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Abstract

“Adaptive MPI”, or AMPI, implements virtual
MPI processors, several of which may reside
on a single physical processor. This virtualiza-
tion allows MPI applications to use an auto-
matic migration-based load balancer, automat-
ically overlap computation and communication,
and provides several other benefits. In this pa-
per, we present the design of and recent work
on AMPI, its low-level and application perfor-
mance, and some of the advanced capabilities
enabled by virtualization.

1 Introduction

The new generation of parallel applications are
complex, involve simulation of dynamically vary-
ing systems, use adaptive techniques such as
multiple timestepping and adaptive refinements,
and often involve multiple parallel modules.
Typical implementations of the MPI do not sup-
port the dynamic nature of these applications
well. As a result, programming productivity and
parallel efficiency suffer. We present AMPI, an
adaptive implementation of MPI, that is better
suited for adaptive applications, while still re-

taining the familiar programming model of MPI.

The basic idea behind AMPI is to separate
the issue of mapping work to processors from
that of identifying work to be done in parallel.
Standard MPI programs divide the computation
into P processes, one for each of the P proces-
sors. Algorithmic considerations often restrict
the number of processors to a power of 2, or a
cube (or both).

In contrast, an AMPI programmer divides the
computation into a large number V of virtual
processors, independent of the number of phys-
ical processors. The virtual processors are pro-
grammed in MPI as before. Physical processors
are no longer visible to the programmer, as the
respounsibility for assigning virtual processors to
physical processors is taken over by the runtime
system. This provides an effective division of
labor between the system and the programmer:
the programmer decides what to do in parallel,
and the runtime system decides where and when
to do it. This allows the programmer to use
the most natural decomposition for his problem,
rather than being restricted by the physical ma-
chine. So, for example, V can still be a cube
even though P is prime.

Note that the number of virtual processors V'



is typically much larger than P. Using multiple
virtual processors per physical processor brings
several additional benefits.

o Adaptive overlap of communication and
computation: If one of the virtual processors
is blocked on a receive, another virtual pro-
cessor on the same physical processor can
run. This largely eliminates the need for
the programmer to manually specify some
static computation/communication overlap-
ping, as is often required in MPI.

e Load balancing: If one of the physical pro-
cessors becomes overloaded, the runtime
system can migrate a few of its virtual pro-
cessors to less heavily loaded physical pro-
cessors. Our runtime system can make this
kind of load balancing decision based on
automatic instrumentation, as explained in
Section 2.

e Large machine emulation: A small physi-
cal machine, such as a single serial proces-
sor, can simulate a large virtual machine—
see Section 4.2 for an example. This em-
ulation can be useful in debugging, perfor-
mance tuning, and testing.

e Better cache performance: A virtual pro-
cessor handles a smaller set of data than
a physical processor, so a virtual proces-
sor will have better memory locality. This
“chunking” effect is the same method many
serial cache optimizations employ.

o Flexible usage of available processors: The
ability to migrate virtual processors can be
used to adapt the computation if the avail-
able part of the physical machine changes.
See Section 4.3 for details.

e Automatic checkpointing: AMPI’s virtu-
alization allows applications to be check-
pointed without additional user program-
ming, as described in Section 3.1.

o Multiple independent modules: MPI pro-
grams normally transfer control from one
module to another strictly via manual sub-
routine calls. AMPI allows different mod-
ules to execute on different virtual proces-
sors, which allows adaptively interleaved ex-
ecution, as described in Section 3.2.

We first describe how our virtual processors
are implemented and migrated. Section 3 de-
scribes the design and implementation strate-
gies for specific features, such as checkpointing.
We then present performance data showing that
these adaptive features are affordable in real pro-
grams. Finally, we will demonstrate some adap-
tive capabilities quantitatively in the context of
a conjugate gradient solver for sparse linear sys-
tems.

1.1 Prior Work

The virtualization concept embodied by AMPI
is very old, and Fox et al. [?] make a convinc-
ing case for virtualizing parallel programs. Un-
like Fox’s work, AMPI virtualizes at the runtime
layer rather than manually at the user level, and
AMPI can use adaptive load balancers.

There are several excellent, complete, pub-
licly available non-virtualized implementations
of MPI, such as MPICH [?] and LAM [?]. Many
researchers have described partially virtualized
MPI implementations for checkpointing, often
built on top of one of the free implementations of
MPI. Several workers have described fully virtu-
alized MPI implementations for fault-tolerance,
such as FT-MPI [?], MPI/FT [?], and StarFish



[?]. AMPI differs from these efforts in that we
virtualize to improve performance and allow load
balancing rather than solely for checkpointing or
for fault tolerance. Some of these works also
impose unacceptable runtime overheads or re-
quire extensive changes to the user code, prob-
lems AMPI largely manages to avoid.

An older version of AMPI was described by
Bhandarkar et al. [?]. Our automatic load bal-
ancing framework was described in detail by
Kalé et al. [?].

2 Design and Implementation

AMPI is built on CHARM-++, and uses its com-
munication facilities, load balancing strategies
and threading model.

CHARM-++ uses an object based model: pro-
grams consist of a collection of communicat-
ing objects, which are mapped to processors by
the CHARM++ runtime. CHARM-++ supports
migration of objects by providing efficient for-
warding of messages, when necessary. Migra-
tion can be used by the built-in measurement-
based load balancing [?], adapting to changing
load on workstation clusters [?], and even shrink-
ing/expanding jobs for timeshared machines [?].
Migration presents interesting problems for basic
and collective communication which are nicely
solved by CHARM++ [?].

AMPT’s virtual processors are implemented as
CHARM++ “user-level” threads—threads which
are created and scheduled by ordinary code, not
by the operating system kernel. The advantages
of user-level threads are fast! context switching,
control over scheduling, and control over stack
allocation. CHARM+4+’s user-level threads are

1On a 1.8 GHz AMD AthlonXP, 0.45 microseconds per
suspend/schedule/resume.

scheduled non-preemptively.

CHARM-++ natively supports object migra-
tion; but thread migration required several in-
teresting additions to the runtime system, as de-
scribed in the following sections.

2.1 Isomalloc Stacks

A user-level thread, when suspended, consists of
a stack and a set of preserved machine registers.
During migration, the machine registers are sim-
ply copied to the new processor. The stack, un-
fortunately, is very difficult to move—consider
the variable ¢ below:

int foo(void) {
int i;
bar (&i);
return ij;

}

During the call to bar, the stack-allocated
variable 7 cannot be moved, since its address is
stored by bar.? In a distributed memory parallel
machine, if the stack is moved to a new machine,
it will almost undoubtably be allocated at a dif-
ferent location, so bar’s pointer to ¢ will become
dangling when the stack moves. We cannot re-
liably update all the pointers to stack-allocated
variables, because these pointers are stored in
machine registers and stack frames, whose lay-
out is highly machine- and compiler-dependent.

Our solution is to ensure that even after a mi-
gration, a thread’s stack will stay at the same
address in memory that it had on the old pro-
cessor. This means all the pointers embedded in
the stack will still work properly. Luckily, any
operating system with virtual memory support

2The address might be stored in a machine register,
bar’s pushed parameters, bar’s stack frame, or all three!



has the ability to map arbitrary pages in and
out of memory. So in practice we merely need to
mmap the appropriate address range into mem-
ory on the new machine and use it for our stack.
Because this uses the hardware’s built-in virtual
memory support, when migration is not occur-
ring this approach does not affect performance.

Of course, we must ensure that each thread
allocates its stack at a globally unique range of
addresses. This is accomplished by simply di-
viding the total virtual address space into p re-
gions; threads created on processor 7 then get
their stacks allocated from region i. This sys-
tem thus has globally-unique memory addresses
like a software shared memory system (DSM),
but here the data movement is proactive—when
a thread migrates, it takes all its data with it.
This “isomalloc” approach to thread migration
comes from PM? [?].

2.2 Isomalloc Heaps

Another obvious problem with migrating an
arbitrary program is dynamically allocated
storage—for example, the array h in:

int main(int argc,char *argv[]) {
MPI_Init(&argc,&argv);
int *h=new int[23];
for (...) {

n[il=...
}
}

Clearly, if this thread is migrated to a new
processor, h must come along as well. But un-
like the thread stack, which the system allocated,
h’s location is known only to the user program.
The previous version of AMPI required the user

to code a “pack/unpack” routine to capture all
allocated heap data. This routine was fairly
easy to write, but rather difficult to maintain.
Worse, this tiny amount of extra code prevented

a straightforward switch from ordinary MPI to
AMPI.

The “isomalloc” strategy available in the lat-
est version of AMPI uses the same virtual ad-
dress allocation method used for stacks to allo-
cate all heap data. This means the user’s heap
data is given globally unique virtual addresses,
so it can be moved to any running processor
without changing its address. Thus migration is
transparent to the user code, even for arbitrar-
ily interlinked, dynamically allocated data struc-
tures.

To do this, AMPI must intercept and handle
all memory allocations done by the user code.
On many UNIX systems, this can be done by
providing our own implementation of “malloc”.
Because nearly all languages can be linked to-
gether with C code, even the C++ new and FOR-
TRANY0 ALLOCATE runtime calls eventually result
in a call to malloc. However, some implementa-
tions of these language runtimes perform caching
of free memory blocks, which must be disabled.

Unfortunately, the isomalloc heap approach
is only of limited use on 32-bit systems. Since
the virtual address range on these machines is
limited to 4GB, and since this space is divided
among all processors when using the isomalloc
approach, we run out of allocatable space very
quickly. For example, dividing the 4GB address
space® among 100 processors means each pro-
cessor can only allocate 40MB of memory; a
significant limit. Thus on 32-bit machines, the
pack/unpack method is generally required. Ma-

3In fact the program code and operating system use
some space, so even less is available.



chines with 64-bit pointers, which are becom-
ing increasingly common, have many terabytes
of free virtual address space and hence can fully
benefit from isomalloc heaps.

2.3 Global Variables

Although not specified by the MPI standard,
many actual MPI programs assume that global
variables can be used independently on each pro-
cessor. However, in AMPI, all the threads on a
processor share a single set of global variables;
and when a thread migrates, it leaves its global
variables behind. This means many MPI pro-
grams cannot run unmodified under AMPI.

A simple solution is to manually remove all
the global variables from the code. For exam-
ple, all the formal globals can be collected into
a single struct named “Global”, which is then
passed into each function. This process, though
mechanical, is cumbersome and can indeed be
automated.

AMPIzer [?] is our source-to-source transla-
tor that removes global variables from arbitrary
FORTRANT7 or FORTRAN9O code. AMPIzer is
based on the Polaris compiler front end [?]. For
simple* uses of the heap, Ampizer can also gen-
erate a pack/unpack routine if isomalloc heaps
are not desired.

2.4 Limitations

During migration, we do not preserve a thread’s
open files and sockets, environment variables, or
signals. Because of these difficulties, threads
are only migrated when they call the special
API routine MPI_Migrate; the non-migration-
safe features can be used at any other time.

44Simple” in this context means no pointers stored
inside dynamically allocated blocks.

Thread migration between different architec-
tures on a heterogeneous parallel machine is also
not supported.®

3 Other features

3.1 Checkpoint and Restart

As Stellner describes in his paper on his check-
pointing framework [?], process migration can
easily be layered on top of any checkpointing sys-
tem by simply rearranging the checkpoint files
before restart. AMPI implements checkpointing
in exactly the opposite way. In AMPI, rather
than migration being a special kind of check-
point/restart, checkpoint/restart is seen as a
special kind of migration—migration to and from
the disk.

A running AMPI thread checkpoints itself by
calling MPI_Checkpoint with a directory name.
Each thread drains its network queue, migrates a
copy of itself into a separate file in that directory,
and then continues normally. The checkpoint
time is dominated by the cost of the I/O, since
very little communication is required.

Because AMPI checkpoints threads rather
than physical processors, an AMPI program may
be restored on a larger or smaller number of
physical processors than was it started on. Thus
a checkpoint on 1000 processors can easily be
restarted on 999 processors if, for example, a
processor fails during the run.

SWithout extensive compiler support or a common
virtual machine, heterogeneous thread migration appears
impossible.



3.2 Multi-module AMPI

Large scientific programs are often written in
a modular fashion by combining multiple MPI
modules into a single program. These MPI mod-
ules are often derived from independent MPI
programs.

Current MPI programs transfer control from
one module to another strictly via subroutine
calls. Even if two modules are independent, idle
time in one cannot be overlapped with computa-
tions in the other without breaking the abstrac-
tion boundaries between the two modules.
contrast, AMPI allows multiple separately de-
veloped modules to interleave execution based
on the availability of messages. Each module
may have its own “main”, and its own flow of
control. AMPI provides cross-communicators to
communicate between such modules.

In

3.3 Coexistence with Charm+-+

As described above, AMPI modules can be used
in-process with other AMPI modules. AMPI
modules can also coexist with other CHARM—++
modules. For example, a program using an-
other threaded CHARM++ framework, such as
the CHARM++ Finite Element Method (FEM)
Framework [?], or the CHARM++ collision de-
tection system [?], can still use AMPI.

In this “bound” mode, a single thread of user
code can make calls to the FEM and AMPI
frameworks; when the thread migrates, the sup-
port data required by both frameworks automat-
ically migrates as well. This keeps the users’
code simple, since they do not have to synchro-
nize two separate threads of control. Of course,
it is also possible to run an FEM framework
module and an AMPT framework module in their
own separate sets of threads.



Operation Serial 100baseT Cluster Myrinet Cluster Origin2000 IBM SP3
AMPI | AMPI MPICH LAM | AMPI MPICH | AMPI MPI | AMPI MPI
Send/Recv 2.1 | 154.0 116.3  89.9 20.2 10.5 774 134 | 1909 114.7
Repeated Send 0.9 39.8 1676.3 4.6 9.1 4014 27.7 5.1 67.2 384
Barrier 4.1 | 304.8 135.6 164.0 40.5 16.9 | 158.4 2.1 | 376.2 120.2
Bcast 3.8 54.2 1599.9 15.2 10.8 4.7 64.2 4.1 | 110.7 451
Allreduce 6.1 | 357.2 241.5 192.2 52.2 22.1 | 158.7 23.2 | 4127 127.0
Bandwidth 125.3 8.9 10.3 7.2 54.0 43.2 42.3 96.9 57.8 715

Table 1: Time for various MPI operations under different MPI implementations. All entries are
times in microseconds, except bandwidth which is megabytes per second. All tests performed on

two processors.

4 Performance

We have described the results from experiments
involving real scientific applications running on

AMPT in another work [?].

4.1 Low-level Performance

The times for various low-level MPI operations
on various machines and MPI implementations
are shown in Table 3.3. The serial machine is an
AMD Athlon 1800XP running two AMPI vir-
tual processors. The 100baseT cluster is a set of
4-way 500Mhz Pentium IIT SMP nodes running
Linux, connected using switched fast Ethernet;
AMPI is on UDP and MPICH is on p4. The
Myrinet cluster is a set of 2-way 1GHz Pentium
IIT SMP nodes running Linux, connected us-
ing a Myricom interconnect; AMPI and MPICH
both ran on GM directly. The SGI Origin2000
is a single 50-processor 195MHz R10000 node;
AMPI ran on the native SGI MPI implementa-
tion. IBM SP3 is a set of 8-way 375MHZ Power3
nodes; AMPI again ran on the native MPI im-
plementation.

“Send/Recv” performs a simple ping-pong
operation—one processor sends while the other
receives, then receives while the other sends.

“Repeated Send” is nearly the same, except one
processor always sends while the other always re-
ceives, and reports the time as measured by the
sending processor. This send overhead is impor-
tant during broadcast-style communication ex-
changes. MPICH, both on Ethernet and GM,
had extremely poor performance for this test.
“Barrier”, “Bcast”, and “Allreduce” are simply
the equivalent MPI operation, in this case on
just two processors, and with the time measured
from the root. “Bandwidth” is the end-to-end
large-message transmission rate, as measured by
the time to exchange a one-megabyte buffer.

AMPI was occasionally several times slower
than the non-adaptive MPI implementations.
Part of this is simply the fundamental cost of
AMPT’s virtualization; but part is simply our im-
plementation and we should be able to soon show
substantial improvements. In particular, the
non-blocking operations AMPI requires, such as
MPI_Isend, have very poor performance on many
MPI implementations; we have begun experi-
menting with direct implementations for many
parallel machines. Despite these low-level re-
sults, application performance under AMPI is
often quite good.



4.2 Conjugate Gradient Solver

This application is a partial differential equation
solver which uses a sparse, matrix-free form of
the conjugate gradient method to solve the Pois-
son problem on a regular 2D grid. It is an it-
erative method, and typically performs several
thousand steps during one solution.

Each (virtual) processor is responsible for
computing the solution on a rectangular region
of the mesh. Since the solution residual for a
grid point depends on the solutions for its near-
est four neighbors, each processor maintains a
one-element-thick ghost region. In each step,
messages are exchanged to fill these ghost re-
gions, and there are two short global reductions.
Like many scientific codes, this application is
normally memory bandwidth bound.

Figure 1 shows the time per step of the solver
on a single physical processor, while varying the
number of virtual processors between 1 and 4096.
Because AMPT’s virtual processors are imple-
mented as user-level threads, there is very little
overhead in managing a large number of threads.
On our Pentium IV system, with a relatively
small cache but very fast RDRAM memory, sim-
ulating 100 virtual processors led to only a slight
(10%) slowdown. However, on the Athlon and
Pentium IIT Xenon, improved cache usage while
simulating 100 virtual processors actually re-
sulted in slightly better performance than using
the single physical processor normally.

Figure 2 shows the time per step of the solver
on an actual parallel machine, ASCI Red. This
is with a larger mesh—6000x6000 elements, for a
36 million row matrix. As shown, the runtime
cost for AMPI’s virtualization is small.
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Figure 1: Time per step for the million-row con-
jugate gradient solver on one physical processor
and up to 4096 virtual processors. The horizon-
tal axis is logarithmic; the vertical axis is linear.
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Figure 2: Speedup for the 36 million-row conju-
gate gradient solver on up to 1024 physical pro-
cessors for MPI and AMPI. One timestep takes
approximately 50ms on 1024 processors.
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Figure 3: Time per step for the million-row con-
jugate gradient solver on a workstation cluster.
Initially, the application runs on 16 machines.
16 new machines are made available at step 600,
which immediately improves the throughput.

4.3 Shrink/Expand

AMPI normally migrates virtual processors for
load balance, but this capability can also be
used to respond to the changing properties of the
parallel machine. For example, Figure 3 shows
the conjugate gradient solver described above re-
sponding to the availability of several new pro-
cessors. The time per step drops dramatically
as virtual processors are migrated onto the new
physical processors.

5 Conclusions

We have presented AMPI, an adaptive imple-
mentation of MPI on top of CHARM++. AMPI
implements migratable virtual MPI processors;
and in particular allows the use of several vir-
tual processors per physical processor. This ef-
ficient virtualization provides a number of ben-
efits, such as the ability to automatically load

balance arbitrary computations, automatically
overlap computation and communication, emu-
late large machines on small ones, and respond
to a changing physical machine.

We have much future work planned for AMPI.
We hope to achieve full MPI1.1 standards con-
formance soon, and MPI2.0 shortly thereafter.
We are rapidly improving the performance of
AMPI, and should soon be quite near that of
non-migratable MPI. The CHARM++ perfor-
mance analysis tools need to be updated to
provide more direct support for AMPI pro-
grams. We hope to extend our suite of automatic
load balancing strategies to provide machine-
topology specific strategies. Finally, we hope to
apply our communication optimization libraries
to programs running under AMPI.
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