perform on the data members being different.
The pup library has been designed with the intent of preventing this code dupplication.
The programmer of a particular class only needs to implement a single method, called pup.
The pup method takes a single parameter, which is an instance of a packer/unpacker or
pupper. The nature of puppers shall be dealt with subsequently. The role of this method is
to perform a traversal of the object state. The actual operations that need to be performed
on the data members are executed by the pupper.

The pup library contains the following important classes:

e class PUP::er - This class is the abstract superclass of all the other classes in the
system. The pup method of a particular class takes a reference to a PUP::er as
parameter. This class has methods for dealing with all the basic C++ data types. All
these methods are expressed in terms of a generic pure virtual method. Subclasses

only need to provide the generic method.

e class PUP: :packer - The abstract superclass of all classes that ‘pack’ objects. It is not
clear here what packing means, but it may be considered as any operation that performs
a non-destructive transformation on the objects state, i.e. the ‘packing’ operates on
the data that constitutes the object state and creates a different representation of that
state. The object does not change as a result of this operation. This class implements
additional methods, isPacking and isUnpacking, that may be used to query the class

to determine its mode of operation

e class PUP: :unpacker - The abstract superclass of all classes that ‘unpack’ objects.
Unpacking is the opposite of packing as described in the previous item. An unpacking
operation works with a ‘raw’ (uninitialized) object and some representation of the
object state. The process of unpacking involves a traversal of the object state, at each
step of the traversal, part of the object state is ‘converted’ from the given representation

into a piece of memory holding the right bit pattern. When the unpacking is complete,

24

the entire object state has been recovered.

class PUP::sizer - This is a subclass of the PUP: :er class. Its function is to deter-

mine the size (in bytes), of the object that it operates on.

class PUP::toMem - This is a subclass of the PUP: : packer class. The role of this class
is to pack the object it operates on into a preallocated contiguous memory buffer. The
most general way to pack an object into a memory buffer is to invoke pup on the object
using an instance of PUP: :sizer to determine the size of the object, then a buffer of
the required size is allocated and pup is invoked again with an instance of PUP: : toMem

that has been initialized with the allocated buffer.

class PUP::fromMem - This is a subclass of the PUP: :unpacker class. The role of
this class is to unpack the state of the object it operates on from a given contiguous

memory buffer.

class PUP::toDisk - This is a subclass of the PUP: :packer class. The role of this
class is to save the state of the object it operates on into a disk file. To serialize an
object to disk, pup is invoked on the object with an instance of PUP: :toDisk that has

been initialized with a file pointer.

class PUP::fromDisk - This is a subclass of the PUP: :unpacker class. The role of

this class is to unpack the state of the object it operates on from a given disk file.

Figure 5.1 shows a class declaration that includes a pup method:

The routine in Figure 5.2 presents an example of how an instance of the foo class may

be packed and unpacked from a memory buffer.

Figure 5.3 shows more complex example of how an instance of the bar class may be

serialized to memory and then recovered from it. The bar class has an instance variable

of type foo. To pack/unpack or checkpoint/recover an object of type bar we must apply

the same operation to the instance variable foo f. This is accomplished by having the pup

25

class foo {
private:
bool isBar;
int x;
char y;
unsigned long z;
float q[3];
public:
void pup(PUP::er &p) {
p(isBar);
p(x);
p(y);
p(z);
p(q,3);

};

Figure 5.1: A simple class declaration showing the pup

method of the bar class invoke pup on the member of type foo with the pupper passed to it.
Figure 5.3 shows the declaration of the bar class, including the pup method.

In the Object Touching scheme, a class (Prefetcher) similar to the PUP:sizer is used in
the TouchObject method, to touch all the pages of the object’s data members. Similarly in
the Object Management scheme, to swap out a object PUP:toDisk is used and to bring a

object into memory PUP:fromDisk is used.

26

int main()
{
//Build a foo
foo £;
f.isBar=false;
.x=102;
Y=Y
.z=1234509999;
.qL0]=(float)1.2;
.q[11=(float)2.3;
f.q[2]=(float)3.4;
//Collapse f into a memory buffer Allocate a buffer for the foo object
PUP::sizer s;
f.pup(s);
void *buf=(void *)malloc(s.size());
//Pack f into preallocated buffer
{
PUP: :toMem m(buf) ;
f.pup(m);
}

Fh Hh Hh Hh Hh

//Unpack the foo object
foo £2;
{
PUP: :fromMem m(buf) ;
f2.pup(m) ;
}
}

Figure 5.2: Packing and unpacking a foo object

27

class bar {
public:
foo f;
int nArr;//Length of array below
double *arr;//Heap-allocated array
bar() { }
bar(int len) {
nArr=len;
arr=new double[nArr];
}
void pup(PUP::er &p) {
f.pup(p);
p(nArr);
if (p.isUnpacking())
arr=new double[nArr];
p(arr,nArr);

};

Figure 5.3: Declaration of the bar class showing the pup method.

28

Chapter 6

Implementation

In this section we discuss how the previously explained schemes for providing automatic
Out-of-Core execution support are actually implemented in the Charm++ system. First we
will discuss how the interface between Charm++ and Converse is extended for Out-of-Core
support. Next we discuss the changes made on Charm++ side and Converse side respectively.

We will also discuss the limitations of the current implementation.

6.1 Converse - Charm-+-+ Interface

As Charm++ and other languages are implemented on top of the Converse run-time system,
Charm++ utilizes a lot of services from Converse . But at the same time, Charm++ provides
some services to Converse by registering some handler functions with Converse in the startup
phase. Charm-++ objects communicate with each other through the use of messages and these
messages contain the handler to be executed on the target processor upon the arrival of the
message. On the target processor, the Converse scheduler picks up the message from the
network or local queue of messages and executes the handler function corresponding to the
one in the message. This handler function is implemented in Charm++ runtime system
and the execution of the message on the appropriate Object is taken care of by the charm
langugae runtime system.

In either of the Out-of-Core schemes, when the Converse scheduler’s prefetch thread picks

29

up a message it needs to know to which object the message belongs to, inorder to prefetch the
object into memory. But Converse has no knowledge of the language (Charm++) specific
objects. But at the same time, only Converse has the scheduler, which can look into the
message queue to prefetch the objects. Hence the Charm-Converse interface is extended to
accomodate for this.

In the new extended interface, Converse maintains a datastructure with information re-
garding the Charm++ objects. When the Charm++ langugae runtime system creates the
Chare Array objects, it also registers them with converse by passing a pointer to the object
and size of the object. In return Converse returns an Object Id to Charm++ , which is an
index of the object into the Converse data strucutres. Charm++ runtime system stores this
objectId index (from now on called prefetchObjld) in its own datastructures, the purpose of
which will be explained soon. Along with the registration of the object, Converse also pro-
vides a way of deregistering the object. This can happen if the object is destroyed or when
the Object gets migrated to a different processor. The case of migration will be explained
little later in this section. In essence, Converse provides a bunch of new services to charm,
for charm to communicate the information about its objects to converse.

One of the services Converse needs from Charm++ is the information about the object
that is going to be accessed by a message. Converse looks only at the envelope of the message
and it has no idea about the rest of the contents of the message, since the interpretation of
this data is upto the language’s own runtime system. Converse needs similar services from
Charm++ to deal with serializing and deserializing the objects.

Charm++’s Chare Array objects are managed by a module called Array Manager. To
implement the new services in Charm++ , the array manager is extended to act also as a
Prefetch Manager. The functions implemented by the prefetch manager are summarized

below:

e int (* msg20bjId) (void *msg);

Returns the Out-of-Core object Id (i.e., prefetchObjId) of the object that the message

30

will access. If the message is a system message and will not access any object, it
returns -1. The Prefetch Manager obtains the prefetchObjld at the time of registering

the corresponding object with Converse .

e void (* touchObject) (void *objptr);
In the Object Touching scheme the prefetch thread in the Converse scheduler has to
touch all the pages belonging to the object’s data. Though Converse has a pointer to
the object itself, it has no way of traversing the pages of the object’s data members.
Hence as explained in section 5, a PUP::er object will be used to traverse the object’s
data. But since the Converse has no idea about the object’s class and the pup routine

of the object can not be called on void * pointer, this service is provided by charm-++.

e void (* readFromSwap) (FILE *swapfile,void *objptr);
In the Object Management scheme the prefetch thread in the Converse scheduler may
have to bring in an object belonging to a message, from the disk. As discussed earlier,
the PUP:fromDisk object is used to read in the data related to the object from the
disk and recreate the data memebers of the object. For this purpose, the object’s pup
method has to be called with PUP:fromDisk object as an argument. But to call the
pup method on the object pointer, converse has no idea of the class of the object. This

service does this functionality for Converse .

e void (* writeToSwap) (FILE *swapfile,void *objptr);
In the Object Management scheme the prefetch thread may have to swap out some
object to bring in some other object. Similar to the read FromSwap functionality, here
the object’s pup method has to be called with a PUP:toDisk object as a parameter.

Hence this method provides similar functionality as readFromSwap.

All the above functions are combined into a structure of type CooPrefetchManager, def-

inition of which is shown in Figure 6.1.

31

typedef struct _CooPrefetchManager {
int (* msg20bjId) (void *msg);
#if CMK_OUT_OF_CORE_TQUCH
void (* touchObject) (void *objptr);
#endif
#if CMK_OUT_OF_CORE_PTHREADS
void (* writeToSwap) (FILE *swapfile,void *objptr);
void (* readFromSwap) (FILE *swapfile,void *objptr);
#endif
} CooPrefetchManager;

Figure 6.1: Structure Definition of CooPrefetchManager

This CooPrefetchManager structure, with its function pointers, is registered with Con-

verse along with the _charmHandlerldz, using the function
void CooRegisterManager(CooPrefetchManager *pf,int handlerldz);

provided by Converse . The _charmHandlerIdx is specific to Charm++ . Some other language
implemented on top of Converse can register a similar CooPrefetchManager structure with
converse under a different hanlder number. Converse maintains a list of handler numbers
and their corresponding CooPrefetchManager structures.

As discussed earlier in this section, Converse provides a set of functions for the languages

to register and de-register objects with it. These functions are summarized below:

e int CooRegisterObject(CooPrefetchManager *pf,int objsize,void *objptr);
Charm++ calls this method to register a new prefetchable out-of-core object into the
converse’s prefetchable objects table.

Returns : The object’s new id to Charm—++

Parameters:

— pf: The new object’s prefetch manager. This must previously have been passed

to CooRegisterManager.

— objsize: The new object’s (current) memory size, in bytes.

32

— objptr: The new object’s location. This pointer is only used to pass back to

writeToSwap or readFromSwap.

e void CooDeregisterObject(int objid);
Charm++ calls this method to delete the object previously registered with Converse
with the object ID, objid. This can happen when the object gets destroyed, or when
it migrates away.

Parameters:
— objid: The prefetchObjld previously obtained when registering this object.

e void CooSetSize(int objid,int newsize);
This method is used to inform Converse the change in the object’s size so that it can
update its object table entry.

Parameters:

— objid: The prefetchObjld previously obtained when registering this object.

— newsize: The new size of the object, in bytes.

e void CooBringIn(int objid);
Normally when the object is swapped out, it is brought into memory only when there is
a message for the object. But there can be circumstances inside the charm++ language
runtime system, when the object need to be in memory but there are no messages for
it. In these cases, the Charm++ can explicitly ask Converse to bring the object into
memory by using this function. One scenario is during the load balancing phase, if
the object needs to be migrated to a remote processor and the swap file is on the local
disk only, then before transferring the object, the object’s data from the local disk
need to be retrieved. In this case, the load balancer module of Charm++ can use this
routine to direct converse to bring the object into memory, before migrating away the

object. Another potential scenario is the case of CcdCallBacks. For these call backs to

33

work the object need to be in memory, but since these are just local call backs but not
messages which can be observed by Converse , unless the charm++ language runtime
system explicitly asks for it, the object will not be brought into memory.

Parameters:
— objid: The prefetchObjld previously obtained when registering this object.

Thus the Converse-Charm—++ interface is exteneded in both directions to support auto-
matic Out-of-Core support. Any language other than Charm++ implemented on Converse

should be able to implement a similar interface.

6.2 Charm-++ Side Implementation

This section will describes how the new Out-of-Core interface on the Charm-++ side is imple-
mented. To implement the true Out-of-Core support, when a object needs to be swapped
out, the whole object’s memory (including stack space and heap space) need to be deallo-
cated and simialarly when the object is brought in, a new object has to be created with the
old object’s data. As described in section 5, the heap allocated memory by the object can
be taken care of through the object’s own pup virtual method. But to deallocate the stack
memory of the object’s data the whole object needs to be deleted. In order to recalim all
the memory occupied by a object, the object needs to be deleted using delete [] objPtr. In
the current charm runtime system, the objects of a Chare Array are maintained by Array
Manager module, which deals with creating the objects and passing the messages to the
appropriate Array Object. The Location Manager component assists the array manager, in
identifying the location of each object across the set of processors available to the system.
If an object gets deallocated and reallocated for the purpose of Out-of-Core support, the
array manager and location manager need to be modified significantly. To keep the number

of changes to these complex modules minimal, we do not deallocate the object to recalim

34

the memory occupied by the object. We only recalim the memory occupied by the object’s
heap allocated data. This will greatly simplify the task of the array manager for Out-of-Core
support. Since in many of the target applications, the memory occupied by the object’s heap
allocated data is significantly higher than the memory occupied by the rest of the object’s
contents, for the purpose of this thesis, the results presented here does reflect the original
idea of Out-of-Core support.

With the above limitation, we proceed to explain the modifications done in charm+-+
language runtime system. The Object Touching and Object Management schemes are dis-
tinguished in the code base using

#if CMK_OUT-OF_CORE_TOUCH and #if CMK_OUT_-OF_.CORE_PTHREADS .

The _CkMigratable_prefetchInit function (shown in Figure 6.2) is used to initialize the
CooPrefetchManager structure and register it with Converse along with the charm handler

(.charmHandlerIdx). The purpose of CkSaveRestorePrefetch will be explained soon.

#if CMK_OUT_OF_CORE_TOUCH

static void _CkMigratable_prefetchInit(void)

{
CkSaveRestorePrefetch=0;
CkArrayElementPrefetcher.msg20bjId=CkArrayPrefetch_msg20bjId;
CkArrayElementPrefetcher.touchObject=CkArrayPrefetch_touchObject;
CooRegisterManager (&CkArrayElementPrefetcher, _charmHandlerIdx);

}

#elif

static void _CkMigratable_prefetchInit(void)

{
CkSaveRestorePrefetch=0;
CkArrayElementPrefetcher.msg20bjId=CkArrayPrefetch_msg20bjId;
CkArrayElementPrefetcher.writeToSwap=CkArrayPrefetch_writeToSwap;
CkArrayElementPrefetcher.readFromSwap=CkArrayPrefetch_readFromSwap;
CooRegisterManager (&CkArrayElementPrefetcher, _charmHandlerIdx);

}

#endif

Figure 6.2: Code for Prefetch Manager Inititialization in Charm++

35

The implementation details of the services provided by the Prefetch Manager to Converse

are explained below:

e TouchObject
To touch all the pages of memory occupied by the data members of the object pointed
by the object pointer (objptr), this routine uses a PUP::er object. The class definition
of this PUP::er is given in the Figure 6.4. This class overloads the bytes virtual method
to read one byte per page for each data member of the object. So when the user’s Chare
Array object’s pup method is called with this new PUP::er as parameter, each data
member of the object is passed to the bytes method of prefetcher. The bytes method
accesses a byte per page to force page faults on those pages (if any required). In
Figure 6.3, the object pointer (objptr) is casted to CkMigratable * to call the pup
routine on it. This is needed because the charm++ language runtime system is not
aware of the user’s Chare Array class. Since the class CkMigratable is one of the parent
classes for any of the user’s chare array class, the virtual nature of the pup method
is exploited here to call the pup method on the object pointer. Figure 6.5 shows this

class hierarchy diagram.

void CkArrayPrefetch_touchObject(void *objptr)
{
CkMigratable *elt = (CkMigratable *)objptr;
Prefetcher p;
elt->pup(p);
}

Figure 6.3: Implementation of touchObject service in the Prefetch Manager

e WriteToSwap
As shown in figure 6.6, this method creates a PUP::toDisk object with the given Swap-
file as the argument and passes the PUP::er object to the object’s pup method. Once
the object’s data is saved to disk, the object’s destructor is explicitly called to reclaim

the memory occupied by the data memebers of the object. Since the destructor is vir-

36

class Prefetcher : public PUP::er {
protected:
int sum; //Used only to trick compiler into actually doing the read...

virtual void bytes(void *p,int n,size_t itemSize,PUP::dataType t) {
int nBytes=itemSize*n;
// Prefetch: read one byte per page.
char *cp=(char *)p;
for (int i=0;i<nBytes;i+=4096) {

sum+=cp[i];

}

}

public:
Prefetcher() :PUP::er(IS_SIZING) {}

};

Figure 6.4: Implementatiion of the Prefetcher PUP::er

Chare

CkMigratable

ArrayElement

ArrayElement1D

User's Class

Figure 6.5: Class Hierarchy of the user’s Chare Array class

tual in the class hierarchy, in order not to destroy other data in the object the global
flag CkSaveRestorePrefetch is set before calling the destructor. The destructors other
than the user’s destructor, observe this global flag being set and immediately return

without destroying any data in the object. This ensures that only the user’s data in

37

the object is destroyed without deleting any other data of the object required by the

language runtime system.

void CkArrayPrefetch_writeToSwap(FILE *swapfile,void *objptr)

{
CkMigratable *elt=(CkMigratable *)objptr;

//Save the element’s data to disk:
PUP: :toDisk p(swapfile);
elt->pup(p);

//Call the element’s destructor in-place (so pointer doesn’t change)
CkSaveRestorePrefetch=1;

//because destuctor is virtual, destroys user class too.
elt->"CkMigratable();
CkSaveRestorePrefetch=0;

Figure 6.6: Implementation of writeToSwap service in the Prefetch Manager

e ReadFromSwap
As shown in figure 6.7, this method first calls the element’s migration constructor to
create a new uninitialized instance of the class. Then the elements’s pup routine is
called with the PUP::fromDisk object as a parameter, to retrieve the object’s data

from disk.

6.3 Converse Side Implementation

This section explains the modifications made to the Converse scheduler, the memory manager
and the communication module. We also explain the nitty gritty details of synchronization
of data structures, multi-thread safety of the library calls and the signal handlers in the

context of converse’s scheduler and the machine layer.

38

void CkArrayPrefetch_readFromSwap(FILE *swapfile,void *objptr) i
{
CkMigratable *elt=(CkMigratable *)objptr;
//Call the element’s migration constructor in-place
CkSaveRestorePrefetch=1;
int ctorIdx=_chareTable[elt->thisChareType] ->migCtor;
elt->myRec->invokeEntry(elt, (CkMigrateMessage *)0,ctorIdx,CmiTrue);
CkSaveRestorePrefetch=0;

//Restore the element’s data from disk:
PUP: :fromDisk p(swapfile);
elt->pup(p);

Figure 6.7: Implementation of readFromSwap service in the Prefetch Manager

6.3.1 Converse Scheduler

Converse’s scheduler is the function CsdScheduleForever, which continously picks messages
and schedules them. These scheduled messages can in turn create new messages. As ex-
plained in section 3.1, there are two kinds of messages - network messages and local messages.
A Producer-Consumer queue is maintained for the network messages. When the messages
arrive out of network at the interface card, the messages will be enqueued and the scheduler
deques to pick up a message. Similarly, for the local messages another producer-consumer
queue is maintained. In addition to the above two queues, there is a priority queue with
messages for charm. When a network or local message’s handler function is executed, the
charm handler strips off some part of the message and enques it back into this priority
queue based on the priority of the message. The two producer-consumer queues are thread
safe without obtaining a big lock around the whole data structure. But the priority queue
is not multi-thread safe, if two different threads do enqueing and dequeing. To avoid the
performance penalty of grabbing a big lock around the whole priority queue, we change our
scheduler’s design slightly from that of Figures 4.1 and 4.7.

Our initial design of the scheduler with Out-of-Core support is shown in Figure 6.8. In

the modified design (as shown in tFigure 6.9), the scheduler thread picks a message from

39

Network Queue

Local Queue
Scheduler Priority Queue
B
Prefetch PCQueue
Schedule Message
Prefetch Thread Scheduler Thread
Figure 6.8: Initial Design of the Scheduler
Network Queue
Local Queue
Scheduler Priority Queue
Pre—Prefetch PCQueue
-
\Schedule Network and Local Messages
— =
Post-Prefetch PCQueue
Schedule Priority Message
Scheduler Thread
Prefetch Thread

Figure 6.9: Revised Design of the Scheduler for Implementation

40

any of the three queues, and if it is a network message or a local message it schedules the
message immediately. This is because there is no prefetching necessary, as these messages do
not access any objects. But if the message is from the priority queue, since the message will
access an object it is enqueued into a Pre-Prefetch Queue. When the Prefetch thread de-
queues a message from Pre-Prefetch Queue, it performs the prefetching mechanism and then
enqueus the message into another Producer-Consumer queue, Post-PrefetchQueue. Then
the scheduler thread picks the message from Post-PrefetchQueue and schedules it.

The Pre-Prefetch queue and the Post-Prefetch queue are of size equal to the LEASH size.
The scheduler thread has to wait if the Pre-Prefetch queue is full and the prefetch thread
will signal the scheduler thread when some slots in the queue becomes empty, through the
use of pthread_cond_wait and pthread_cond_signal. Similarly the scheduler thread could have
waited if the Post-Prefetch queue is empty. But if there were no messages in the system (and
hecne with the Prefetch thread) the whole system will block forever. Ideally, in this scenario,
whenever a message is available in one of the network,local or priority queues the sleeping
scheduler therad should be woken up. In case of the net-linuz version where the network I/0O
takes place through the SIGIO signal handler, the signal can not wake the thread sleeping
on a conditional variable. Hence we need a third thread which can poll the three queues
and can signal the scheduler, which essentially sleeps on the emptiness of the both set of
queues. For simplicitly of the overall system, we instead opted to use pthread_cond_timedwait
to wait when the Post-Prefetch queue is empty. In essenece, it becomes a periodic polling
of the network,local queues in the scheduler thread itself. In case of the smp version, the
communication thread can do the polling of the network, local queues and do the signaling to
the scheduler thread. Similarly the prefetch thread waits on the conditions of Pre-Prefetch

queue being empty and the Post-Prefetch queue being full.

41

6.3.2 Memory Management

Since the scheduler now has two threads and the malloc/free library calls are not multi-thread
safe, we needed to lock all the malloc,free,realloc,valloc,calloc and memalign calls. All the
calls to these functions are trapped in the Charm++ library and they are appropriately
locked and unlocked with pthread_mutex_lock and pthread_mutex_unlock. In Charm++’s net-
linnuz version the SIGIO signal handler is used to recieve messages. To avoid deadlock
in this version due to locking malloc, at the very beginning of the signal handler we test
if the memory lock is locked or not using pthread_mutex_trylock and if it is locked return
immediatelty doing nothing. But if we use the net-poll option for net-linuz version, where

the network is polled instead of using a signal handler, we dont have a similar problem.

6.4 Limitations

In this sectioin we discuss the limitations of the current implementation.

e Broadcast Messages
In the current Out-of-Core system broadcast messages do not work. This is because
the converse scheduler relies on the msg — objI D mapping to manage the objects, but
the broadcast messages does not belong to any one object. Hence the object manager
can not bring the objects into memory at the righ time for the broadcast messages
to be executed on all the objects and thus the system crashes. One way to rectify
the situation would be for the msg20bjld to return the set of objects belonging to a
message. But then the Converse schduler has to figure out some way of either bringing
all the objects into memory (if memory limits permits) or generate a message for each

of the objects and execute the correpsonding message on each object one after another.

e Immediate Messages

Since the Immediate Messages do not go through the converse scheduler and can not

42

be scheduled (and hence the objects can not be brough into memory at the right time),
this mechanism of communication with remote objects is not supported in the current

Out-of-Core system.

Load Balancing

In the present system automatic dynamic load balancing does not work. When the
load balancer decides to transfer an object to another processor, the particular object
may already been swapped out and in that case the object has to be brought into
memory immediately and the contents need to transferred. Due to time constraints

this is not yet implemented in the current system.

43

Chapter 7

Performance Evaluation

The performance of the Automatic Out-of-Core Execution Support schemes have been mea-
sured with respect to a Charm-++ one dimensional Jacobi program. Comparisons were made
between native Charm++, Object Touching and Object Management schemes. The Jacobi
program was chosen as a benchmark, because each JacobilD object contains huge amount
of dynamically allocated memory which is ideal for the Out-of-Core scenario. The Jacobi
program is memory-intensive and less compute-bound.

We obtain plots for effective time per object (t,) vs number of objects (IV), by keeping
the size of each object as constant. The number of columns of the matrix is kept constant.
And also the number of rows and the number of chare array objects is chosen equal to make
the size of each object constant. By varying the number of rows of the matrix (and hence
the number of objects), the Jacobi program is run until the available physical memory is
exhausted. The benchmark is also run when the required memory is beyond the physical
memory by increasing the number of objects. The same Jacobi program is run under the
three different version of charm system - Native, Object-Touching, Object-Management. The
only requirements on the applications are to implement the pup routine and to implement a

destructor to free up the heap-allocated data.

44

Chapter 8

Summary and Future Work

For applications with large memory requirements, reducing or hiding paging costs is crucial.
We proposed two multi-threaded approaches that access objects that are needed in near
future, while computation thread is working on the objects available in memory. Data-
driven object paradigms, such as CHARM++, facilitates this approach easily, since they
can predict the objects needed in future. The benchmark Jacobi application demonstrates
the results of the prefetching schemes and confirm that prefetching improves the performance
of an application by overlapping paging and computation time.

In the Object Management scheme, to avoid the overheads of thread creation, context
switching and heap contention, we plan to experiment with an approach using asynchronous
I/O mechanisms. When an object need to be written to a disk or read from the disk, asyn-
chrnous write,read calls can be used so that these asynchronous operations can be overlapped
with the computation. For this approache a new PUP::er with asynchronous I/O calls need
to be implemented.

The dynamic load balancer module need to be modified and made aware of the Out-
of-Core module. Careful design is needed for the interaction of these two modules. Other
optimizations possible are Reordering Method Invocations. Since the converse scheduler is
aware of which objects are in memory, it can reorder the messages to minimize paging cost.
To implement this, we may need a seperate queue of messages for each object to appropriately

queue messages for each object until the object is brought into memory. Once the object

45

read into memory, we can execute all the pending messages at once. This scheme improves
cache performs also, since all the related memory accesses are clustered. Extending the
above idea, we can integrate Structred Dagger [3] with the converse scheduler and the array
manager. If an object is waiting for bunch of messages (similar to the jacobi object waiting
for two messages before doing any computation) before the object’s data is needed, then
we can exploit this nature to bring in the object only after all the required messages have

arrived and execute them all in one go.

46

References

1]

Lewis Bill and Berg Daniel. Multithreaded programming with PTHREADS. Prentice Hall,
1998.

PPL Research Group. Charm++ language manual. See

http://charm.cs.uiuc.edu/ppl_manuals/html/charm++/manual.html.

L. V. Kale and Milind Bhandarkar. Structured Dagger: A Coordination Language for
Message-Driven Programming. In Proceedings of Second International Euro-Par Confer-
ence, volume 1123-1124 of Lecture Notes in Computer Science, pages 646-653, September
1996.

L.V. Kalé, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon. Converse: An
Interoperable Framework for Parallel Programming. In Proceedings of the 10th Interna-

tional Parallel Processing Symposium, April 1996.

L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented System
Based on C++. In A. Paepcke, editor, Proceedings of OOPSLA’93, pages 91-108. ACM

Press, September 1993.

Neelam Saboo and L. V. Kalé. Improving paging performace with object prefetching.
Technical Report 01-02, Parallel Programming Laboratory, Department of Computer

Science, University of Illinois at Urbana-Champaign, July 2001.

47

