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Chapter 1

Introduction

Parallel computing has enjoyed considerable growth in recent years and parallel architec-
tures are assuming an increasingly central role in information processing [7]. The stimulus
behind this growth has been the ever increasing demand for compute power to solve complex
problems in the shortest possible time. This sustained growth has also manifested itself in
the evolution of a diverse design space for parallel machines. In order to exploit the benefits
offered by the multitude of architectures available it is important for parallel applications to
be developed in a machine independent fashion making only the most generally applicable
assumptions about the underlying architecture. This requirement has been addressed by the
developement of the Converse parallel runtime system and the Charm++ parallel program-
ming language. Though the growth in the field of parallel computing has been tremendous,
it has not been optimal because effort is wasted in duplicating the capabilities required for
parallel computing. Thus there is a need for writing more reusable libraries and modules,
which would enhance the growth in the area manyfold. This thesis is an effort in this di-
rection. It provides a library for the Adaptive Mesh Refinement (AMR) technique which is
used in a variety of applications like cosmology, global atmospheric modelling, hyperbolic
partial differential equations[2], shock hydrodynamics [1], etc. The library described in this

thesis facilitates the implementation of applications using 1D, 2D and 3D AMR in parallel.



Figure 1.1: Typical Grid for 2D AMR

1.1 Why Adaptive Mesh Refinement?

Adaptive Mesh Refinement, AMR, is a technique used to solve partial differential equations
on structured grids. In this technique the areas of more interest are refined. Solutions without
AMR are less efficient because the whole mesh is evenly refined, rather than refining only
the most interesting parts, thus wasting computer resources. AMR applications typically
require adaptation, at runtime, of only the areas where most of the small scale phenomenon
occur. Though the potential savings is significant with AMR, it is not used as frequently
as it should be, because of the complexity of implementation. Also, parallelizing an AMR,
application presents significant challenges because of the coding complexity and performance
issues. Hence the motivation for a parallel library to abstract the parallel data structures and
give a cleaner interface to work with. Due to the dynamic nature of AMR, load imbalance
is a problem which becomes a bottleneck in obtaining speedups. Since the AMR, problem is
dynamic, the load balancing has to be done at runtime as there is no way to get a good load

distribution statically. Figure 1.1 shows a typical refined grid for 2D AMR.



1.2 Adaptive Mesh Refinement Library Objectives

In this thesis we describe the design and implementation of an Adaptive Mesh Refinement
library using Charm++[16][13][14][15], an object oriented parallel programming language
based on C++, and Converse[11], a parallel runtime system that enables parallel implemen-
tations of a variety of programming languages and paradigms and also facilitates interoper-
ability among various paradigms. Typically an AMR application is composed of four basic

parts:

e Error Estimation Function to determine when to refine

e Domain Decomposition

e Parallel data structure and data distribution over processors
e Data communication

This library abstracts away the later two parts of AMR application development from the
user. The Charm++ system provides dynamic load balancing[4][5][6], so that the user can
use different strategies (described in chapter 4) with less coding overhead. The AMR library

can be obtained with the current distribution of Charm-+-+.

1.3 Thesis Organization

The thesis consists of 6 chapters. Chapter 2 discusses Adaptive Mesh Refinement techniques
in general, and presents an overview of related work in the field. Chapters 3 and 4 describe
the issues related to the language and load balancing respectively. They have the basic in-
formation required about Charm++ and the load balancing framework. Chapter 5 describes
the design of the AMR library and various design decisions taken. It also describes the API
for the library and gives the preliminary performance results of the library. Conclusions and

future work are discussed in Chapter 6.



Chapter 2

Adaptive Mesh Refinement and
Related Work

2.1 AMR

Adaptive mesh refinement techniques have been shown to be very successful in reducing
the computational and storage requirements for solving partial differential equations|[22].
Rather than using a uniform mesh with grid points evenly spaced in a domain, adaptive
mesh refinement techniques place more grid points in areas where the local error in the
solution is large. The mesh is adaptively refined and/or unrefined during the computation
according to local error estimates on the domain. This technique is much more efficient then
the use of uniform meshes when the solution changes more rapidly in some areas than others.

Typically AMR comes in two flavours[2]:

e Dynamic Gridding - In this variant of AMR the nodes are moved in the time-space
domain continuously to where they are needed the most. This technique is also called

mesh movement or r-refinement.

e Static Gridding - In this technique the basic grid is overlaid by finer grids where the
accuracy of the solution needs to be improved. The grid is updated only at discrete

time steps. This technique is also called mesh enrichment or h-refinement.



We use the later technique of static gridding as it is a more accepted solution for finite
difference schemes[2]. In this chapter we will discuss the various parts needed for developing
an AMR application, related work that has been done in this field and the motivation behind

writing the library.

2.2 Constituents of AMR

In order to design any library it is important to identify the parts of a typical application,
and determine which parts are to be implemented by the library and which parts should be

left to the user.

2.2.1 EFError Estimation

One of the most important tasks in any AMR application is the error estimation scheme.
The decision to refine is based on the local error estimate. The importance of this cannot
be stressed more and a lot of research has gone into this area. This is a non trivial problem
because without the analytical solution to the problem at hand, it is hard to determine the
error in the calculated approximate solution. A true error estimation function would be an
ideal choice for this task, but such a function is very expensive. Many heuristic solution’s
exist to tackle the problem, which have proven useful. Berger and Collela describe one such
method in [1]. [29] describes a heuristic error estimation function based on the curvature of
the solution. This problem is typically the job of numerical scientists and we do not attempt
to solve this. We leave this for the user of the library to implement, as we feel that they are

in a better position to make a decision based on the problem domain.

2.2.2 Domain Decomposition

This is another important topic in the AMR community with people differing in their ideas

of how to tackle this problem. Essentially, there are two approaches, and each has its



merits. The first one was given by Marsha Berger [2] with the central idea to fit rectangular
subgrids over clusters of flagged points. Points which are determined to have local error
greater than the threshold are flagged. In this scheme the grids can overlap and can be
rotated. The second approach was given by Trompert and Verwer in [29] which avoids
the domain decomposition alltogether. Instead they simplify the process by refining all the
flagged points. But in turn they have a complicated approach to store subgrids which is
hard to parallelize. The first method has inherent paralelism and uses uniform grids which
allows for faster code for integrators but has a slow clustering phase and unnecessarily refines
some cells. The second method has a very simple refinement criteria and does not refine any
unnecessary cells which saves memory but is not inherently parallel and the communication
patterns are highly irregular as there are no clearly defined subgrids. [28] discusses the
pros and cons of each approach and concludes that having a hybrid scheme which takes
advantages of both the approaches will be the step in the right direction.

Our approach is not to use domain decomposition and instead use the simplistic approach
of flag and refine. But we choose uniform subgrids in an appropriate data structure which
can be easily parallelized. Though the load is highly irregular, we take advantage of the

dynamic load balancing capabilities of Charm++ (described in Chapter 4).

2.2.3 Parallelization - Parallel Data Structure Implementation

The primary data structure for AMR is a tree (oct tree for 3D and quad tree for 2D). It is
the responsibility of the library to implement a tree distributed over multiple processors. It
is important to be able to easily add and delete nodes from this tree. The leaves in the tree
should be able to talk to their neighbors despite the changing structure of the tree because
of refinement. Since we want to be able to run the code on distributed memory machines
or clusters, we cannot use pointers to keep track of the neighbors. Instead we design the
indexing scheme of the tree in such a way that a leaf can determine its neighbors by itself.

Chapter 5 descibes this in greater detail. Another important aspect that comes forward



because of parallelization of the problem is load balancing. It is a more challenging problem
because of the continuous changes in the tree structure due to refinement. It is important
to note that we adopt a modular approach and do not couple the amr library with load
balancing so that we can use different strategies with different problems. [19][4] discuss

some schemes which have been suggested to do dynamic load balancing.

2.2.4 Communication

With processors becoming faster day by day, one cannot ignore the communication cost if
good speedups are desired. As in the case of parallel data strctures, it is the task of the
library to hide the implementation details of communication from the user. The Charm-++
system provides communication optimization as discussed in [30]. At the library level we
make sure that instead of using all to one communication we use reduction which helps in

reducing the communication latency.

2.3 Other Related Work

In the recent past many people have written AMR libraries like DAGH|[23], PARAMESH]|21],
AMRA[26], SAMRAI[20] etc. The problem with most of these libraries is that they have been
developed in Fortran. Fortran was the language of choice for numerical computing because it
was substantially faster than object oriented languages like C++. Though Fortran was fast,
it did not offer software features like polymorphism etc., that promotes the reuse of code.
The basic challenge that all the library developers in numerical computing face is the tradeoff
between the speed of the code and good object oriented software techniques. In the past, the
difference between the speed of execution of the code in Fortran and C++ was tremendous,
but with the evolution of better compilers for C++ this gap has been bridged to a great
extent. More recently there is a shift in the direction of using object oriented languages like

C++ for numerical computing. SAMRALI is one of frameworks that was developed in C++.



They have made extensive use of patterns and software techniques during the development
of their framework[10]. Our library also is an effort in that direction. The library presented
in this thesis is modular, so components can be changed independently without affecting
the others. Also the library does not make any assumption about the user’s data structure
in each node. Most of the libraries do not allow arbitrary data structures inside the nodes
thus limiting the potential of the library. Though the implementation provided is only for
1D, 2D and 3D, the design is general enough to allow the extension of the library to higher

dimensions.



Chapter 3

Charm-+-+ and Parallel Objects

Charm++ is an object oriented parallel programming system based on C++. It is explicitly
parallel in nature and provides a clear separation between sequential and parallel objects.
The execution model of Charm++ is message driven; a Charm-++ program in execution
is a collection of concurrent objects of various types (described in more detail later) that
communicate by sending messages to one another [16]. Charm++ programs can freely
use most object-oriented and generic programming features of C++, including multiple
inheritance, polymorphism, overloading, strong typing and templates.

Every Charm++ object is a regular C++4 object, i.e. an instance of a C++ class.
Concurrent and replicated objects in Charm+-+ have several special attributes unique to the
objects that are provided and supported by the run-time system.

A Charm++ object belongs in one of the following categories:
e Concurrent Objects

— Chares - Chares are the most important entities in a Charm++ program. Unlike
ordinary C++ objects, Chares can be created asynchronously on remote proces-
sors and special methods, called entry methods on these objects may be invoked
asynchronously from remote processors. An entry method is invoked by sending

a message to the Chare.

— Chare Groups - Chare groups are a special type of concurrent object. Each chare



group is a collection of chares with one branch on every processor. All members
of a chare group share a globally unique identifier and messages may be broadcast

to the whole group or to a specific branch.

— Chare Nodegroups - Chare Nodegroups are similar to groups, except that instead
of having one branch on every processor, nodegroups have one branch on every

SMP node that the program runs on.

— Chare Arrays - Chare Arrays[18| are generalized collections of Chares, however
these collections are not constrained by the underlying architecture. Chare arrays
can have any number of elements and this number may change at runtime. These
objects can migrate and hence can be load balanced both at runtime and stati-
cally. Chare Arrays support sparse arrays and arbitrary indexing of arrays which
makes it a versatile and flexible data structure, which can be used in variety of

applications with very little overhead.

e Sequential objects - These are regular C++ objects, except that they may not have
static data members. These objects are local to a processor and the Charm++ runtime
environment has no knowledge of their existence. They are typically members of other

concurrent objects.

e Messages (Communication objects) - These are entities that constitute the arguments
to asynchronously invoked methods of concurrent and replicated objects. A Charm++
message consists of an envelope followed by the message body. The envelope is used by
the Charm-++ runtime environment and stores message attributes such as the message
type, source processor, etc. Entry methods that handle the messages deal only with

the message body.

e Readonly objects - A readonly object represents a global variable in the computation.

Charm++ does not allow mutable global variables in the computation in order to keep
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programs portable across a wide range of platforms. Readonly objects are a way to
share data amongst all the objects involved in a computation. In cases where the
size of the readonly object is not known at compile time, readonly messages may be
used. Readonly messages are declared as pointers. Pointers to messages are the only

readonly pointers allowed.

3.1 Libraries Using Charm-++

In traditional libraries in message passing environments like MPI[8], library computations
are invoked by regular function calls. The library call blocks the caller on all processors.
After completion, the library module returns the result of the call and control to the calling

modules. Some disadvantages of libraries in this style are:

e Idle times in the library computation cannot be utilized even if there are other inde-

pendent computations

e (Caller modules must invoke the library on all processors even when only a subset of

the processors provide input, and receive output.
e Library computations must be called in the same sequence on every processor.

A message-driven system, such as Charm++, supports multiple objects per processor and
uses a pool of messages on every processor. An object is scheduled for execution when there
is a message to be delivered to it. In such a system, one can invoke multiple library modules
concurrently, allowing them to naturally overlap their idle times with useful computations.
This is a substantial boost for encouraging use of libraries. [12] discusses, in detail, the
advantages of writing libraries using the message-driven paradigm used in Charm++. The
other advantage of using Charm++ is that it provides a load balancing framework[4] for

dynamic load balancing of Chare Arrays. The dynamic load balancing uses the migration
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support provided by the PUP framework (discusssed in the next section) to do the load

balancing.

3.2 The Pack/Unpack Framework

The pack/unpack or “pup” framework is a collection of efficient and elegant classes that
enable the Chare Arrays of Charm++ to be migrated from one processor to another processor
or to the disk (checkpointing). The pup framework can be extended to provide services to
any operation that requires a traversal of the object state (typically a traversal over the
objects data members).

To migrate concurrent objects such as chare array elements the following steps need to

be done,
1. the state of the object must be ‘packed’ into a memory buffer

2. the memory occupied by the object should be released on the processor where the

object resided

3. the object state should be transported to the new processor where the object is to be

migrated
4. the object should be recreated at the new location.

The state of sequential objects associated with the Chare Arrays is subsumed by the state of
the concurrent objects since, in a Charm-++ program, every sequential object is a member of
or is pointed to by a member of a concurrent object. Chare Arrays may contain dynamically
allocated data the size of which varies at runtime. All of this data needs to packed at the
time of migration from the source processor and unpacked at the destination processor.

To checkpoint a Charm-++ program, we need to save the state of all the concurrent

objects in the system to disk. We chose to view checkpointing as a variant of migration.
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When a checkpoint is made, the Charm++ objects are seen as ‘migrating’ to disk, and upon
restart they return to their respective processors. To migrate an object, its data needs to
be ‘packed’, i.e. serialized either into a memory buffer or to disk, and then ‘unpacked’ into
memory.

Migration for objects can be handled in several ways. A possible approach is to require
each class to implement pack and unpack methods. If an object is required to migrate to
another processor while the program is executing, the method pack is invoked on the object.
The pack method allocates a memory buffer large enough to hold all the object$ data and
then proceeds to serialize the objects data into the memory buffer. The memory buffer is
then inserted into a message and sent to the processor where the object is to be migrated.
When this message containing the object state is received by the new processor, a new
instance of the class is created by calling a special migration constructor. The migration
constructor’s task is to simply create an uninitialized instance of the class. The unpack
method is invoked with a pointer to the migration message. The unpack method proceeds to
stuff the new object with data from the old one. At the end of the unpack method, migration
is complete.

The problem with this approach is that most of the functionality in the pack and unpack is
similar in nature, i.e., in the pack function, the data is copied to a serial buffer in a particular
order and in unpack the data is copied from the serial buffer in the same order as it was
packed. Thus there is code duplication as both the methods share a common skeleton, with
only the actual operation that the methods perform on the data members being different.
The pup library has been designed with the intent of preventing this code dupplication.
The programmer of a particular class only needs to implement a single method, called pup.
The pup method takes a single parameter, which is an instance of a packer/unpacker or
pupper. The nature of puppers shall be dealt with subsequently. The role of this method is
to perform a traversal of the object state. The actual operations that need to be performed

on the data members are executed by the pupper.
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The pup library contains the following important classes:

e class PUP::er - This class is the abstract superclass of all the other classes in the
system. The pup method of a particular class takes a reference to a PUP::er as
parameter. This class has methods for dealing with all the basic C++ data types. All
these methods are expressed in terms of a generic pure virtual method. Subclasses

only need to provide the generic method.

e class PUP: :packer - The abstract superclass of all classes that ‘pack’ objects. It is not
clear here what packing means, but it may be considered as any operation that performs
a non-destructive transformation on the objects state, i.e. the ‘packing’ operates on
the data that constitutes the object state and creates a different representation of that
state. The object does not change as a result of this operation. This class implements
additional methods, isPacking and isUnpacking, that may be used to query the class

to determine its mode of operation

e class PUP::unpacker - The abstract superclass of all classes that ‘unpack’ objects.
Unpacking is the opposite of packing as described in the previous item. An unpacking
operation works with a ‘raw’ (uninitialized) object and some representation of the
object state. The process of unpacking involves a traversal of the object state, at each
step of the traversal, part of the object state is ‘converted’ from the given representation
into a piece of memory holding the right bit pattern. When the unpacking is complete,

the entire object state has been recovered.

e class PUP::sizer - This is a subclass of the PUP: :er class. Its function is to deter-

mine the size (in bytes), of the object that it operates on.

e class PUP::toMem - This is a subclass of the PUP: : packer class. The role of this class
is to pack the object it operates on into a preallocated contiguous memory buffer. The

most general way to pack an object into a memory buffer is to invoke pup on the object

14



using an instance of PUP::sizer to determine the size of the object, then a buffer of
the required size is allocated and pup is invoked again with an instance of PUP: : toMem

that has been initialized with the allocated buffer.

e class PUP::fromMem - This is a subclass of the PUP: :unpacker class. The role of
this class is to unpack the state of the object it operates on from a given contiguous

memory buffer.

e class PUP::toDisk - This is a subclass of the PUP: :packer class. The role of this
class is to save the state of the object it operates on into a disk file. To serialize an
object to disk, pup is invoked on the object with an instance of PUP: : toDisk that has

been initialized with a file pointer.

e class PUP::fromDisk - This is a subclass of the PUP: :unpacker class. The role of

this class is to unpack the state of the object it operates on from a given disk file.

Figure 3.1 shows the shows a class declaration that includes a pup method:

Figure 3.1: A simple class declaration showing the pup method

class foo {
private:
bool isBar;
int x;
char y;
unsigned long z;
float q[3];
public:
void pup(PUP::er &p) {
p(isBar);
p(x);p(y);p(2);
p(q,3);

15



The routine in Figure 3.2 presents an example of how an instance of the foo class may

be packed and unpacked from a memory buffer.

Figure 3.2: Packing and unpacking a foo object

int main()
{
//Build a foo
foo f;
f.isBar=false;
f.x=102;f.y="y’;f£.2=1234509999;
f.ql0]=(float)1.2;f.q[1]=(float)2.3;f.q[2]1=(float)3.4;

//Collapse f into a memory buffer
//Allocate a buffer for the foo object
PUP::sizer s;

f.pup(s);

void *buf=(void *)malloc( s.size() );
//Pack f into preallocated buffer
{PUP: :toMem m(buf);f.pup(m);}

//Unpack the foo object
foo £2;
{PUP: : fromMem m(buf) ;f2.pup(m);}

}

The following more complex example shows how an instance of the bar class may be
serialized to memory and then recovered from it. The bar class has an instance variable
of type foo. To pack/unpack or checkpoint/recover an object of type bar we must apply
the same operation to the instance variable foo f. This is accomplished by having the pup
method of the bar class invoke pup on the member of type foo with the pupper passed to it.

Figure 3.3 shows the declaration of the bar class, including the pup method.

16



Figure 3.3: Declaration of the bar class showing the pup method.

class bar {

public:
foo £f;
int nArr;//Length of array below
double *arr;//Heap-allocated array

bar() {}

bar(int len) {nArr=len;arr=new double[nArr];}

void pup(PUP::er &p) {
f.pup(p);
p(nArr);
if (p.isUnpacking())
arr=new double[nArr];
p(arr,nArr);

17



Chapter 4

Load Balancing

Accessing the power of parallel computation demands efficient load distribution across the
processors of the parallel machine. Applications where parallel processing has succeeded
impressively are those where the problem can be decomposed into convenient number of
equal sized partitions. Applications like AMR, which are irregular or dynamic in their
structure, prove more difficult to implement with good parallel efficiency. [4] shows that
treating a program as a collection of communicating objects, measuring the execution time
consumed by those objects at run time, and achieving good load balance by automatically
moving those objects from processor to processor allows the implementation of efficient load
balancers that work with a variety of applications. This chapter discusses the load balancing
strategies that are implemented in the Charm++ distribution and which can be used in
the applications constructed using the AMR library. The text for this chapter has been
composed from [4] and [24]. [4] details how to implement a new load balancing strategy for

the load balancing framework in Charm++.

4.1 Load Balancing Strategies

The fundamental tradeoff in parallel load balancing is the balance between execution time
and load balancing time. Load balancing algorithms may be able to improve the perfor-

mance, but if the cost of load balancing consumes more time than is gained by better load
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distribution, the load balancer is not worthwhile. Typical parallel applications have a long
execution time, thus making it worthwhile to do the load balancing. Various strategies

implemented in the Charm++ distribution can be categorised into the following:
e Centralized Load Balancing

e Neighborhood Load Balancing

4.1.1 Centralized Load Balancing

Centralized load balancing refers to the strategy of having each executing thread synchronize
at specific points in the application code. Centralized load balancing is used when the
load balancing strategy requires global information about the state of the system. Various

strategies for load balancing that fall under this scheme are

e RandomLB RandomLB performs random load balancing. This strategy merely picks
a random destination for each object. This can result in reasonable load balance if
communication overhead is small and there are a large number of objects. Since each
object is assigned to a processor by selecting random destination, RandomLB requires
a single pass through the object list, and the computational complexity of RndomL.B
is O(N).

e GreedyLB In GreedyLB, the objects in the object-communication graph are redis-
tributed without regard to communication or current processor assignment. A pro-
cessor heap is built so that the processor with the least assigned load is at the top of
the heap. Initially, 0 objects are assigned to every processor (so every processor in the
heap has no load) and the processor at the top is arbitrary. An object heap is also
built based on the object-communication graph, and the object taking the most time
is placed at the top of the heap. For N objects this strategy has O(Nlog N) complexity,

but can result in the migration of the majority of the objects.
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o RefineLB RefinelLB is a strategy which improves the load balance incrementally by
adjusting the object distribution. In this algorithm the load is adjusted on the basis of
the computed average load and distributing the load from the heavily loaded processors
to the lightly loaded processors. Use of this strategy results in the migration of very

few objects, as objects are relocated to relieve the overloaded processor.

¢ RandomRefineLB and GreedyRefineLB RandomRefineLB and GreedyRefineLLB
are two strategies that apply the refinement algorithm after applying the random and
greedy strategies respectively. In most cases, we expect refinement to only produce
small improvements, but for cases where the base strategy has resulted in a few badly
overloaded processors, the refinement step may provide dramatic performance improve-

ment.

¢ RecBisect BfLB RecBisectBfLB is a load balancer which uses the object-communication
graph to recursively partition the objects until there is one partition for each processor.
Each partition is assigned to one of the processors. This method provides improved
communication performance, since communicating objects are likely to be assigned to
the same processor. This strategy may do a poor job at times, since each partition

does not have the freedom to fine tune its load by selecting some unconnected objects.

4.1.2 Neighborhood Load Balancing: NeighborLB

Another approach to load balancing is to reduce the message traffic and synchronization
overhead by performing neighborhood load balancing. This is implemented in the Neigh-
borLB strategy. In this strategy, each processor sends summary statistics about its load to
a neigborhood of processors. When each processor has recieved load information from all its
neighbors, it compares its load to the average of the neighborhood. If it is below the average
then it tells its neighborhood that no objects need to be migrated from its processor. If it is

overloaded, it repeatedly selects the largest of its objects which can be passed to the lightest
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loaded neighbor without overloading that neighbor, until the processor load drops below
the neighborhood average, or none of the processors objects will fit on any of the neighbors
without overloading them. Each neighbor is informed which objects will be arriving, and
then the load coordinator is asked to move those objects away. When all elements have
arrived, NeighborL B strategy asks the load coordinator to resume the synchronised objects,
and execution continues. NeighborLLB at this time uses a neighborhood of four processors

but this is easily modifiable.

4.2 Load Balancing Strategies API

In order to use a load balancing strategy, there are three things that need to be done:
e extern the load balncing strategy module in .ci file.
e include the appropriate header file (based on the load balancing strategy) in the .h file

e make a call to start the load balancer from main::main (constructor for the mainchare)

in .C file
For the RefinelLB strategy, for e.g., the following needs to be done:

In .ci file

extern module RefinelB;

In .h file

#include<RefinelB.h>

In .C file

main: :main() {
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Table 4.1: API for various load balancing strategies

Strategy modname headerFile CreateFunc
RandomL.B RandomL.B RandomLB.h CreateRandomLB()
GreedyL.LB GreedyL.LB GreedyLB.h CreateGreedyLB()
RefineL.LB RefineL.LB RefineLLB.h CreateRefineL.B()

RandomRefineL.B | RandomRefineLB | RandomRefineL.B.h | CreateRandomRefineL.B()
GreedyRefineLB | GreedyRefineLB | GreedyRefineLB.h | CreateGreedyRefineLB()
RecBisect BfLB RecBisectBfLB RecBisectBfLB.h CreateRecBisect BfLB()
NeighborLLB NeighborLLB NeighborLLB.h CreateNeighborLB()

CreateRefinelB();

In general, the three things that need to be done for any load balancing strategy can be
represented as:

In .ci

extern module modname;

In .h

#include<headerFile>

In .C

main::main{ CreateFunc Call }

Table 4.1 shows the corresponding API for all strategies discussed in this chapter.
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Chapter 5

Adaptive Mesh Refinement Library

The AMR library provides the user the ability to implement an application using the adap-
tive mesh refinement technique in parallel using Charm++. This library can be used to
implement AMR applications in 1D, 2D or 3D. It takes care of the implementation details
of binary, quad or oct trees, depending on whether you are using 1D, 2D or 3D AMR re-
spectively. It also takes care of neighbor communications and refinement/coarsening. The
library allows the user to do dynamic load balancing to increase performance. This chapter
describes the design of the AMR library and discusses the performance of the library for a

sample application.

Figure 5.1: Mapping of grid to the quad tree in 2D AMR
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- Root
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Internal Nodkt
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Figure 5.2: Typical algorithm for application with nearest neighbor communication pattern

steps = totalSteps

do while steps > 0
//send and receive boundaries
communicateWithNbors ()
doComputation()

loop

5.1 Introduction

In an AMR application, the basic data structure is a tree. Each node in the tree is called
a 'Cell’. The Cells at the bottom of the tree are called ’leaves’. Only the leaves take part
in the computation. Each leaf typically has a part of the grid. All the children of a Cell
combine to form a coarser grid. The root of the tree represents the coarsest level of the
grid. Figure 5.1 shows the mapping of a grid in a tree. Each leaf does the computation
on its subgrid and then communicates the boundaries to its neighbors. The communication
pattern is very similar to the nearest neighbor communication pattern. Figure 5.2 shows
the general algorithm for an application with nearest neighbor communication pattern. The
AMR algorithm (Figure 5.3) is very similar to this with the addition of checking of refinement
criterion to adaptively refine the tree.

For the sequential version of AMR, if the application is being designed from scratch, code

needs to implemented for the following:

1. Tree with dynamic addition and deletion (binary tree, quad tree or oct tree for 1D, 2D

or 3D AMR respectively)
2. Strategy for determining the neighbors of the leaf
3. Communication of the boundaries between neighbors
4. Application specific data structures for the Cells

5. Initialization of the data in the Cells at the beginning
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Figure 5.3: Basic algorithm being executed in parallel
steps = totalSteps
refineStep = refinelnterval
do while steps > 0
communicateWithNbors ()
doComputation()
if step = refineStep
synchronise ()
checkForRefinement ()
if Invariant violated
ask neighbors to refine
if refined or AutoRefined
changeChildrenToLeaves
exit while loop
else
refineStep += refinelnterval
step += 1

loop

6. Body of computation performed by the leaf in each iteration
7. Criteria for deciding if a leaf needs to be refined or coarsened.

8. Methods for combining or extrapolating data recieved from neighbors at different levels

of refinement.
9. Methods for dividing the existing data in a Cell for children during refinement.

If the application is being written in parallel, then the first three steps, mentioned in
the above list, become more complex as they have to be done in parallel. Additional issues
like load balancing, further complicate the application development. The last four steps in
the list are application specific and need to be done differently for each application. The
AMR library takes care of the first three steps and the load balancing. Thus the user
has to implement only the application specific code which greatly simplifies the application

development.
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Figure 5.4: Creating the library from the mainchare

/*¥In .ci file */
mainmodule pgm {

extern module amr;

initcall void AmrUserDataJacobilnit(void);
mainchare main

{

}s
b
/*In your .h filex/
#include "amr.h"
class main : public Chare {
public:
main() ;
b
/¥In .C file */
#include "pgm.decl.h"

entry main() ;

main: :main(CkArgMsg* args) {
StartUpMsg *msg;
msg = new StartUpMsg;
msg->synchInterval = 200;
msg->depth = 2;
msg->dimension = 3;
msg-> totallterations = 500;
CProxy_AmrCoordinator: : ckNew(msg,0) ;

}

#include "pgm.def.h"
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5.2 Library’s User Interface

The Library Interface was designed such that the user’s code for the parallel application
should be similar to the sequential code. The user writes code from the point of view of
a single, uniformly refined, grid and provides the methods explained in section 5.2.2. This
section describes the interface of the library briefly. For a detailed explanation of the interface

refer to the AMR manual[25].

5.2.1 Creation of Library

The library is created in the constructor for the class main, which inherits from a class called
Chare as shown in Figure 5.4. The library is created by calling ckNew method of the class
CProxy_AmrCoordinator.

CProzy_AmrCoordinator::ckNew(msg,0);

5.2.2 User Data Class

The library makes no assumption about the users data structure. The user should imple-
ment their data structure in a class which inherits from the class AmrUserData. This class
implements the data structure for each leaf. The library requires this class to implement the
following methods:

void doComputation(void)

//Computation

This method is used to implement the computation to be done by each leaf. For each it-
eration, this method is invoked by the library after communicating (send and receive) data
with all the neighbors.

void** getNborMsgArray(int* sizeArray)

//Neighbor Communication: Get the data to be communicated

This method is called to get the data to be communicated to the user. It is expected to
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return an array of data arrays (allocated by the user) to be communicated to the neighbors.
The size of the array of data arrays depends on the dimensionality of AMR that is being
used as shown in Table 5.1. Each data array is sent to a different neighbor, hence the library
expects the data arrays to be in the order specified by Table 5.2. The argument to the
function is an array containing the sizes of the data arrays. The user must specify the size

of each data array in bytes in the order specified in Table 5.2.

Table 5.1: Size of Array Returned by getNborMsgArray

AMR Type | Return ArraySize Required
1D 2
2D 4
3D 8

Table 5.2: Message Ordering in the array returned by getNborMsgArray

ArrayIndex | For Which Neighbor | AMR Type
0 +X Nbor(Right) 1D,2D,3D
1 -X Nbor(Left) 1D,2D,3D
2 +Y Nbor 2D,3D
3 -Y Nbor 2D,3D
4 +Z7 Nbor 3D
5 -Z Nbor 3D

void store(void* data , int dataSize, int neighborSide)
//Store the data received from the Neighbor
This method is called by the library to give the user the data received from the neighbor. The
user should copy the data into a local data structure. The data should not be stored directly

by storing the pointer. The arguments of this method have the following interpretation
e data: a pointer to the data received from the neighbor.

e dataSize: the size of the data received in bytes.
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o neighborSide: which neighbor sent the data. Table 5.3 explains what the various values

mean.

Table 5.3: Various neighborSide values passed

neighborSide | From Which Neighbor | AMR Type
0 -X Nbor(Left) 1D,2D,3D
1 +X Nbor(Right) 1D,2D,3D
2 -Y Nbor 2D,3D
3 +Y Nbor 2D,3D
4 -Z Nbor 3D
5 +7Z Nbor 3D

void ** fragmentNborData(void* data, int *sizePtr)
//fragment neighbor data received to be sent to the finer neighbor
This method is called by the library only when adaptive refinement is being used. If a
message is to be communicated from a coarser level to a finer level the message sent needs to
be broken up in the case of 2D and 3D AMR. The pointer to the array of data and a pointer
to its size in bytes is passed to the method to fragment it into 2 parts for 2D AMR and 4
parts for 3D AMR. The user’s code is supposed to fragment the data received into an array
of fragmented data arrays and update the size in bytes pointed to by the sizeptr to the new
size in bytes of the fragment (Assumption all fragments are of the same size). Figure 5.5
shows how the fragmentNborData should work. If there is a need to extrapolate these
fragmented messagesit should be done here, or in the store method (where these messages
will be received).

void combineAndStore(void **dataArray, int dataSize, int neighborSide)
//combine the data received from the finer neighbors and store the data
This method is used for receiving the message from fine neighbor. For 2D AMR dataArray
has 2 messages whereas in 3D AMR dataArray has 4 messages. The message received may

need to be interpolated before being stored (library does not provide any methods to do that
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Figure 5.5: Message Splitting for 2D AMR

Refined Neighbor Coarse Neighbor

Return Array created by
the fragmentNborData() Serialized Data recieved by
fragmentNborData() method

as it may be application specific). The function is similar to store in all other respects.
bool refineCriterion(void)

//refinement criterion to be used at the refinement stage

The library calls this method on the user data class (leaves in the tree) periodically (frequency
specified by the user during the creation of the library). This method determines if refinement
is needed on the basis of local data in the leaf.

void *xfragmentForRefine(int *sizePtr)

//fragment the leaf and divide the data for the children

This method is called if the leaf needs to be refined which is determined either on the basis
of refinement criterion or to preserve the invariant in the tree (see section 5.3.2). In this
method the user is required to split the data into 2, 4 or 8 parts for 1D, 2D or 3D AMR
respectively. Each fragment is sent to one of the children of the leaf being refined.

Detailed explanation of these methods is given in [25]. Besides these methods the user
might want to implement the interpolation/extrapolation, boundary constraint and utility
methods to be used by the class. The library does not make any assumption about the
naming of these methods and it is the responsibility of the user to call these methods when

appropriate.
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Figure 5.6: Order of creation of objects at the begining of execution for 2D AMR
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5.2.3 Load Balancing

In order to use the load balancing strategy the user must call the corresponding function to

create the strategy in the constructor for mainchare (as explained in Section 4.1)

5.2.4 Flow of Execution for the Library

Figure 5.6 shows the order of events in the beginning of the execution of an AMR application.
User’s main instantiates the AmrCoordinator, which in turn creates the root of the tree. The
root then creates the children until the desired level (specified by the user). After creation is
done, each leaf starts communication and computation. The leaves communicate with their
neighbors and do computation until the time comes to check if refinement is needed. The
user specifies at the beginning of the program when the library should check for refinement.
If refinement is needed, children are added for the leaf and the library makes sure that the
neighbors maintain the invariant (explained in Section 5.3.2). These steps are repeated until

all the iterations are complete. Figure 5.3 shows the steps being followed in parallel by each
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leaf.

5.3 Library Design

This section discusses the design of the AMR Library. It is subdivided into three sections

for more lucid explanation of the issues.

5.3.1 Hierarchical Indexing of Tree

The indexing of the array representing the tree (binary, quad or oct) is an important issue
in the design of this parallel library.

A naive way of indexing the array would be to index the elements in the tree sequentially.
In this naive approach, a central object keeps track of the structure of the tree. Every leaf
asks a central object who its neighbors are in each iteration. It is trivial to see that the
central object would soon become a bottleneck because it has to deal with the insertions in
the tree due to refinement and respond to the neighbor queries from the leaves. Hence this
scheme will fail to scale well with increase in the size of the tree.

Another approach could be each leaf caches the neighbor indices and asks for the updates
when refine/coarsening takes place. Though this modified scheme is better than the previous
one, it still has a central object as the bottleneck because the central object still has to handle
the assignment of a unique index for the new children and calculate the new neighbors.

From the above two examples, we can see that a good distributed indexing scheme will

have the following features

e The scheme should be able to determine a unique index for the children without com-

plete knowledge of the tree structure.

e The indexing scheme should allow a leaf to determine its neighbors locally.
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Warren et al. give a hierarchical indexing scheme for oct trees in [31]. In their scheme,
the children derive their index from their parent which ensures its uniquenes. The AMR
library uses a similar scheme for indexing the tree, with some modifications, for ease of
implementation and local detrmination of neighbors. Such an indexing scheme was also
used in parallelization of the search trees in [17] at the Parallel Programming Laboratory,
University of Illinois at Urbana-Champaign.

In the indexing scheme used in this library, the index of a node is represented by a
bitvector in each dimension and the total number of bits used (sum of bits used in each

dimension), i.e.

((x):n) in case of 1D,

((x,y):n) in case of 2D and

((x,y,2z):n) for 3D and so on.

where x is a bitvector in x dimension.
y is a bitvector in y dimension.
z is a bitvector in z dimension.

n is total number of bits used.

The index of the root is a 0 bitvector in each dimension and the number of bits used
is also 0, i.e., ((0):0) in 1D, ((0,0):0) in 2D, and ((0,0,0):0) in 3D. The index of a child is
determined on the basis of the index of the parent. For simplicity take the case of a 2D

index.

Let the parent be

((x,y):n)

Thus the indices for its four children will be
((2x,2y) :n+d)

((2x+1,2y) :n+d)

((2x,2y+1) :n+d)
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((2x+1,2y+1) :n+d)
where x,y are bitvectors in x and y dimension respectively
n is total number of bits for parent

d is the dimension of AMR (in this case 2)

Lemma 5.1 Proof of Uniqueness of the Indices
It can be trivially seen, from the scheme to obtain the indices of children above, that all
the children of the same parent will have different indices. Thus, based on the above assertion

the proof can be divided into 2 parts:
e unique indices for nodes at different levels in a tree
e unique indices for nodes at the same level but having a different parent

The nodes at different levels of the tree will all have different indices as they will have different
number of bits (n) representing the bitvectors. Since the number of bits is part of the index
it can be stated that the index for nodes at different levels of tree will never be the same.
For the nodes at the same level but from different parent we will prove by contradiction
that they will be unique. Assume that ((z,y) : n) and ((z',y') : n) are indices of children of

different parents but they are equivalent, i.e.

r=21 (5.1)
y=y (5.2)
n=n (5.3)

If we right shift the bitvectors in both the x and y dimension by 1 bit and subtract 2 from
the number of bits (n) we will get the index of the parent. So the parent for ((z,y) : n)
will be ((RShift(xz,1), RShift(y,1)) : n — 2). Similarly, for ((z',y') : n) the parent will be
((RShift(z',1), RShift(y',1)) : n —2). Now we can see that from Equation 5.1, 5.2 and

34



Figure 5.7: Indexing in 2D AMR (quad Tree)
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5.3 that both the bitvectors for the parents will be the same which is contrary to the hypothesis

that they have different parents. Thus we have proved by contradiction that all the nodes in
the same level of the tree but from a different parent have different indices.

So we can conclusively say that all the indices in the tree will be different.

Figure 5.7 shows indexing in the case of 2D AMR (i.e. for a quad tree). Based on the
indexing scheme explained above, each leaf can determine unique indices for its children

locally.

5.3.2 Neighbor Communication

In AMR applications, the communication pattern is like nearest neighbor, i.e. each leaf talks
to its neighboring leaves. Each leaf can have a maximum of 2, 4 or 8 neighbors for 1D, 2D or
3D AMR respectively (diagonal neighbors are ignored in this discussion). Figure 5.8 shows

the nearest neighbors for a leaf in consideration for 2D AMR. The indexing scheme makes
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Figure 5.8: Nearest Neighbors for the leaf
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it easy to determine the indices of neighbors locally. In order to simplify the discussion we

define two kinds of neighbors in a dimension:

e -ve neighbor: This neighbor is on the lower coordinate side of the current node (Equiv-

alent to left in the x dimension).

e +ve neighbor: This neighbor is on the higher coordinate side of the current node

(Equivalent to right in the x dimension).

In order to find neighbors in d** dimension we can use the following formulas:

-ve neighbor : b -1 [b>0

+ve neighbor : b+ 1 |0<b< 2"

where b is the bitvector in dt* dimension; and

n is the number of bits used in b
If a leaf has a neighbor at the same level as its own then it is very simple to determine the

neighbors address with the above formula. Figure 5.9 shows an example where a node with
index ((1,1):2) sends a message to its -ve neighbor in y dimension with index ((1,0):2). The
formula given above to calculate the neighbors works well if all the leaves are at the same
level. Taking another example, the neighbors for ((1,1):4) according to the above formula
will be:
X dimension: -ve neighbor ((0:1):4)
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Figure 5.9: Neighbor Communication:Sender and Receiver at the same level in a quad tree

Case 1
Neighbors of ((1,1):2)
Y dimension: —ve neighbor ((1,0):2

((0,0):0)

((1,1):2)

X dimension: +ve neighbor ((2:1):4)

Y dimension: -ve neighbor ((1:0):4)
Y dimension: +ve neighbor ((1:2):4)
From Figure 5.9 we can verify that the calculated neighbors according to the formula are
correct. Hence we can say that the formula for calculating neighbors works at the same level
of refinement, for not only neighbors with a common parent but also for the neighbors with
different parents.

If the leaves are at different levels then the formula above will not work directly. This
situation can be divided into two cases:
Sender is coarser than the receiver
If the sender is coarser (i.e. up in the tree) by 1 level, then the receiver’s parent will receive
the message. The parent will have to split the message before forwarding it to its children as

shown in Figure 5.10. In Figure 5.10 the sender ((1,1):2) sends a message to its -ve neighbor
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Figure 5.10: Neighbor Communication:Sender at a coarser level than the Receiver in a quad
tree

Case 2
Neighbors of ((1,1):2)
X dimension: —ve neighbor ((0,1):2

~

((0,0):0)

((0.0):2) (0.1):2)

((1,0):2) ((1,1):2)

in the x dimension, ((0,1):2), which is more refined. When ((0,1):2) recieves the message it
splits the message into two parts, using a user supplied interpolation function, and forwards
the split messages to the appropriate children.
Sender is finer than the receiver

If the sender is finer (i.e. down in the tree) by 1 level, then the receiver’s children will
receive the message. Since the receiver is always a leaf this scheme will fail as the leaf
does not have children. To circumvent this problem, we introduce a level of virtual leaves
below the real leaves, i.e. each leaf will have virtual leaves as their children. These virtual
leaves, implemeneted as regular parallel objects, receive the message from the finer sender
and forward it to their parent (leaf). Figure 5.11 shows the case if sender is finer than the
receiver.

From the above discussion we can see that the indexing scheme will only work if the

difference in refinement levels of the neighbors is at maximum 1. So we maintain the following
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Figure 5.11: Neighbor Communication: Sender at a finer level than the Receiver in a quad
tree

Case 3

Neighbor of ((1,3):4)

X dimension: +ve neighbor ((2,3):4)
Neighbor of ((1,2):4)

X dimension: +ve neighbor ((2,2):4)

((0,0):0)

invariant in the tree through out the execution of the program:

Invariant At all times, the maximum difference between the levels of refinement of
neighbors is 1.

We have to make sure that this invariant is not violated at any time in the tree. Whenever
there is a need for refinement in the tree, we also check if the neighbors need to refine to

preserve the invariant.

5.3.3 Class Design

Figure 5.12 shows the class diagram for the AMR library. This diagram shows that the user
writes a main class which inherits from the class Chare. This class creates an instance of
the library by instantiating AmrCoordinator. AmrCoordinator is a class which inherits from

Chare class, and its instance can only be created on processor 0. This constraint is imposed
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Figure 5.12: Class Diagram for the AMR Library

class AmrCoordinator:public Charg
=1 AmrCoordinator(StartUpMsg *m)
main() createTree()
synchronise(_RedMsg *m)

class main:public Chare

Y

class Cell: public ArrayElementT<bitvec>

AmrUserData* userData class AmrUserData
dolterations() createData()
synchronise(_RedMsg* m) ™ createData(void* data, int sizg)
refine(_RefineMsg* m)

sendinDimension(NeighborMsg* m, int dim, int side)

A
class Cell1D: public Cell class Cell2D: public Cell class Cell3D: public Cell
createTree() createTree() createTree() - ]
createChildren() createChildren() createChildren() class Jacobi2DAMR:public AmrUserDa
doComputation()

refineCriterion()

fragNborData(void* data, int size)
store(void* data, int size)
combineAndStore(void** data, int size
fragForRefine()

by the current implementation of Charm++ which allows chare arrays to be created only
from processor 0. AmrCoordinator creates the root of the tree, and keeps a proxy to it in the
cache for later interaction. The nodes in the tree are instances of class Cell1D, Cell2D and
Cell3D for 1D, 2D and 3D AMR respectively. Cell is the abstract super class for Cell1D,
Cell2D and Cell3D. Cell implements all of the common functionality which is independent
of the dimension of AMR being used. Cell makes use of template methods and factory
methods[9] to implement some of this functionality. At this time this library supports 1D,
2D and 3D AMR but the design is general enough to support higher dimensions. Each leaf
has an instance of the user’s data class (e.g Jacobi2DAMR is such a class in Figure 5.12).
User’s data class should inherit from AmrUserData and should implement the interface
specified by it. No assumption is made about the data structure used in user’s data class,
which makes this library different from most of the other implementations of the AMR

libraries.
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5.4 Preliminary Performance Measurement

The results presented in this section are preliminary results without any performance tuning.
Performance tuning for this framework is an area not covered in this thesis and is a ripe

topic for subsequent research.

5.4.1 Benchmark Application

We developed a fluid dynamics application! to run as benchmark for the library. In this
application the fluid area is divided into regular rectangular grid and we keep track of the
fluid’s pressure and velocity at every grid point. We have fixed time step for the grid and
in each time step we recompute the pressure and velocities at each grid point. The new
pressure and velocity for a grid point is computed based on the previous time step values
of itself and the immediate neighboring grid points. The boundaries of the grid are like
reflecting walls, i.e. they have zero velocity and pressure is the same as the neighbor. As the
initial condition, we have a bar of high pressure in one corner of the grid. As the simulation
progresses, this bar of pressure shoots out on both sides and bounces of the walls until it
diffuses out to an even shade. The grid is refined in the areas where there is a high pressure

gradient.

5.4.2 Results

We ran the benchmark on a 6 node (quad Xeon processors) cluster. The benchmark was
run with no load balancing, heapCentralLB and refinelLB strategies for different number of
processors as shown in the graphs. The time shown in the graphs is the wall clock time
taken for the complete run and includes all the overhead incurred.

By looking at the graphs (Figure 5.13 and Figure 5.14) we can see that if the load

balancing strategy does not take communication into account, then the overhead is more

IThe serial version of this application was developed by Orion Lawlor
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Figure 5.13: Performance Graph without load balancing
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Figure 5.14: Performance Graph with heapCentral load balancing
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Figure 5.15: Performance Graph with refine load balancing
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than its usefulness. Also by looking at the graphs for the refine load balancing strategy
(Figure 5.15) and no load balancing strategy (Figure 5.13) we can see that load balancing
becomes useful as the number of processors increase. Thus, to make things scalable in
massively parallel systems it is important that the strategies for load balancing do not try

to change the load drastically but should do it incrementally like in the refine strategy.
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Chapter 6

Conclusions

We have presented here the design of a Adaptive Mesh Refinement library which provides
the ability to write applications using 1D, 2D or 3D AMR. It implements the parallel tree
data structure and abstracts the communication between processors from the user. Since this
library is implemented in Charm-++-, the user can also take advantage of the load balancing
framework in Charm++ to do dynamic load balancing. The main advantage of using this
library is that the user has to implement code very close to sequential code, hence they do
not have to deal with issues involved in writing parallel code. Another advantage of using
this library is that it does not impose any restrictions on the data structures used by the
user. Using a library is advantageous because using tested components makes the task of

writing a big application easier and quicker.

6.1 Future Work
Quirk, in [27] said,

Often the effectiveness of a mesh refinement algorithm stems not from the so-
phistication of the components, which for the most part can be fairly mundane
but from the way in which they can be combined as to overcome their individual

weaknesses.
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I think with this in mind, the direction for future research in this area should be to
build components that work together to maximize productivity. One of the important areas
of research is to effectively visualize the data produced by the AMR applications. Another
important area is to ensure the scalabilty of the components, which has become more critical
as massively parallel systems are becoming more and more common. In this library, the
control rests with the library which calls the user methods. Another approach for writing this
library is using threads as used in the FEM Framework[3] developed at Parallel Programming

Laboratary in University of Illinois at Urbana-Champaign .
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Simple 2D AMR Apllication

A simple jacobi application using 2D AMR is presented in this section.

.1 Writing the .ci File

mainmodule jacobi2DAMR {

extern module amr;

extern module HeapCentLB;

initcall void AmrUserDataJacobilnit(void);
mainchare main

{

entry main();
};
};

.2  Writing the .h File

#include "amr.h"
#include "HeapCentLB.h"
#define LB_FREQUENCY 15

class Jacobi2DAMR:public AmrUserData {
private:

int cellSize;

double **dataGrid;

double **newDataGrid;

/*Utility Functions*/

void copyGrid(void);

void copyColumn(double *buf , int colNum) {

for(int i=1; i<=cellSize;i++)
buf [i-1] = dataGrid[i] [colNum];
b

void copyRow(double *buf , int rowNum) {
for(int i=1; i<=cellSize;i++)
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buf[i-1] = dataGrid[rowNum] [i];
}

void copyToColumn(double *buf , int colNum) {
for(int i=1; i<=cellSize;i++)
dataGrid[i] [colNum]= buf[i-1];
}

void copyToRow(double *buf , int rowNum) {
for(int i=1; i<=cellSize;i++)
dataGrid[rowNum] [i]= buf [i-1];
}
double sumofGrid(void) {
double sum = 0.0;
for(int i=1;i<cellSize+1;i++)
for(int j=1;j<cellSize+1;j++)
sum += dataGrid[i] [j];
return sum;

3

public:
/*Default Constructor: Called in the initial setup of the treex/
Jacobi2DAMR() {
cellSize = 32;
dataGrid = new doublex [cellSize+2];
newDataGrid = new double* [cellSize+2];
for(int i=0;i< cellSize+2;i++) {
dataGrid[i] = new double [cellSize+2];
newDataGrid[i] = new double [cellSize +2];
for(int k = 0; k < cellSize+2; k++) {
newDataGrid[i] [k]=10.0;
dataGrid[i] [k] = (i+k) *1.0;
}
}
}

/*This constructor is called after refinement with data from te parentx*/
Jacobi2DAMR(void *data,int dataSize)
{
double *indata = (doublex*) data;
cellSize = (int) sqrt((double) (dataSize/sizeof(double)));
// cellSize = cellSize/sizeof (double);
dataGrid = new doublex [cellSize+2];
newDataGrid = new double* [cellSize+2];
for(int i=0;i< cellSize+2;i++) {
dataGrid[i] = new double [cellSize+2];
newDataGrid[i] = new double [cellSize +2];
for(int k = 0; k < cellSize+2; k++) {
newDataGrid[i] [k]= 10.0;
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if(i== 0 || 1 == cellSize+l || k==0 || k== cellSize + 1)
dataGrid[i] [k] = (i+k) *1.0;
else
dataGrid[i] [k] = indata[(i-1) * cellSize + (k-1)];
}
}

}
Jacobi2DAMR (CkMigrateMessage *m): AmrUserData(m){}

PUPable_decl (Jacobi2DAMR) ;

/*Mandatory Library Interface functions*/

virtual void doComputation(void);

virtual void **fragmentNborData(void* data, int* sizePtr);

virtual void **getNborMsgArray(int *sizeptr);

virtual void store(void* data, int dataSize, int neighborSide);

virtual void combineAndStore(void **dataArray, int dataSize,int neighborSide);
virtual bool refineCriterion(void);

virtual void **fragmentForRefine(int *sizePtr);

/*If load balancing is required*/
virtual void pup(PUP::er &p);
/*Destructor*/
~Jacobi2DAMR() {
for (int i=0; i< cellSize+2;i++)
delete [] newDataGrid[i];
delete [] newDataGrid;
for (int i=0; i< cellSize+2;i++)
delete [] dataGrid[i];
delete[] dataGrid;
}
};

/*Main Charex*/

class main : public Chare {

public:
/*Constructor: Library is created from herex/
main(CkArgMsg* args) {

StartUpMsg *msg;

msg = new StartUpMsg;
msg->synchInterval = 200;

msg->depth = 2;

msg->dimension = 2;

msg—> totallterations = 500;
CreateHeapCentLB() ;
CProxy_AmrCoordinator: : ckNew(msg,0) ;
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.3 Writing The .C File

#include "jacobi2DAMR.h"
#include "jacobi2DAMR.decl.h"
/*
Kok KoK oK oK ok ok ok ok ok ok ok o K KKk ok ok ok ok ok o ok K K Kok ok ok ok ok ok o ok
User Code for 2D
Kok KoK oK ok ok ok ok ok ok ok ok o o ok KK ok ok ok ok ok ok o ok K K Kok ok ok ok ok ok o ok
*/
void AmrUserDataJacobilnit(void)
{
PUPable_reg(AmrUserData) ;
PUPable_reg(Jacobi2DAMR) ;

}
AmrUserData* AmrUserData :: createData()
{
Jacobi2DAMR *instance = new Jacobi2DAMR;
return (AmrUserData *)instance;
}
AmrUserData* AmrUserData :: createData(void *data, int dataSize)
{
Jacobi2DAMR *instance = new Jacobi2DAMR(data , dataSize);
return (AmrUserData *) instance;
}
void AmrUserData :: deleteNborData(void* data)
{
delete [](double *) data;
}
void AmrUserData :: deleteChildData(void* data)
{
delete [](double *) data;
}

void Jacobi2DAMR :: doComputation(void)
{

for(int i=1; i <= cellSize ;i++)

for(int j=1; j<=cellSize;j++)
newDataGrid[i] [j] = 0.2 * (dataGrid[i] [j-1] + dataGrid[i] [j+1]
+dataGrid[i] [j] +dataGrid[i-1][j] +
dataGrid[i+1][j1);
copyGrid() ;
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}

void Jacobi2DAMR :: copyGrid(void)

{
for(int i=0; i< cellSize+2; i++)
for(int j=0; j<cellSize+2; j++){
dataGrid[i] [j] = newDataGrid[i] [j];
newDataGrid[i] [j] = 10.0;
}
}

void ** Jacobi2DAMR :: getNborMsgArray(int* sizePtr)
{

//gives the size of each individual column in bytes

*sizePtr = cellSize* sizeof (double);

//since we are using 2D mesh so have an array of size 4

double ** dataArray = new doublex [4];

for(int i =0;i<4;i++) {

dataArray[i] = new double[cellSize];

}

//To my Right neighbor

copyColumn (dataArray[0], cellSize);

//To my left neighbor

copyColumn (dataArray[1], 1);

//To my Down neighbor

copyRow(dataArray[2], cellSize);

//To my Up neighbor

copyRow(dataArray[3], 1);

return (void *x) dataArray;

¥

void **Jacobi2DAMR :: fragmentNborData(void *data, int* sizePtr)
{
int elements = (*sizePtr)/sizeof (double);
int newElements = elements/2;
double **fragmentedArray = new doublex [2];
double *indata = (double *)data;
if (elements %2 == 0){
*sizePtr = newElements * sizeof (double) ;
for(int i=0; i<2; i++) {
fragmentedArray[i] = new double[newElements];
for(int j=0; j<newElements;j++)
fragmentedArray[i] [j] = indata[i*newElements + j];
}
}
else {
*sizePtr =( ++newElements)*sizeof (double);
for(int i=0; i<2; i++) {
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fragmentedArray[i] = new double[newElements];
for(int j=0; j<newElements-1;j++)
fragmentedArray[i] [j] = indatali*newElements + j];

fragmentedArray[1] [newElements-1] = indatalelements -1];
fragmentedArray [0] [newElements-1] = (fragmentedArray[0] [newElements -2]
+ fragmentedArray[1][0])/2;
}

return (void *x)fragmentedArray;

¥

void Jacobi2DAMR :: store(void* data , int dataSize , int neighborSide)
{
if (dataSize/sizeof (double) == cellSize) {
switch(neighborSide) {
case O:
copyToColumn((double*) data, 0);
break;
case 1:
copyToColumn ((double *) data, cellSize+1);
break;
case 2:
copyToRow((double *) data, 0);
break;
case 3:
copyToRow((double *) data, cellSize+1);
break;
}
}
else
CkError ("Error: Jacobi::store...wrong sized message size %d cellsize %d\n",
dataSize/sizeof (double), cellSize);
}

void Jacobi2DAMR :: combineAndStore(void **dataArray,
int dataSize,
int neighborSide) {
int size = dataSize /sizeof (double);
double * buf = new double[2*size];
double *tmpbuf = buf + size;
memcpy ((void *)buf, dataArray[0], dataSize);
memcpy ((void *)tmpbuf, dataArray[1], dataSize);
store((void *)buf, (2*dataSize) ,neighborSide);
delete []buf;
}

bool Jacobi2DAMR :: refineCriterion(void)
{
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double average = sumofGrid()/(cellSize*cellSize);
if (average < 15.0 && cellSize >= 4)

return true;
else

return false;

}

void** Jacobi2DAMR :: fragmentForRefine(int *sizePtr)
{

int newSize = cellSize/2;

*sizePtr = newSize*newSizexsizeof (double);

double ** dataArray = new doublex [4];
for(int i=0;i<4;i++) {
dataArray[i] = new double[newSize*newSize];
for(int j=1;j<=newSize;j++){
for(int k=1;k<=newSize;k++)
dataArray[i] [(j-1)*newSize+(k-1)] =
dataGrid[((i/2)%2)*newSize+j] [(i%2) *newSize+k] ;
}
}

return (void **)dataArray;

}

void Jacobi2DAMR: :pup(PUP: :er &p)
{
AmrUserData: :pup(p) ;
p(cellSize);

//have to pup dataGrid and newDataGrid here
if (p.isUnpacking()) {
dataGrid = new double*[cellSize+2];
newDataGrid = new double*[cellSize+2];
for(int i=0;i<cellSize+2;i++) {
dataGrid[i] = new double[cellSize+2];
newDataGrid[i] = new double[cellSize+2];
}
}
for(int i=0; i<cellSize+2;i++) {
p(dataGrid[i],cellSize+2);
p(newDataGrid[i],cellSize+2);
}
+

PUPable_def (AmrUserData) ;
PUPable_def (Jacobi2DAMR) ;

#include "jacobi2DAMR.def.h"
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