Run-time Support for Adaptive Load Balancing

Milind A. Bhandarkar, Robert K. Brunner, and Laxmikant V. Kalé

Parallel Programming Laboratory,
Department of Computer Science,
University of Illinois at Urbana-Champaign, USA
{milind,rbrunner,kale}@cs.uiuc.edu,
WWW home page: http://charm.cs.uiuc.edu/

Abstract. Many parallel scientific applications have dynamic and irreg-
ular computational structure. However, most such applications exhibit
persistence of computational load and communication structure. This
allows us to embed measurement-based automatic load balancing frame-
work in run-time systems of parallel languages that are used to build such
applications. In this paper, we describe such a framework built for the
Converse [4] interoperable runtime system. This framework is composed
of mechanisms for recording application performance data, a mechanism
for object migration, and interfaces for plug-in load balancing strategy
objects. Interfaces for strategy objects allow easy implementation of novel
load balancing strategies that could use application characteristics on
the entire machine, or only a local neighborhood. We present the perfor-
mance of a few strategies on a synthetic benchmark and also the impact
of automatic load balancing on an actual application.

1 DMotivation and Related Work

An increasing number of emerging parallel applications exhibit dynamic and ir-
regular computational structure. Irregularities may arise from modeling of com-
plex geometries, and use of unstructured meshes, for example, while the dynamic
behavior may result from adaptive refinements, and evolution of a physical sim-
ulation. Such behavior presents serious performance challenges. Load may be
imbalanced to begin with due to irregularities, and imbalances may grow sub-
stantially with dynamic changes. We are participating in physical simulation
projects at the Computational Science and Engineering centers of University of
Illinois (Rocket simulation, and Simulation of Metal Solidification), where such
behaviors are commonly encountered.

Load balancing is a fundamental problem in parallel computing, and a great
deal of research has been done in this subject. However, a lot of this research
is focussed on improving load balance of particular algorithms or applications.
General purpose load balancing research deals mainly with process migration in
operating systems and more recently in application frameworks. C++ libraries
such as DOME [1] implement the data-parallel programming paradigm as dis-
tributed objects and allow migration of work in response to varying load condi-
tions. Systems such as CARMI [10] simply notify the user program of the load

imbalance, and leave it to the application process to explicitly move its state to
a new processor. Multithreaded systems such as PM? [9] require every thread to
store its state in the specially allocated memory, so that the system can migrate
the thread automatically. An object migration system called ELMO [3], built on
top of Charm [6, 7], implements object migration mainly for fault-tolerance. Ap-
plications in areas such as VLSI, and Computational Fluid Dynamics (CFD) use
graph partitioning programs such as METIS [8] to provide initial load balance.
However, every such application has to specifically provide code for monitoring
load imbalance and to invoke the load balancer periodically to deal with dynamic
behavior.

We have developed an automatic measurement-based load balancing frame-
work to facilitate high-performance implementations of such applications. The
framework requires that a computation be partitioned into more pieces (typi-
cally implemented as objects) than there are processors, and letting the frame-
work handle the placement of pieces. The framework relies on a “principle of
persistence” that holds for most physical simulations: computational load and
communication structure of (even dynamic) applications tends to persist over
time. For example, even though the load of some object instance changes at
adaptive refinement drastically, such events are infrequent, and the load remains
relatively stable between such events.

The framework can be used to handle application-induced imbalances as
well as external imbalances (such as those generated on a timeshared cluster). It
cleanly separates runtime data-collection and object migration mechanisms into
a distributed database, which allows optional strategies to plug in modularly to
decide which objects to migrate where. This paper presents results obtained us-
ing our load balancing framework. We briefly describe the framework, then the
strategies currently implemented and how they compare on a synthetic bench-
mark, and finally results on a crack-propagation application implemented using
it.

2 Load Balancing Framework

Our framework [2] views a parallel application as a collection of computing
objects which communicate with each other. Furthermore, these objects are
assumed to exhibit temporal correlation in their computation and communi-
cation patterns, allowing effective measurement-based load balancing without
application-specific knowledge.

The central component of the framework 1 is the load balancer distributed
database, which coordinates load balancing activities. Whenever a method of a
particular object runs, the time consumed by that object is recorded. Further-
more, whenever objects communicate, the database records information about
the communication. This allows the database to form an object-communication
graph, in which each node represents an object, with the computation time of
that object as a weight, and each arc is a communication pathway representing

communication from one object to another object, recording number of messages
and total volume of communication for each arc.

The design of Charm++ [5] offers several advantages for this kind of load
balancing. First, parallel programs are composed of many coarse-grained objects,
which represent convenient units of work for migration. Also, messages are di-
rected to particular objects, not processors, so an object may be moved to a new
location without informing other objects about the change; the run-time system
handles the message delivery with forwarding. Furthermore, the message-driven
design of Charm++ means that work is triggered by messages, which are dis-
patched by the run-time system. Therefore, the run-time knows which object is
running at any particular time, so the CPU time and message traffic for each
object can be deposited with the framework. Finally, the encapsulation of data
within objects simplifies object migration.

However, the load balancing framework is not limited to Charm++ only. Any
language implemented on top of Converse can utilize this framework. For this
purpose, the framework does not interact with object instances directly. Instead,
interaction between objects and the load balancing framework occurs through
object managers. Object managers are parallel objects (with one instance on
each processor) that are supplied by the language runtime system. Object man-
agers are responsible for creation, destruction, and migration of language-specific
objects. They also supply the load database coordinator with computational
loads and communication information of the objects they manage. Object man-
agers register the managed objects with the framework, and are responsible for
mapping the framework-assigned system-wide unique object identifier to the
language-specific identifier (such as thread-id in multithreaded systems, chare-id
in Charm++, processor number in MPI etc.)

We have ported a CFD application written using Fortran 90 and MPI with
minimal changes to use our framework using MPI library called ArrayMPI on
top of the Converse runtime system. The ArrayMPI library allows an MPI pro-
gram to create a number of virtual processors, implemented as Converse threads,
which are mapped by the runtime system to available physical processors. The
application program built using this MPI library then executes as if there are
as many physical processors in the system as these virtual processors. The LB
framework keeps track of computational load and communication graph of these
virtual processors. Periodically, the MPT application transfers control to the load
balancer using a special call MPI Migrate, which allows the framework to invoke
a load balancing strategy and to re-map these virtual processors to physical
processors thus maintaining load balance.

3 Load Balancing Strategies

Load balancing strategies are a separate component of the framework. By sep-
arating the data collection code common to all strategies, we have simplified
the development of novel strategies. For efficiency, each processor collects only
a portion of the object-communication graph, that is, only the parts concerning

Strategy

Database Coordinator

/ N

Object Manager 1 Object Manager 2
il N
7 N
(Object B1]) | (Object B3] |
(Object A[1]) Object B[2]

Application

Converse

Fig. 1. Components of the load balancing framework on a processor.

local objects. This gives the strategy the freedom to ignore or locally analyze
part of the graph (to minimize load-balancing overhead), or to collect the graph
all in one place for a more thorough, centralized analysis. The strategy chooses a
number of objects to migrate to improve program efficiency, and those decisions
are handed back to the framework, which packs and migrates the objects to their
new locations.

Once the run-time instrumentation has captured running times and commu-
nication graph, it is necessary to have a re-mapping strategy in place, which
will attempt to produce an improved mapping. This is a multi-dimensional opti-
mization problem, as it involves minimizing both the communication times and
load-imbalances. Producing an optimal solution is not feasible, as it is an NP-
hard problem. We have developed and experimented with several preliminary
heuristic strategies, which we describe next.

Greedy Strategy: The simplest strategy is a greedy strategy. It organizes all
objects in decreasing order of their computation times. All the processors are
organized in a min-heap based on their assigned loads. The algorithm repeat-
edly selects the heaviest un-assigned object, and assigns it to the least loaded
processor, updating the loads, and re-adjusting the heap. Although this strat-
egy is capable of taking the communication costs into account while computing
processor loads, it does not explicitly aim at minimizing communication. For NV
objects, this strategy has the re-mapping complexity of O(N log N). Also, since

this strategy does not take into account the current assignments of objects, it
may result in a large number of migration requests.

Refinement Strategy: The refinement strategy aims at minimizing the num-
ber of objects that need to be migrated, while improving load balance. It only
considers the objects on overloaded processors. For each overloaded processor,
the algorithm repeatedly moves one of its objects to an underloaded processor,
until its load is below acceptable overload limit. Acceptable overload limit is
a parameter specified to this strategy and may vary based on the overhead of
migration. Typically this overload limit is between 1.02 and 1.05 which governs
by what factor any processor may exceed the average load.

Metis-based Strategy: Metis [8] is a graph partitioning program and a library
developed at University of Minnesota. It is mainly used for partitioning large
structured or unstructured meshes. It provides several algorithms for graph-
partitioning. The object communication graph that is obtained from the load
balancing framework is presented to Metis in order to be partitioned onto the
available number of processors. The objective of Metis is to find a reasonable
load balance, while minimizing the edgecut, where edgecut is defined as the total
weight of edges that cross the partitions, which in our case denotes number of
messages across Processors.

Figure 2 shows time taken per iteration of a synthetic benchmark when run
with load balancing strategies described above. This benchmark consists of 32
objects with different loads and relatively low communication, initially mapped
in a round-robin fashion to 8 processors. Load balancing is performed after every
500 iterations. All strategies improve performance, with Metis-based strategy
leading to the best performance.

A load balancing strategy may improve performance of a parallel applica-
tion, but if the load balancing step consumes more time than is gained by load
redistribution, it may not be worthwhile. Today’s parallel scientific applications
run for hours. Thus it may be possible for the load balancers to spend more
time in finding a better load distribution. All the three load balancing strategies
described above take less than 0.5 seconds for load balancing 1024 objects on 8
processors. Thus a moderate decrease in time per iteration justifies use of any of
these strategies. Also, owing to the principle of persistence, load balance deteri-
orates very slowly with drastic changes occurring very infrequently. Thus it may
be possible to employ multiple strategies in such situations: One thorough load
re-distribution in case of drastic changes, and a refinement strategy for slower
load variations. We are currently experimenting with such combined strategies.

Also, note that all the strategies presented above take into consideration
the application performance characteristics across all the processors. For ease
of implementation, we used a global synchronizing barrier. Thus, all objects are
made to temporarily stop computation while the load balancer re-maps them.
However, this is usually not necessary. One can use a local barrier (barrier syn-
chronization among objects on a single processor) for load database update, and
another local barrier for performing load re-distribution, thus reducing the over-
heads associated with global synchronization. We are also implementing load

balancing strategies that take only a partial object communication graph (based
on a few neighboring processors) into account.

1
No Strategy ---%-—
Refinement Strategy ---x---
Greedy Strategy —+—
Metis Strategy &
08 B
K
X
& 06« i
g \
1]
3]
a
2 i
S 04p ot \ . A T
-
0.2 | o
0 Il Il Il Il Il
0 200 400 600 800 1000 1200

Iteration Index

Fig. 2. Comparison of various load balancing strategies

4 Application Performance

In order to evaluate the framework, we implemented a Finite Element applica-
tion that simulates pressure-driven crack propagation in structures. The physical
domain is discretized into a finite set of triangular elements. Corners of these
elements are called nodes. In each iteration, displacements are calculated at the
nodes from forces contributed by surrounding elements. Typically, the number
of elements is very large, and they are split into a number of chunks distributed
across processors. In each iteration of simulation, forces on boundary nodes are
communicated across chunks, where they are combined in, and new displace-
ments are calculated. To detect a crack in the domain, more elements are in-
serted between some elements depending upon the forces exerted on the nodes.
These added elements, which have zero volume, are called cohesive elements.
At each iteration of the simulation, pressure exerted upon the solid structure
may propagate cracks, and therefore more cohesive elements may have to be in-
serted. Thus, the amount of computation for some chunks may increase during
the simulation. This results in severe load imbalance.

This application, originally written in sequential Fortran90, was converted
to a C++-based FEM framework being developed by authors. This framework

presents a template library, which takes care of all the aspects of parallelization
including communication and load balancing. The application developer simply
provides the data members of the individual nodes and elements, and a function
to calculate the values of local nodes, and a way to combine them.

Figure 3 presents results of automatic load balancing of the crack propaga-
tion simulation on 8 processors of SGI Origin2000. Immediately after the crack
develops (between 10 and 15 seconds) in one of the chunks, the computational
load of that chunk increases. Since the other chunks are dependent on node
values from that chunk, they cannot proceed with computation until an itera-
tion of the heavy chunk is finished. Thus, the number of iterations per second
drops considerably. After this, the Metis-based load balancer is invoked twice
(at 28 and 38 seconds). It uses the runtime load and communication information
collected by the load database manager to migrate chunks from the overloaded
processor to other processors, leading to improved performance. (In figure 3, this
is apparent from increased number of iterations per second.)

14 T T
Crack Prop with Auto LDB ——

12 + B

Iterations Per Second

Time

Fig. 3. Crack Propagation with Automatic Load Balancing. Finite Element Mesh con-
sists of 183K nodes.

5 Conclusion

In this paper, we described a measurement-based automatic load balancing
framework implemented in the Converse interoperable runtime system. This
framework allows for easy implementation of novel load balancing strategies,

while automating the tasks of recording application performance characteristics
as well as load redistribution. A few strategies have been implemented and their
performance on a synthetic benchmark have been compared. A real finite ele-
ment method application was ported to use our load balancing framework, and
its performance improvement has been demonstrated. Based on the encouraging
results with such real applications, we are currently engaged in developing a more
comprehensive suite of load balancing strategies, and in determining suitability
of different strategies for different kinds of applications.

References

10.

. Jose Nagib Cotrim Arabe, Adam Beguelin, Bruce Lowekamp, Erik Seligman, Mike

Starkey, and Peter Stephan. Dome: Parallel programming in a heterogeneous multi-
user environment. Technical Report CS-95-137, Carnegie Mellon University, School
of Computer Science, April 1995.

. Robert K. Brunner and Laxmikant V. Kalé. Adapting to load on workstation

clusters. In The Seventh Symposium on the Frontiers of Massively Parallel Com-
putation, pages 106-112. IEEE Computer Society Press, February 1999.

N. Doulas and B. Ramkumar. Efficient Task Migration for Message-Driven Parallel
Execution on Nonshared Memory Architectures. In Proceedings of the International
Conference on Parallel Processing, August 1994.

L. V. Kale, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan, and Joshua
Yelon. Converse: An Interoperable Framework for Parallel Programming. In Pro-
ceedings of the 10th International Parallel Processing Symposium, pages 212-217,
April 1996.

L. V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming with Message-
Driven Objects. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming
using C++, pages 175-213. MIT Press, 1996.

L. V. Kalé, B. Ramkumar, A. B. Sinha, and A. Gursoy. The CHARM Parallel
Programming Language and System: Part I — Description of Language Features.
IEEE Transactions on Parallel and Distributed Systems, 1994.

L. V. Kalé, B. Ramkumar, A. B. Sinha, and V. A. Saletore. The CHARM Par-
allel Programming Language and System: Part II — The Runtime system. IEEE
Transactions on Parallel and Distributed Systems, 1994.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. TR 95-035, Computer Science Department, Univer-
sity of Minnesota, Minneapolis, MN 55414, May 1995.

R. Namyst and J.-F. Méhaut. PM?: Parallel multithreaded machine. A computing
environment for distributed architectures. In Parallel Computing: State-of-the-Art
and Perspectives, Proceedings of the Conference ParCo’95, 19-22 September 1995,
Ghent, Belgium, volume 11 of Advances in Parallel Computing, pages 279-285,
Amsterdam, February 1996. Elsevier, North-Holland.

J. Pruyne and M. Livny. Parallel processing on dynamic resources with CARMI.
Lecture Notes in Computer Science, 949:259-77, 1995.

