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Abstract

Computational power, at least at the high end, can be thought of as a utility, similar
to electricity or water. To make this metaphor work requires a sophisticated “power
distribution” infrastructure. The “Grid”, popularized by the Globus project, is an
example of such an infrastructure. To function efficiently, the producers of compute
Power — the parallel servers — must be able to reorganize their jobs dynamically
so as to respond to demands for computational power quickly, and maximize their
utility. We are developing a framework, called faucets, that aims at facilitating this
process. This paper focuses on a system at the heart of this framework: an adaptive
manager for timeshared parallel machines that can shrink and expand its jobs to a
variable number of processors dynamically. This manager has been implemented for
workstation clusters. The paper describes the faucets framework, the design of the
adaptive job manager, and preliminary performance data.

1 Introduction

Due to advances in hardware, desktop computers, including low-end parallel machines, can
be used to solve many computational problems within required response times. Yet, there
are many other computationally intensive applications that require much larger parallel
machines. These applications tend to be in scientific and engineering simulations, as well as
in emerging areas such as operations research, data-mining, decision support and corporate
planning. Large parallel computers, shared by multiple users, are commonly used for running
such applications. We expect this usage pattern to continue because of the economies of
scale, advantages of specialization, and advantages of pooling of shared resources that such
an arrangement yields. For example, an application of a single user may require the memory
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of a 1000 processor machine to fit the simulation model, yet the user may need to run the
program only for a few days per month, on the average, on such a machine. Such a user
may not be able to afford to buy and maintain a single large machine. Also, users of a
parallel application are not necessarily experts in maintaining a parallel machine. So, the
trend towards specialization argues for having separate organizations for managing parallel
computers.

The scenario that we envisage for the future is one in which computational power is
“produced” in much the same manner as other utilities such as power and water are produced.
Consumers of this power will have access to variable amounts of power on demand. This
scenario is propounded and explored by the “Grid” project[6], and the associated frameworks
such as Globus [7].

In this scenario, the users will submit jobs from their desktop computers, typically via
web browsers. Users will have certain quality-of-service requirements, such as the total
memory requirement, and deadlines. The “grid” will run the job on some available parallel
computer, uploading files to it, and downloading results back to the desktop, when necessary.
The parallel computers themselves will be run by for-profit centers which will charge for the
compute power used by applications in some fashion. !

To make this scenario work effectively, some technical obstacles must be overcome. Chal-
lenging issues such as authentication, security, the maintenance of a directory of available
servers, and the ability to run a single job on multiple parallel computers (which may be
necessary for some of the extremely high-end applications) are being handled by other grid-
oriented projects such as Globus[7]. Such projects have already developed infrastructure that
supports commonly needed tasks such as uploading and downloading of files from desktops
to parallel computers. However, some additional issues need further research.

From the point of view of the server, it is desirable for it to be able to implement
strategies that will maximize its “profit” (or wutility in case of in-house servers). In the
current technology, the options for a server are limited: it can manage its queue of waiting
jobs in some priority order, and sometimes it can checkpoint (or terminate, and restart later)
an already running job in favor of a high priority job. As we will show in the paper, these
options are not adequate to optimize its utility metric.

We describe an adaptive job scheduler system that allows servers to shrink and expand
existing jobs to different numbers of processors at runtime, thus providing the needed flexibil-
ity for managing the parallel server. Although prior systems, such as DRMS [9], have aimed
at such an ability, we will show how our scheme is more general, more widely applicable,
and potentially more efficient.

In the next section we describe the underlying Charm++ framework, and especially its
load balancing capabilities, that enables our adaptive job scheduler. In section 3 we describe
the design and implementation of the job scheduler. Section 4 discusses the advantages of the

1One can then imagine that organizations such as NSF will pay the centers indirectly, by funding appli-
cation scientists for the compute power they plan to use. This may bring about additional efficiencies in
private management of such centers.



scheduler capable of shrinking and expanding running jobs. Performance data demonstrating
the efficiency of the implemented system is presented in section 5. Section 6 compares our
approach to other relevant systems implemented in the past. Section 7 concludes with a
summary and future work.

2 The Underlying Framework: Charm

Since the Charm load balancing framework is at the heart of our approach, we describe it
next.

The Charm framework supports multithreading and dynamic load balancing for applica-
tions written in MPI, Charm++, as well as other experimental languages. The framework is
based on the Converse run-time library, which among other things, supports multithreading
and portability across a wide variety of parallel machines including workstation clusters.

The load balancing capabilities are based on multi-partition decomposition (which is
similar to virtualization). The user program breaks down the parallel applications into a
large number of medium-grained pieces, or chunks. The number of chunks is chosen to be
independent of the number of processors, based solely on the need to amortize communication
overhead. Thus, one chooses the smallest possible grain size that is adequate. This typically
leads to the number of chunks being much larger than the number of processors. In an MPI
program, the user specifies a large number of MPI processes, which are implemented as user-
level threads by AMPI [1], our adaptive implementation of MPI. In Charm-++, the program
consists of a large number of communicating objects. Both AMPI and Charm++ allow
and support migration of their chunks (threads and objects, respectively) from processor to
Processor.

The load balancing system automatically instruments the run-time system, so as to mon-
itor the amount of time spent in each user level entity. It also monitors the communication
pattern between these entities. (The instrumentation overhead is small, and can be turned
on for a time window just before load balancing). Periodically, or on demand, it uses the
collected statistics to remap the chunks to processors, achieving better load balance, and
possibly reduced communication overhead.

The efficacy of the Charm load balancing framework has been demonstrated in several
contexts. For example, NAMD, a parallel molecular dynamics program used routinely by
biophysicists, uses this framework to achieve scalability. It has achieved unprecedented
speedups for this application (1,252 on 2k processors), leading to a Gordon Bell award entry
(finalist at SC2000) [3]. We have also used this framework to deal with external interference
[4] on parallel jobs running on clusters: specifically, the system detects and reacts quickly
to ameliorate performance degradation caused when another user logs on to (and starts a
computation on) one of the workstations being used by a parallel job.

The capabilities of this load balancing framework provided the initial idea, as well as the
implementation mechanism, for the adaptive job scheduler, which is described next.



3 The Adaptive Job Scheduler

The job scheduler engages in two separate tasks: it participates in quality-of-service contract
bids with outside users, and it enqueues and schedules the jobs it has committed to. It is
the second task that we focus on in this paper. Thus, we assume that before accepting a
job, the scheduler has made sure that it can meet the quality of service requirements.

At the minimum, the job’s QoS requirements include the minimum and maximum number
of processors the job can run on, an estimated number of CPU-seconds required by it, and
a deadline before which it must be completed. It may also include such information as
per-processor maximum memory requirements, and estimated parallel efficiency.

Given this, the objective of the scheduler is simply to maximize its utility metric while
ensuring that the quality of service requirements are met. For the relatively simple QoS
contracts described above, the utility metric is simply the overall processor utilization. (More
complex contracts may specify a differential weighing system that rewards faster completion
of jobs, for example.)

The scheduling decisions are taken at the following control points.

1. A new job arrives.
2. A running job terminates.
3. An alarm set by the scheduler itself is activated.

At each one of these control points, the scheduler may decide to initiate one or more of
the following actions: 1) Start a new job. 2) Checkpoint and suspend a running job. 3)
Shrink a running job to a smaller number of specified processors. 4) Expand a running job
to a larger number of specified processors.

Most current job schedulers use only the first two actions while scheduling jobs.? The
ability to shrink and expand jobs is a great asset to our job scheduler. We now describe the
implementation of our system.

3.1 Implementation

The Charm++ /Converse runtime system provides object migration and load balancing. The
shrink /expand mechanism is implemented on top of this framework, so the parallel jobs are
expected to be written in Charm++, MPI[1], or other languages ported to Charm++.

As shown in Figure 1, the system has three major components:the scheduler to sched-
ule the parallel jobs, the runtime support which helps in migrating the load, and the job-
submission client to remotely submit the jobs and monitor them.

2The checkpoint system we plan to use is more sophisticated than traditional ones, and allows the check-
pointed job to be restarted on a different number of processors [11].
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Figure 1: System Components.

The scheduler (one per workstation cluster) runs as a server listening on a well-known
port. A client connects to it and requests the execution of a job. After some negotiation,
the scheduler might accept the job. It then schedules the job using the following algorithm.

The scheduler maintains a table to keep track of which job is currently assigned to each
PE. Let Job, be a new job, with parameters priority,, minPE,, and maxPE,,.

1. If the number of free PE’s > maxPFE,,, we give the job all maxPE, PE’s.

2. Otherwise, we determine whether we can give Job,, the desired max PFE,, by shrinking
lower priority jobs.

3. Otherwise, we try suspending lower priority jobs.

4. Otherwise, we perform Step 2 and then Step 3 trying to obtain at least min PE,, PE’s.
5. Otherwise, we cannot give Job, even minPFE,, so we enqueue it.

6. Increase the priority of queued jobs to avoid starvation and raise alarms if necessary.

The scheduler starts the job and informs it which processors to use by passing it a bit-
vector, of length the maximum number of processors in the system. All bits representing the
processors allocated to the job are set to 1, and others are cleared to zero. Subsequently, the
scheduler communicates with the running job via the CCS (Converse Client Server) protocol,
which is a mechanism provided by the Converse system. To ask a parallel job to shrink or
expand, the scheduler sends it (via CCS) a similar bit vector with the new processors set.



The bit-vector handler. When a job receives a bit-vector from the scheduler via CCS,
the bit-vector handler is invoked. The handler sets the bit-vector in the load balancer. At
the next load-balancing cycle, the load balancer will use the newly set bit vector for the job.

The load-balancer.

We have modified the load-balancer described in Section 2 to use the bit-vectors described
above to expand and shrink jobs. The advantage of this is that parallel job remains load-
balanced. But the shrink and expand mechanism has a latency of one load-balancing cycle.
In future implementations the handler will migrate objects out of a deallocated processor
immediately after being invoked.

The object manager. The object manager is a Charm-++ component that performs
object migration. The load balancer asks the object manager to migrate the objects to the
PE’s represented by the bit vector. During the process of migration the object manager
buffers any messages to the migrating object.

A residual process is left on emptied processors. The overhead of this process is very
small as shown in Section 5. The load consists of a transient period of forwarding messages,
and periodic (but nominal) participation in global operations such as reductions and load
balancing.

4 Discussion

We believe that the Shrink/Expand capability makes the Adaptive Job Scheduler more flex-
ible, thereby providing several benefits. The key fact is that nodes that would be unused on
a traditional queuing system (TQS) can be used by expanding one or more jobs. Further, a
fully occupied cluster can be squeezed a little bit to fit in an important job. A TQS could
achieve this only by suspending an existing job, which might have the undesired side-effect
of freeing more nodes than are needed.

e An Adaptive Job Scheduler can utilize the system better while responding to higher
priority jobs. In a typical queueing system, a higher priority job will preempt a lower
priority job. With the Adaptive Job Scheduler, the lower priority job is resized to run
on fewer CPU’s, if possible.

e An Adaptive Job Scheduler can improve system utilization.

With traditional jobs, the fixed number of nodes needed can sometimes lead to wasted
nodes if two jobs together need more nodes than are available. The Adaptive Job
Scheduler can sometimes avoid such waste. For example, consider two jobs J1 and
J2 on a 128-node cluster. If J1 needs 96 nodes and J2 requires 64 nodes, then nodes
will be wasted (unless nodes are time-shared). If, however, these were Shrink/Expand
Job, then if J1 could run on, say, 80+ nodes, and J2 could use 40+ nodes; they could
both run, and when one completed, the other would grow to use more CPU’s, thereby
improving system utilization.



o [dle-cycles jobs. One can now conceive of running a job just to use idle cycles. This
job would have a very low priority, and would expand whenever higher-priority jobs
were not using some nodes, (e.g. one can run a SETI screen-saver for clusters!)

e Usually, parallel programs have lower efficiency when run on more nodes. In such
cases, a side-effect of shrinking down a job is that its efficiency improves. Thus running
multiple jobs on the same cluster using time-sharing or FIFO might reduce throughput
when compared with running the same jobs using an Adaptive Job Scheduler. For
example, J1 and J2, both needing from 32 to 64 nodes, can be run FIFO on a 64-node
cluster; or they can be run using an Adaptive Job Scheduler, which might allocate 32
nodes to each. If the jobs run at higher efficiency on 32 nodes, the completion time of
both the jobs together will go down compared to the first case.

However, the average response time of the jobs might worsen (go up). e.g. J1 and J2
take 120 time units on 32 PE’s, and 75 on 64 PE’s. The average response time is:

— using FIFO: ((75 — 0) + (150 — 0))/2 = 112.5
— assigning both equally: 120

The compute-provider might therefore give a discount to jobs with lower response time
demands.

One must mention, however, that there are cases in which average response time actu-
ally improves (goes down). e.g. J1 and J2 both take 100 time units each when run on
32 PE’s, and 75 time units when run on 64 PE’s. It they both start at the same time
on an empty 64 PE cluster, the average response time is:

— using FIFO: ((75 — 0) + (150 — 0))/2 = 112.5
— assigning both equally: 100

Since our algorithm specified above does not shrink equal priority jobs, we will not
obtain the benefits of this case; however, we will not under-perform FIFO with pre-
emption.

e An Adaptive Job Scheduler could respond better to small-duration jobs.

Currently, small jobs have to wait their turn. The wait may take a long time if a big
job is running. The alternative it to suspend the big job in favor of the small one.
One disadvantage of this is the overhead of suspending and restarting a big job; and
the other disadvantage is that the small job may not need all the nodes, which means
nodes will be wasted.

With the Adaptive Job Scheduler, the small job can be given a chance to run by
shrinking the running big job, and expanding it again when the small job completes.
This avoids the overhead of swapping out the big job; and it can potentially better
utilize the nodes.



5 Experimental Results

We conducted experiments on our scheduler, by running a molecular dynamics program
similar to [2], and we obtained the following average times for shrinking and expanding of
a single job. The job was a molecular dynamics simulation which simulated over 400,000
molecules. The total memory requirement of the job was about 44.8 MB. We ran the job

on the Turing Linux Cluster [12] and obtained the following times for job shrinking and
expanding.

Processors before and | Time on Time on
after shrink ethernet, s | Myrinet, s
64 to 32 2.802 N.A.
32 to 16 1.315 .330
16 to 8 1.164 .362
8 to4 1.477 435

Table 1: Shrink Time for MD Program (400K atoms, 44.8 MB)

Since the cluster uses Ethernet all the data transfer is serialized, hence the transfer

time first decreases due to parallel handling of messages and then increases due to collision
between nodes.
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Figure 2: Residual Load after Shrinking.



When shrunk, the job leaves a residual load on the processors it vacates as described in
Section 3.1. Figure 2 shows the load on one of the processors after the job has been vacated.
This load is zero most of the time but has periodic peaks of 1.96 percent. This will cause
other applications negligible interference. Work is being done to avoid this.
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Figure 3: Proof of Concept of Shrink/Expand.

Figure 3 shows the shrinking and expanding of Jobl directed by the arrival and com-
pletion of Job2. On arrival of Job2, Jobl first start to share the load and at the next
load-balancing cycle it is shrunk. When Job2 finishes, SIGCLD is sent to the scheduler by
the operating system, and the scheduler asks Jobl to expand. Despite the interference by
Jobl, Job2 still gets most of the CPU, as shown in Figure 3.

6 Related Work

In this section we present other efforts in dynamic processor allocation to applications.

The initial efforts towards dynamic processor reconfiguration were mainly in the direction
of dynamic process migration and load balancing. Condor [8] supports runtime migration
of a process from one workstation to another, through checkpointing. This system only
migrates sequential programs executing on one processor. Condor also supports the concept
of negotiation, where each client bids for certain units of time.

Dome [10] is an object oriented distributed framework where applications are loadbal-
anced by migrating objects from heavily loaded processors to lightly loaded ones. Dome
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does not support the concept of shrink and expand.

The ability to shrink and expand the number of processors allocated to a job was imple-
mented by AMP (Adaptive Multiblock PARTI) framework [5]. This framework runs SPMD
Fortran programs. Each processor that the program is started on can run an active process
or a skeleton process. The active processes have all the load and the skeleton processes run
in the background. To expand, the load is moved from the active to the skeleton tasks. The
maximum number of parallel processes is the number of processors the program is started
with. During a shrink or an expand the whole data is redistributed to the new set of active
processors and the communication schedules are updated. The data redistributed is mainly
the shared arrays.

DRMS [9] is another system that provides SPMD programs to reconfigure themselves
dynamically. It is built on top of the SOP (schedulable and observable points) model. In
this model the parallel program is examined at these SOP’s and modified. If the number
of tasks in the program is changed after the SOP, then it is a reconfiguration point. On
reconfiguration all the global data is redistributed. The global data is an array of basic
datatypes which is ordered as block, block-cyclic etc. Redistribution can be a very long
process for irregular data processor mapping, so programs can specify a valid list of the
permitted number of processors.

The DRMS scheduler as described in [13] categorizes jobs as small, medium or large
(depending on the execution time they take). Large and medium jobs are allowed to be
reconfigured while short jobs are not. The scheduling schemes try to minimize the average
response times of the jobs and also the response time variance. Care is taken to prevent
starvation of small jobs.

The redistribution of data, divides the data evenly among all the processors in use, but
this does not imply that all the processors being used by the job are loadbalanced. Moreover
no job priorities are considered.

Our framework differs from these projects in its broader applicability, (e.g. beyond data-
parallel programs,) and its use of measurement-based load balancing, which is more accurate
than even redistribution of data.

7 Summary and Future Work

We described the motivation, design, and implementation of an adaptive job scheduler for
parallel machines. The scheduler builds upon a measurement based load balancer, and can
be used by applications written in a variety of languages including MPI and Charm++. The
original load balancers, which aimed at resolving application induced load imbalances, were
extended to shrink, expand or to change the sets of processors allocated to a job. The load
balancing strategies accomplish this by migrating user level entities (such as MPI threads
and Charm++ objects) across processors. Mechanisms for facilitating socket based commu-
nication between a parallel job and outside processes, as well as for controlling the behavior
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of load balancers via bit vectors of available processors were implemented and validated. We
also described a simple job scheduling strategy, and some preliminary performance data.

The system described is a part of a wider faucets project, which aims at supporting the
metaphor of computing power as a utility. Our future work will include expanded notions
of quality-of -service contracts, and correspondingly sophisticated scheduling strategies that
attempt to optimize more complex utility metrics than just processor utilization. The current
system has been tested on clusters of workstations. We plan to port and evaluate the system
on dedicated parallel machines, such as IBM SPx, which allows socket based communication
with outside processes. We expect such a port to be straightforward (to be completed before
the final version of the paper). Integrating the job scheduler with an automatic check pointing
system, rather than relying on application-specific check pointing, is another direction for
future work.

The faucets framework will include sophisticated quality-of-service contracts, competitive
bidding processes, web based submission, monitoring and interaction with parallel jobs, along
with services such as authentication, and file upload and downloads. We plan to utilize the
common components in the Globus framework, and interoperate with Globus, so that the
job scheduler runs as a Globus server.
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