
Supporting Dynamic Parallel Object Arrays
Orion S. Lawlor

Univ. of Illinois at Urbana−Champaign
1304 W. Springfield, 3315 DCL

Urbana, IL 61801−2987
1 (217) 333−5827

olawlor@acm.org

Laxmikant V. Kalé
Univ. of Illinois at Urbana−Champaign

1304 W. Springfield, 3304 DCL
Urbana, IL 61801−2987

1 (217) 244−0094

kale@cs.uiuc.edu

ABSTRACT
We present efficient suppor t schemes for generalized
ar rays of parallel data dr iven objects. The " ar ray
elements" are scattered across a parallel machine.
Each ar ray element is an object that can be thought of
as a vir tual processor. The individual elements are
addressed by their " index" , which can be an arbitrary
object rather than a simple integer. For example, it can
be a ser ies of numbers, suppor ting multidimensional
sparse ar rays; a bit vector, suppor ting collections of
quadtree nodes; or a str ing. Messages can be sent to
any individual ar ray element from any processor, and
the elements can par ticipate in reductions and
broadcasts. Individual elements can be created or
deleted dynamically at any time. More impor tantly, the
elements can migrate from processor to processor at
any time. The paper discusses suppor t for message
delivery and collective operations in face of such
dynamic behavior. The migration capabilities of ar ray
elements have proved to be extremely useful, for
example, in implementing flexible load balancing
strategies and for exploiting workstation clusters
adaptively.

1. INTRODUCTION
Many of today’s emerging high−end parallel applications are
characterized by irregular and dynamic computational structure.
Techniques such a latency hiding and dynamic load balancing
are needed to efficiently parallelize these applications.
However, incorporating these techniques into a parallel program
written using the prevalent processor−centric programming
model, exemplified by MPI, requires significant programming
effort.

An alternative approach abandons the processor−centric model
for an object−centric model. The computational work is divided
into a large number of parallel objects. Parallel objects
resemble processors in that they are self−contained, and can
send and receive messages. Unlike processors, however, they
can be created or deleted, scheduled dynamically, and migrated

at run−time to improve load balance.

This approach, which we call multi−partition decomposition,
separates the task of specifying parallelism from the issues of
load balancing, and efficient execution in general. The
programmer then specifies which actions are to be computed in
parallel, and the system decides when and where these actions
execute. 

In this paper, we present a parallel construct called a dynamic
parallel object array that supports this approach. Individual
objects are called array elements, and can send and receive
messages, participate in broadcasts and reductions, and migrate
as needed. Each element of the array is identified by a unique
array index, which may be variable−length. Because elements
can be individually scheduled and migrated, an object array is
quite distinct from the array objects found in HPF, POOMA[13],
P++[14], Global Arrays[12] and elsewhere. In our construct,
each element of the array is a relatively coarse−grained1 C++
object, with full support for remote method invocation. We add
migration and reductions to pC++[8], to which our work is
otherwise quite similar. Unlike Concurrent Aggregates[9],
Linda[7], or Orca[10], there is no duplication or replication−−
message sends address exactly one array element across the entire
machine. This work is complemented by fast collective
communication libraries such as [11]; but not dependent on them.

For example, a large dynamic structural simulation modeled
using the finite element method may include 10 million
elements in an unstructured mesh. Using our method, the
application programmer may decide to partition this mesh into
5,000 chunks using a mesh partitioner such as METIS or Chako.
Each chunk is then implemented as a data−driven[1] array
element, making a 5,000 element object array. The programmer
specifies communication between these elements without
worrying about which processor they reside on.

This approach, which we have been exploring for the past
several years, has several advantages:

� As the number of elements is typically much larger than the
number of processors, each processor houses several objects.
This leads to an adaptive overlap of computation and
communication−− while one object is waiting for its data,
another object can complete its execution. Scheduling is
done dynamically depending on which message arrives first,
so this latency hiding requires no additional effort by the
programmer.

� Each element is small, so it fits better within available cache
space, thus leading to better performance even on a single
processor.

1 The target grain size is from hundreds of microseconds to a
few dozen milliseconds of work.

Copyright notice



Even more important are the advantages that accrue by
separating the message target (the array element) from the
target’s location (the processor). With our approach, the run−
time system is free to migrate objects across the parallel
machine as it pleases, without affecting the semantics of the
user program.

The run−time system can use this freedom to effect
measurement−based load balancing, for example. During the
computation, it can measure the load presented by each element,
along with the element communication patterns. It can then
remap the objects so as to minimize load imbalance and
communication overheads. Even for dynamic applications, such
measurement−based load balancing works effectively when load
patterns change either slowly or infrequently. 

If the parallel program is using idle desktop workstations, the
run−time system can "vacate" the processors when their owners
start using them, as described in [2]. Time−shared clusters can
also be supported efficiently, by shrinking or expanding jobs to
the available set of processors[5] using object migration.

Our research group has been engaged in developing this
approach. The measurement based load balancing framework
has been described in [2]. This paper presents the object array
construct, its efficient implementation with support for routing
and forwarding of messages, and its support for collective
operations such as broadcasts and reductions.

Our approach is implemented in Charm++[1], a parallel library
for C++. However, due to the popularity of MPI, and to allow
existing MPI codes to use the load balancing and other facilities
of Charm++, we have implemented AMPI [6], an adaptive
implementation of MPI. In AMPI, an MPI "processor" is
virtualized as a thread running in an array element. The system
then simulates multiple MPI processors on each real processor,
allowing latency hiding and load balancing. Thus this research is
applicable to the wide of class of parallel applications written
using MPI as well.

In the next section, we examine another application example to
motivate the need for some of the features supported by object
arrays. We then present the array construct itself, and its API.
This is followed by a description of the algorithms used for
message delivery and collective operations, in face of ongoing
migrations, insertions, and deletions of array elements. We
conclude with performance results.

2. MOTIVATION

2.1 Example
Consider a simple heat flow simulation application which
discretizes its domain with an adaptive 2D mesh. The mesh is
implemented as a quadtree, as in Figure 1. Using a separate
array element for each leaf of the quadtree would likely result in
a tiny grain size and poor performance; so each array element is
the root of a small subtree of the mesh. 

A quadtree admits a natural indexing scheme−− the directions
taken at each level of the tree from the root. Concatenating a
binary representation of these directions results in a variable−
length bit string which uniquely identifies a leaf of the tree. For
example, the element labeled "10;11" in Figure 1 can be reached
from the outer box by moving to the lower−left (10) subbox,
then to that box’s lower−right (11) subbox. For addressing

messages to these array elements, the variable−length index
supported by this work is ideal.

11

00 01

10:01

10;11 10;11

10;00

Figure 1. Adaptive 2D quadtree mesh with seven elements,
showing element ar ray index and subtrees (in gray).

While running the program, the runtime load balancer[2] will
collect the object communication graph shown in Figure 2.

10;11

11

10;00

10:01

00

10;11

01

Figure 2. Communication graph for  example ar ray.

As the computation proceeds, elements will send each other
messages to exchange temperatures with their neighbors. They
will perform local calculations to propagate heat around their
part of the mesh. In a steady−state problem, elements will
occasionally contribute their local error values to a reduction to
determine whether the convergence criteria have been satisfied.
Once the convergence criteria have been met, the program will
broadcast a "report results" message to all elements.

The program may decide to create new array elements to refine
an existing region. The program may delete array elements
when coarsening a region. During the computation, the
Charm++ run−time load balancer will migrate elements to
improve the load balance. Clearly, the ongoing messaging,
broadcasts, and reductions must continue to work even in the
face of these migrations, creations, and deletions.

3. API
Array elements are implemented as ordinary C++ classes
defined by the user. An array whose elements are of type A is
referenced from other processors via a small "proxy" object of
type CProxy_A. The Charm++ system defines the proxy object
automatically based on an IDL−like interface file which
describes the object’s remotely accessible methods−− see details
in [4]. 



A static proxy method is used to create a new array:

CProxy_A ap=CProxy_A::ckNew();

The proxy insert call is then used to add array elements:

ap[7].insert(message);
This creates an array element on some processor; the version
insert(message,processor) specifies the initial
processor. 

The proxy destroy method deletes elements:

ap[7].destroy();
Elements may be created or destroyed at any time.

User−defined2 element methods may be invoked as:

ap[7].foo(message);
Like an ordinary C++ method invocation, this call passes the
given data to the given element method. Unlike C++, the target
element need not reside on the same processor, or even in the
same address space. Of course, the method may be inherited or
dynamically dispatched in the usual C++ fashion.

Like Smalltalk, we refer to C++ method invocation as sending
an object a message. The interface file determines whether the
remote call is synchronous, for ordinary blocking function call
semantics; or asynchronous, for message semantics. 

As usual, remote message delivery is out−of−order. Charm++ is
also nonpreemptive−− messages that arrive on a processor
during the execution of another message are queued.

The array broadcast syntax resembles the method syntax, but
omits the index:

ap.foo(message);
This call passes the given data to the given method of every
array element. An element may also call contribute to pass
a value to a reduction; or migrate to move to another
processor.

3.1 Indexing
For convenience, the system predefines 1D, 2D, and 3D index
types. 2D and 3D types are indexed as:

int x, y, z;
ap2(x,y).foo(message);
ap3(x,y,z).foo(message);

The more appealing square−bracket ‘[x,y]’ syntax cannot be
used, because Charm++ inherits C++’s unfortunate comma
operator.

By inheriting from a system index type, a program may define
custom array index types. 

class myIndex : public CkArrayIndex
{

...index data...
    public:

myIndex(...) {nInts=2;...}
};

The interpretation of the index data is left to the application,
which allows the system to support contiguous 1D, sparse 5D, or
tree−structured computations uniformly. Once defined, a user−
defined array index type may be used as:

apT[myIndex(...)].foo(message);

2 Unlike system names, user−defined names are displayed here
in italic type.

4. MESSAGE DELIVERY
A scalable implementation of this API is rather subtle. In
particular, the user may create an element 42 on some processor
C, then send a message to it from processor A. A must be able
to deliver the message despite the fact that A may never have
communicated with C. Worse, 42 may migrate to some new
processor D while the message is in transit.

Non−scalable location determination schema are easy to
imagine3. Processors could be required to broadcast the location
of all new or migrated elements. This solution, however, would
waste bandwidth and require every processor to keep track of
every array element, which may require prohibitive amounts of
storage. Alternately, a central registry could maintain the
locations of all array elements. This conserves bandwidth, but
still may have enormous non−distributed storage requirements
and also presents a serial bottleneck. Our solution conserves
bandwidth, has modest storage requirements, and is well
distributed.

4.1 Scalable Location Determination
To solve the location problem scalably, the system can map any
array index to a home, a processor that always knows where the
corresponding element can be reached. The default index to
home function simply returns the hashed array index modulo the
number of processors; but user−defined functions are also
supported. An element need not reside at its home processor, but
must keep its home informed of its current location. In the
example above, A will map the index 42 to its home processor
B, which will know that 42 is currently living on processor C. 

Thus, A sends its message to 42’s home B, who then forwards
the message to C. Since this forwarding is inefficient, C sends a
(short circuit) routing update back to A, advising it to send
future messages for 42 directly to C.

C B

A

2.Message
Forwarded

3.Routing
  Update

1.Message
Send

Figure 3. Message forwarding among processors: 
A, the source; B, the home; and C, the destination

The forward−free alternative−− A asks B where to send, B
replies, A sends directly to C−− may use less total bandwidth for
large messages, but requires an additional hop in the critical
path. Forwarding also generalizes more smoothly to the
migration case. With either approach, the common case of
repeated communication quickly settles to 1 hop−− that is, zero
added communication overhead.

Since elements and homes are scattered across the machine,
most forwarded messages must cross the machine twice, wasting
cross−section bandwidth. 

A simple generalization of this scheme is to use k separate
mappings to assign k homes to each element. Several homes

3 And frequently implemented in real code!



allow messages to be forwarded via the nearest home, saving
bandwidth, but also requires elements to inform k processors
when they are created or moved. With k=p, every processor
knows the location of every element, eliminating forwarding;
but creations, migrations, and deletions all require a broadcast.
The best value of k depends on the relative frequency of
message forwarding and creations, migrations, and deletions.

4.2 Creation
To create an element, the system need only inform the element’s
home and call the element constructor. If no processor is
explicitly specified, the element is created at its home processor,
which eliminates later message forwarding. It is an error to
attempt to create two elements at the same index.

Infrequently, a message may arrive for an element before the
element has been created. The system buffers these early
messages until the element is finally created. Sending messages
to elements which are never created is an error.

4.3 Deletion
To delete an element, the system invokes the object’s destructor
and informs the element’s home processor. No other processors
are informed. Any routing cache entries on other processors will
remain unused until they eventually expire and are deleted.

Alternative, more complex methods to reclaim deleted element
routing cache entries could be used. When deleting an element,
a processor could broadcast a funeral notice. Elements could
keep track of which processors may have cached their location
and send a funeral notice to each. A systolic body wagon could
propagate through the system at a low priority. These
alternatives all use network bandwidth; while simple expiration
can be completely local and quite efficient.

It is an error to send messages to deleted objects. However, a
new element is allowed to reuse an array index vacated by a
deleted element. 

4.4 Migration
Migration is always under user control−− either explicitly, via a
"migrate" call; or implicitly, by enabling run−time load
balancing. To migrate an element, the system stops the object,
packs it into a message, and sends it to its new location. Once
the element arrives it is unpacked and the element’s home
processor is informed of the element’s new location. 

A message that arrives for a departed element is forwarded to its
last known location, with the usual short circuit routing update
once it arrives. If an element migrates rapidly and repeatedly,
messages may be forwarded an arbitrary number of times (see
Figure 4). Of course, migration is normally infrequent, so this
pathological case is rare.

Processors which may have cached a migrator’s old location are
not informed of the migration. Any stale routing cache entries
will be updated upon the next message sent. This lazy update
prevents unnecessary traffic and keeps migrations fast. The
alternative, to actively inform all others of your current location,
saves time on the first message at the cost of significantly more
expensive migration.

Of course, for the common case of repeated communication
with stationary elements, the system quickly settles to 1 hop.

A

B

C

D

1.Message
Send

5.Routing
  Update

3.Message
Forwarded

Forwarded
4.Message

2.Element
Migrates

Figure 4. Delivery may require several hops
dur ing an element migration.

4.5 Protocol Diagram
Each processor must keep track of each array’s local elements,
the locations of its home elements, and maintain a routing cache
of "last−seen" locations. All this information can efficiently be
kept in a per−processor, per−array hashtable, keyed by the array
index. 

To deliver a message addressed to an array index, the system
looks the index up in its hashtable. The represented element will
be in one of these states:

� Local: the element is on this processor. Messages are
delivered directly to the element.

� Remote: the element was last seen on another processor;
i.e., we have a routing cache entry. Messages for the element
are forwarded to that processor. Non−home remote pointers
expire if they remain unused for too long.

� None: this processor has no idea where the element is
located−− the element is not listed in the hashtable.
Messages for such elements will be sent to their home4;
or if this is the home, buffered.

� Buffer ing: this processor has messages queued for the
element, but the element has not yet been created5. This state
is only used on an element’s home processor.

The element state can change according to the transitions of the
finite state machine of Figure 5.

Cache Expiration

Creation
Creation

Early Message Arrival

Migrate Arrival

Migrate Departure

Routing Update

Remote Local

Buffering

None

Figure 5. Finite state machine for  element information

4 As calculated by mapping the array index in the usual way.
5 This is a rare and short−lived state, but needed because

messages may arrive out of order.



5. COLLECTIVE OPERATIONS
In addition to communicating point−to−point, array elements
often need to participate in global operations such as broadcasts
and reductions. 

5.1 Broadcasts
The semantics of a broadcast are that every existing array
element will receive each broadcast message exactly once.
Since processors have no shared clock, "existing" means created
but not destroyed at the instant the broadcast is received on that
processor. Array broadcasts are thus first sent to each processor,
then delivered to each processor’s current local elements.
However, this is not enough if there are ongoing migrations.

For example, consider the case where a migrating element
leaves processor A before the broadcast is delivered, and arrives
on processor B where the broadcast has already been delivered.
The migrator may miss the broadcast. Or, reversing the
situation, an element may receive a broadcast on processor C,
then migrate to D where the broadcast has not yet arrived.
When the broadcast reaches D, the migrator may erroneously
receive the broadcast again (Figure 6).

A B

CD

Broadcast
Delivered

Miss

Double
Figure 6. Broadcast delivery problems.  Processors A and D
have not received the broadcast; processors B and C have.

To solve these problems, the broadcasts are serialized, and
processors and elements each maintain a broadcast count. When
an element is created, it takes the local processor’s broadcast
count. 

To prevent duplicate delivery, when a broadcast arrives the
system compares its count with each element’s broadcast count.
The system delivers the broadcast only if the count indicates the
element has not yet received that broadcast.

To prevent missed broadcasts, the system maintains a buffer of
past broadcasts. When an element arrives from migration, the
system again compares its broadcast count with the element’s. If
the element missed any broadcasts while migrating, the element
count will be too low, and the element is brought up to date
from the broadcast buffer. The broadcast buffer is periodically
garbage collected on each processor, removing broadcasts older
than any plausible migration time.

5.2 Reductions
A reduction combines many values scattered across a parallel
machine into a single value. A reduction function defines what
"value" means and performs the combination. The semantics of
a reduction are that each existing element will contribute exactly
one value, and the reduction function will be applied to these
values in an unspecified order. As before, "existing" means

created but not deleted at the time the local reduction completes.
Of course, other work may proceed during the reduction.

Reductions can be implemented efficiently by first reducing the
values within each processor (the local reduction), then reducing
these values across processors. As with broadcasts, in the
presence of migration this simple algorithm is not enough.

Local
ReductionLocal

Reduction

BA

Late
Contribution

Migration

Figure 7. Timeline: reduction skips a migrator . We must
ensure the migrator ’s contr ibution is included.

The problem is that during the time a migrating element is in
transit, it belongs to no processor6. That is, the source processor
cannot wait for the migrator’s contribution because it already
left; while the destination processor cannot know it is on the
way (Figure 7). Thus the source and destination processors
might both complete their local reductions, missing the
migrator. However, the reduction must wait until all elements,
even migrators, have contributed.

One sensible solution is to count the number of contributed
values as the reduction data is collected, and not allow the
reduction to complete until the number of values matches the
number of elements. Unfortunately, the total number of
elements is not available on any processor; and a simple sum of
the local element counts will still miss migrating elements.

The approach we use is to sum the net births−− the total number
of elements created on a processor minus the total destroyed on
that processor. Because of migration, this number may be
negative if elements migrate in and are destroyed (e.g., on
"graveyard" processors). 

Since for each processor i,
ni

� ci
� di

Thus �
ni

� �
ci

� di
� �

ci
�

�
di

� ctotal
� dtotal

Summed across all processors, then, the net births gives the total
number of elements created but not yet deleted, which is the
global element count.

Thus the reduction algorithm actually used is:
� At each processor, collect contributed values from local

elements until all current local elements have contributed.
At that point, apply the reduction function to the collected
values and add the result, contribution count, and the current
net births to the across−processor reduction.

� Reduce the values, contribution count, and current net births
across all processors to the root processor.

� As migrators make their late contributions, send their values
directly to the root. Once the contribution count equals the
total net births, return the reduced value to the user.

6 A non−blocking control handoff without an in−between period
is impossible−− it is an n−way handshake problem.



6. PERFORMANCE
We have extensively analyzed the performance of the array
support, as summarized below.

6.1 Theoretical
Notation:

p the number of processors on the parallel machine
n the total number of array elements
l i the number of local array elements on processor i
r i the number of remote elements recently referenced by

processor i
hi the number of elements with processor i as their home

Element creation and deletion, since they only involve the
current processor and the element’s home, require O(1) time and
1 message. Migration requires O(1) time and 2 messages7.
Message delivery may require an unbounded number of
messages, but only if the element migrates as fast as the
message travels. Repeated messages to stationary elements take
O(1) time and 1 message.

The local, element−wise operations during reductions and
broadcasts require time in O(l i) on processor i. The cross−
processor phase of a broadcast or reduction tree requires p−1
messages and completes in logb p hops, with b the tree
branching factor (typically 2 to 16).

The storage consumed by the element hashtable on processor i is
O(l i+r i+hi). If each element communicates with a bounded
number of other elements, r i∈O(l i). If elements and home
processors are distributed relatively uniformly, l i and hi will both
be near n/p. Subject to these assumptions, each processor’s
hashtable requires storage in O(n/p). In the worst case, l i, r i and
hi are all bounded by n, so the storage is still in O(n).

6.2 Single−Processor
The system was implemented on Charm++ [1], which also
includes non−indexable, non−migratable parallel objects called
chares. Table 1 compares the single−processor software
overhead for preparing, scheduling, and receiving a message
using these non−migratable objects and the array elements
described in this paper.

Table 1. Compar ison of software overhead with non−arrays
Type Linux PC8 IBM SP39 Cray T3E10

Chares 0.92 us 1.62 us 2.03 us

Array Elements 1.85 us 4.33 us 9.64 us11

The migration layer adds a few microseconds of overhead to
each message. For grain sizes over a few hundred microseconds,
array elements add negligible overhead.

7 One message transports the element, one updates the home
processor’s routing table.

8 400 MHz AMD K6−3, Linux 2.4.0t10, egcs−2.91.66 −O3
9 375 MHz IBM Power3, AIX 4.3.3, VisualAge C++ 5 −O
10 450 MHz DEC Alpha, UNICOS 2.0.5.44, Cray C++ 3.3.0 −O
11 The Cray C++ compiler does not support templated member

functions, so this version is implemented using function
pointers, which cannot be inlined and are significantly slower.

6.3 Multiple−Processor
Below, we plot the total time taken for various array operations
for varying numbers of processors. In these plots, "Bcast/Redn"
means a broadcast operation reaching every array element
followed by a reduction across all array elements. "Migration"
means the time for an array element to be packed, shipped
across the network, unpacked, and the home processor informed.
"Message" means the time to send a short message from one
array element to another across processors. 

The array elements are distributed in 1D with 16 elements per
processor, scaling up with processors. The operations run on
every element across the machine simultaneously, and are
repeated 1,000 times to factor out startup overhead and include
any induced non−critical−path load. For migration and
messaging, the time reported is the total time divided by 16,000
(giving time per element−message); for broadcast/reduction the
time reported is the total time divided by 1000 (giving total time
per broadcast/reduction cycle). The first data point is with two
processors, so migration is meaningful.

0 8 16 24 32 40 48 56 64

0

200

400

600

800

1000

1200

Bcast/Redn

Migration

Message

Processors

T
im

e 
(u

s)

Figure 8. Time per  ar ray operation for  IBM SP3

0 8 16 24 32 40 48 56 64

0

200

400

600

800

1000

1200

1400

1600

Bcast/Redn

Migration

Message

Processors

T
im

e 
(u

s)

Figure 9. Time per  ar ray operation for  Cray T3E

The system is indeed highly scalable. Theoretically, we expect
the broadcast/reduction time curve to be logarithmic in the
number of processors; and the messaging/migration curves to be
flat. The system meets both theoretical expectations. The slow
message time increase with processors for the T3E is due to the
limitations of its machine architecture.



7. APPLICATION
In an application, an array element may:

� Represent a single data item. This approach may appear
attractive and general, but is usually much too fine−grained
for reasonable performance.

� Represent a group of data items. This is the canonical usage
of array elements, as it leads to good performance. Choose
the number of items to aggregate so the array element grain
size is reasonable.

� Represent a thread, processor, or other object. This approach
is often taken in simulators, emulators, and run−time
support systems.

7.1 Programs
The array support has been used by a number of highly scalable
Charm++ libraries and programs. 

� AMPI [6] virtualizes MPI processors as array elements,
mapping MPI calls to array method invocations, broadcasts,
and reductions. Thus legacy MPI programs, written in C or
Fortran, with minor modifications can take advantage of
automatic load balancing. As described in [6], a large
multiphysics solid rocket simulation code has been run on
AMPI with minimal effort and excellent performance.

� The Charm++ finite−element method framework represents
chunks of a finite element mesh as array elements. The
framework includes Fortran 90 bindings, which are used by
several significant engineering applications. Crackprop, a
3D pressure−driven crack propagation code, is a classic
finite element structures code. A 3D adaptive mesh dendritic
growth metal solidification simulation also uses the
framework.

� POSE, a discrete event simulation framework, uses array
elements as objects in a GVT simulation. 

� A simulator for Blue Gene, an advanced parallel machine
from IBM, simulates Blue Gene processors as array
elements.

8. CONCLUSIONS
We have presented efficient support for general arrays of
communicating objects. The array index is a user−defined
structure, supporting multidimensional, sparse arrays as well as
structures such as trees. Objects may be efficiently created,
deleted, or migrated at any time; and even in the face of these
operations, the system supports array−wide broadcasts and
reductions efficiently.

This system has proved a robust and useful foundation for
several significant applications. Future work on this system will
include: further optimization of the implementation;
implementing the k−homes approach described in section 3.1;
implementing a more aggressive broadcast deletion algorithm;
and implementing the parallel object garbage collector of [15].

9. REFERENCES
[1] L.V. Kalé and S. Krishnan.  "Charm++: Parallel

Programming with Message−Driven Objects", Gregory V.
Wilson and Paul Lu, editors, Parallel Programming using
C++ , pages  175−213. MIT Press, 1996

[2] R. Brunner and L.V. Kalé.  "Adapting to Load on
Workstation Clusters", Proceedings of the Seventh
Symposium on the Frontiers of Massively Parallel
Computation, pages 106−112. IEEE Computer Society
Press, 1999

[3] S. Krishnan and L.V. Kalé.  "A parallel array abstraction
for data−driven objects", Proc. Parallel Object−Oriented
Methods and Applications Conference, February 1996

[4] L.V. Kalé and others.  Charm++ Programmer’s Manual,
http://charm.cs.uiuc.edu/, 2000

[5] L. V. Kalé, S. Kumar, J. DeSouza.  An Adaptive Job
Scheduler for Timeshared Parallel Machines, PPL
Technical Report 00−02, University of Illinois at Urbana−
Champaign, Sept. 2000

[6] M. Bhandarkar, L.V. Kalé, E. Sturler, J. Hoeflinger.
Object−Based Adaptive Load Balancing for MPI
Programs, PPL Technical report 00−03, University of
Illinois at Urbana−Champaign, Sept. 2000

[7] S. Ahuja, N. Carriero, D. Gerlenter.  "Linda and Friends",
IEEE Computer, pages  26−34, August 1986

[8] F. Bodin, P. Beckman, D. Gannon, and others. "Distributed
pC++: Basic Ideas for an Object Parallel Language",
Scientific Programming, Volume 2/Number 3 Fall 1993

[9] A. Chien and W. Dally.  "Concurrent Aggregates" ,
Proceedings of the Second ACM SIGPLAN, March 1990,
Seattle, WA

[10] H. Bal, R. Bhoedjang, R. Hofman, and others. Orca: a
Portable User−Level Shared Object System, Technical
Report IR−408, Vrije Universiteit, Amsterdam, June 1996

[11] M. Barnett, S. Gupta, D. Payne, L. Shuler, R. van de Geijn
and J. Watts. "Interprocessor Collective Communication
Library," Supercomputing 1994, Nov. 1994

[12]  J. Nieplocha, RJ Harrison, and RJ Littlefield. "Global
Arrays: A nonuniform memory access programming model
for high−performance computers", The Journal of
Supercomputing, 10:197−220, 1996

[13] S. Atlas, S. Banerjee, J. C. Cummings, and others
(presented by J. Reynders). "POOMA: A high performance
distributed simulation environment for scientific
applications," Supercomputing 1995, Nov. 1995

[14] M. Lemke, D. Quinlan. "P++, a Parallel C++ Array Class
Library for Architecture−Independent Development of
Structured Grid Applications", ACM SIGPLAN Workshop
1992. pp 21−23

[15] J. Piquer. "Indirect distributed garbage collection: handling
object migration", ACM Trans. Program. Lang. Syst. 18, 5,
pp 615 − 647, Sep. 1996


