BOUNDS ON WEAK SCATTERING

GERALD E. SACKS

In Memory of Jon Barwise

CONTENTS

1.	Introduction	1
2.	Scott Analysis and Rank	4
3.	Small Δ_0^{ZF} Sets	6
4.	Enumeration of Models for Scattered Theories	7
5.	Absoluteness of Vaught's Conjecture	12
6.	Bounds on Scattered Theories	14
7.	Iterated Classical Bounding	17
8.	Enumeration of Models under Weak Scattering	18
9.	Bounds on Weakly Scattered Theories	23
10.	Further Results and Open Questions	27
References		27

1. INTRODUCTION

This paper has two themes less disparate than they seem at first reading:

Extending classical descriptive set theoretic results that impose bounds on suitably defined functions from ω^{ω} into ω_1 .

Extending and clarifying some early results on Scott ranks of countable structures sketched in $[11]^1$.

Let F be a function, possibly partial, from ω^{ω} into ω_1 . A typical classical bounding theorem says the range of F is bounded by a countable ordinal if the graph of F has a suitable definition. For example, the graph of Fis boldface Σ_1^1 ; in this formulation the graph of F is viewed as a subset of $\omega^{\omega} \times \omega_1$ by requiring each value of F to be a well ordering of ω . The effective version of the theorem says that the bound is an ordinal below ω_1^p , the least

Date: December 9, 2004.

¹⁹⁹¹ Mathematics Subject Classification. 03C70, 03D60.

Key words and phrases. weakly scattered theories, bounds on Scott rank.

Many thanks to Julia Knight for her patience and encouragement.

 $^{^{1}}$ [11] was a hasty writeup of a talk given at the 1971 meeting of the International Congress of Logic, Methodology and Philosophy of Science. Some details absent from [11] but needed here are presented below.

ordinal not recursive in p, the real parameter in the boldface Σ_1^1 definition of F.

One way to reach the effective bound is to reduce the classical result to a special case: there is a Turing reducibility procedure $\{e\}$ such that for all $X \in \omega^{\omega}$, $\{e\}^{X,p}$ is a well ordering of ω whose ordinal height is F(X). Thus

$$F(X) < \omega_1^{X,p} \tag{1.1}$$

for all $X \in \omega^{\omega}$, and then a recursion-theoretic trick "averages out" the X in (1.1) leaving an ordinal below ω_1^p to bound the range of F.

A model theoretic approach to effective bounds is the path taken in this paper. A sketch may help to clarify later sections. A(p) is the least Σ_1 admissible set with p as a member. Z is a $\Sigma_1^{A(p)}$ definable set of sentences of $\mathcal{L}_{\omega_1,\omega}$ coded by elements of A(p) such that every model M of Z has the following properties.

- (1) The ordinals recursive in p form a proper initial segment of the ordinals in the sense of M.
- (2) There is an $X_0 \in M$ such that for all $\gamma < \omega_1^p$, $F(X_0) > \gamma$.
- (3) $p \in M$ and M is a Σ_1 admissible structure.

Assume the range of F is not bounded by an ordinal below ω_1^p . Then each A(p)-finite subset of Z (i.e. each subset of Z that is a member of A(p)) is consistent, and so Z has a model by Barwise compactness. With the addition of "effective" type omitting, as in Grilliot[2] or Keisler[4], Z has a model M that omits ω_1^p , but has non-standard ordinals greater than all standard ordinals less than ω_1^p . Then

$$\omega_1^{p,X_0} \le \omega_1^p,\tag{1.2}$$

otherwise ω_1^p is recursive in $\langle p, X_0 \rangle$ and so $\omega_1^p \in M$. But then $\omega_1^{p,X_0} = \omega_1^p$ and $F(X_0) \geq \omega_1^{p,X_0}$ by property (2) of Z, which contradicts (1.1).

The search for a bounding theorem that extends the classical result seems hopeless at first. An extension has to talk about an F that allows $F(X) \geq \omega_1^{X,p}$, but $\omega_1^{X,p}$, as a function of X, is unbounded. Model theory comes to the rescue. Every countable structure \mathcal{A} has a Scott rank[12], sr(\mathcal{A}), an ordinal that can be as high as $\omega_1^{\mathcal{A}} + 1$ (see section 2 for elaboration).

Let T be a countable theory. A reasonable starting assumption on T is

$$\forall \mathcal{A}[\mathcal{A} \models T \longrightarrow sr(\mathcal{A}) \le \omega_1^{\mathcal{A}}]. \tag{1.3}$$

An ingenious example (MA) devised by Makkai[7] shows that (1.3) is not enough. Examination of (MA) and its illuminative extensions in Knight & Young[5] leads to two further assumptions on T. The first, *effective k-splitting*, is technical and perhaps peripheral and is discussed further in sections 9 and 10. The second, *weakly scattered*, is central. The theory T_M associated with (MA) satisfies (1.3) and has properties similar to effective k-splitting. In addition for every Σ_1 admissible countable α , T_M has a model

 \mathcal{A} such that

$$\omega_1^{\mathcal{A}} = \alpha = sr(\mathcal{A}). \tag{1.4}$$

Corollary 9.2 says: if T is weakly scattered, satisfies (1.3), and has effective k-splitting, then there is a countable bound on the Scott ranks of the countable models of T; the effective version provides a bound less than the first Σ_2 admissible ordinal relative to T in contrast to the classical case (1.1) where the effective bound on the range of F is less than ω_1^p , the first Σ_1 admissible ordinal relative to p.

The notion of weakly scattered is inspired by Morley's concept of scattered. Let \mathcal{L} be a countable first order language, \mathcal{L}_0 a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ and $T \subseteq \mathcal{L}_0$ a theory (i.e. a set of sentences) with a model. For (a) and (b) below, let \mathcal{L}' be any countable fragment of $\mathcal{L}_{\omega_1,\omega}$ extending \mathcal{L}_0 , and T'any finitarily consistent, ω -complete theory contained in \mathcal{L}' and extending T. (The notions of finitary consistency and ω -completeness for fragments are reviewed at the beginning of Section 4.) T is said to be **scattered** iff (a) and (b) hold.

(a) For all n > 0 and all T', $S_n T'$, the set of all *n*-types over T', is countable.

(b) For all \mathcal{L}' , the set $\{T' \mid T' \subseteq \mathcal{L}'\}$ is countable.

The above definition of scattered is equivalent to the one in Morley's ground breaking [9]. T is said to be **weakly scattered** iff (a) holds. By [9] a scattered theory can have at most ω_1 many countable models. In contrast a weakly scattered theory can have 2^{ω} many countable models.

Robin Knight[6] has devised an extraordinary counterexample to Vaught's conjecture (VC), a scattered first order theory with ω_1 many countable models. VC has a precise formulation in section 5.

In [11] the following bounding result was established: if T is scattered and satisfies (1.3), then T has only countably many countable models; furthermore every countable model of T has a countable copy in $L(\beta, T)$ for some $\beta < \sigma_2^T$, the least α such that $L(\alpha, T)$ is Σ_2 admissible. Hence Vaught's conjecture holds for T if T satisfies (1.3). The proofs given in [11] were somewhat sketchy, so missing details needed in later sections of this paper are given in sections 3 through 5. In the light of Robin Knight's counterexample, results for scattered theories yield information about models of counterexamples to VC. Theorem 4.9(vii) says: if Vaught's conjecture fails for T, then T has a model of cardinality ω_1 not elementarily equivalent in the sense of $\mathcal{L}_{\omega_1,\omega}$ to any countable model (Harnik & Makkai[3]). Theorem 5.3 describes an ω_1 -sequence of atomic and saturated models that every counterexample must possess. Section 5 includes a related absoluteness result implicit in Morley[9]: VC(T), Vaught's Conjecture for T, is a $\Sigma_1^{L(\omega_1^{L(T)},T)}$ predicate of T, hence Σ_2^1 .

Steel[13], as reported in [7], used an assumption stronger than (1.3) to prove VC(T). In Section 2 an arbitrary countable structure \mathcal{A} is associated with a theory $T_{\omega,\mathcal{A}}^{\mathcal{A}}$ contained in a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ canonically

generated from \mathcal{A} . By an argument of Nadel[10], \mathcal{A} is a homogeneous model of $T^{\mathcal{A}}_{\omega^{\mathcal{A}}}$. Steel's assumption, is equivalent to: for every \mathcal{A} a model of $T, T^{\mathcal{A}}_{\omega^{\mathcal{A}}}$ is ω -categorical. Assumption (1.3) is equivalent to: for every \mathcal{A} a model of T, \mathcal{A} is an atomic model of $T^{\mathcal{A}}_{\omega_{1}^{\mathcal{A}}}$. Sacks & Young (circa 1999) produced a structure \mathcal{A} such that \mathcal{A} is an atomic model of $T_{\omega_1^{\mathcal{A}}}^{\mathcal{A}}$, but $T_{\omega_1^{\mathcal{A}}}^{\mathcal{A}}$ is not ω -categorical. (In addition $\omega_1^{\mathcal{A}} = \omega_1^{CK}$ and $T_{\omega_1^{\mathcal{A}}}^{\mathcal{A}}$ is a Δ_1 subset of $L(\omega_1^{CK})$.)

Sections 7 through 9 are devoted to bounding for weakly scattered theories.

2. Scott Analysis and Rank

This section revisits [11] as promised in section 1. Scott[12] showed an arbitrary countable structure \mathcal{A} with underlying first order language \mathcal{L} can be characterized up to isomorphism by a single sentence of $\mathcal{L}_{\omega_1,\omega}$. In essence there is a countable fragment $\mathcal{L}^{\mathcal{A}}$ of $\mathcal{L}_{\omega_1,\omega}$ such that \mathcal{A} is the atomic model of $T^{\mathcal{A}}$, the complete theory of \mathcal{A} in $\mathcal{L}^{\mathcal{A}}$. Nadel[10] pointed the way to a canonical choice for $\mathcal{L}^{\mathcal{A}}$.

 $L(\omega_1^{\mathcal{A}}, \mathcal{A})$ is Gödel's L relativised to \mathcal{A} as an element², and chopped off at $\omega_1^{\mathcal{A}}$, the least γ such that $L(\gamma, \mathcal{A})$ is Σ_1 admissible. Let

$$\mathcal{L}^{\mathcal{A}}_{\omega_{1}^{\mathcal{A}},\omega} = \mathcal{L}_{\omega_{1},\omega} \cap L(\omega_{1}^{\mathcal{A}},\mathcal{A}).$$
(2.1)

Nadel[10] showed:

 \mathcal{A} is a homogeneous model of its complete theory $T^{\mathcal{A}}_{\omega^{\mathcal{A}},\omega}$ in $\mathcal{L}^{\mathcal{A}}_{\omega^{\mathcal{A}},\omega}$. (2.2)

It follows that \mathcal{A} is the atomic model of its complete theory in

$$\mathcal{L}_{\omega_1,\omega} \cap L(\omega_1^{\mathcal{A}} + 1, \mathcal{A}), \qquad (2.3)$$

since the types over $T^{\mathcal{A}}_{\omega_{1}^{\mathcal{A}},\omega}$ realized in \mathcal{A} are first order definable over $L(\omega_{1}^{\mathcal{A}},\mathcal{A})$ and so become atoms of the complete theory of \mathcal{A} contained in (2.3).

A Σ_1 recursion defines a canonical choice for $\mathcal{L}^{\mathcal{A}}$ and yields the definition of Scott rank for \mathcal{A} .

 $\mathcal{L}_{0}^{\mathcal{A}} = \mathcal{L}.$ $\mathcal{L}_{\lambda}^{\mathcal{A}} = \bigcup \{ \mathcal{L}_{\delta}^{\mathcal{A}} \mid \delta < \lambda \} \text{ for limit } \lambda.$ $T_{\delta}^{\mathcal{A}} = \text{complete theory of } \mathcal{A} \text{ in } \mathcal{L}_{\delta}^{\mathcal{A}}.$ $\mathcal{L}_{\delta+1}^{\mathcal{A}} = \text{least fragment } \mathcal{L}^{+} \text{ of } \mathcal{L}_{\omega_{1},\omega} \text{ such that } \mathcal{L}^{+} \supseteq \mathcal{L}_{\delta}^{\mathcal{A}}, \text{ and for each } \mathcal{L}_{\delta}^{\mathcal{A}} = \mathcal{L}_{\delta}^{\mathcal{A}}.$ n > 0, if $p(\vec{x})$ is a non-principal *n*-type of $T^{\mathcal{A}}_{\delta}$ realized in \mathcal{A} , then the conjunction

$$\land \{\mathcal{F}(\overrightarrow{x}) \mid \mathcal{F}(\overrightarrow{x}) \in p(\overrightarrow{x})\}$$

is a member of \mathcal{L}^+ .

Note that if \mathcal{A} is isomorphic to \mathcal{B} , then $\mathcal{L}_{\delta}^{\mathcal{A}} = \mathcal{L}_{\delta}^{\mathcal{B}}$ and $T_{\delta}^{\mathcal{A}} = T_{\delta}^{\mathcal{B}}$ for all δ . For some $\delta < \omega_1$, all the n - types of $T_{\delta}^{\mathcal{A}}$ realized in \mathcal{A} are principal. To see this, fix γ and suppose some non-principal type $p_{\gamma+1}$ of $T_{\gamma+1}^{\mathcal{A}}$ is realized

²Strictly speaking, the relativisation is to the transitive closure of \mathcal{A} .

in \mathcal{A} . Let p_{γ} be the restriction of $p_{\gamma+1}$ to $T_{\gamma}^{\mathcal{A}}$. Since $p_{\gamma+1}$ is non-principal, there is a formula $\mathcal{G}(\vec{x})$ of $\mathcal{L}_{\gamma+1}^{\mathcal{A}}$ such that both

$$\exists \overrightarrow{x} [p_{\gamma}(\overrightarrow{x}) \land \mathcal{G}(\overrightarrow{x})] \text{ and } \exists \overrightarrow{x} [p_{\gamma}(\overrightarrow{x}) \land \neg \mathcal{G}(\overrightarrow{x})]$$

belong to $T_{\gamma+1}^{\mathcal{A}}$. Then there are $n - tuples \overrightarrow{b}$ and \overrightarrow{c} of \mathcal{A} such that

$$\mathcal{A} \models [p_{\gamma}(\overrightarrow{b}) \land \mathcal{G}(\overrightarrow{b})], \text{ and } \mathcal{A} \models [p_{\gamma}(\overrightarrow{c}) \land \neg \mathcal{G}(\overrightarrow{c})].$$

Thus a distinction between \overrightarrow{b} and \overrightarrow{c} is made by a formula of $\mathcal{L}_{\gamma+1}^{\mathcal{A}}$ but not by any formula of $\mathcal{L}_{\gamma}^{\mathcal{A}}$. Since \mathcal{A} is countable, only countably many distinctions can be made.

Let $d_{\mathcal{A}}$ be the least $\delta < \omega_1$ such that every distinction ever made is made by a formula of $\mathcal{L}^{\mathcal{A}}_{\delta}$. Then

$$\mathcal{A}$$
 is the atomic model of $T_{d_{\mathcal{A}}+1}^{\mathcal{A}}$. (2.4)

The **Scott Rank** of \mathcal{A} is defined by

$$sr(\mathcal{A}) = least \ \alpha[\mathcal{A} \ is \ the \ atomic \ model \ of \ T^A_{\delta}].$$
 (2.5)

If \mathcal{A} is isomorphic to \mathcal{B} , then $sr(\mathcal{A}) = sr(\mathcal{B})$. Nadel's proof of (2.2)(pg. 273 of [10]), sketched below, also shows

$$A is a homogeneous model of T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}.$$
 (2.6)

Hence $d_{\mathcal{A}} \leq \omega_1^{\mathcal{A}}$, and so

$$sr(\mathcal{A}) \le \omega_1^{\mathcal{A}} + 1.$$
 (2.7)

 $\mathcal{L}^{\mathcal{A}}_{\delta}$ and $T^{\mathcal{A}}_{\delta}$, as functions of $\delta < \omega_1^{\mathcal{A}}$, are $\Sigma_1^{L(\omega_1^{\mathcal{A}},\mathcal{A})}$, i.e. their graphs are Σ_1 definable subsets of $L(\omega_1^{\mathcal{A}},\mathcal{A})$. Since the formulas of $\mathcal{L}^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ and $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ are "enumerated" in increasing order of complexity,

$$\mathcal{L}^{\mathcal{A}}_{\omega_{1}^{\mathcal{A}}} \text{ and } T^{\mathcal{A}}_{\omega_{1}^{\mathcal{A}}} \text{ are } \Delta_{1}^{L(\omega_{1}^{\mathcal{A}},\mathcal{A})}.$$
 (2.8)

To prove (2.6), let $p(\vec{x})$ be an n - type, and $q(\vec{x}, y)$ an (n+1) - type, of $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$, and $\vec{a}, \vec{b}, n - tuples$ of \mathcal{A} . Suppose $p(\vec{x}) \subseteq q(\vec{x}, y)$ and

$$\mathcal{A} \models [p(\overrightarrow{a}) \land p(\overrightarrow{b}) \land \exists yq(\overrightarrow{a}, y)].$$
(2.9)

For homogeneity, a $d \in \mathcal{A}$ is required so that $\mathcal{A} \models q(\overrightarrow{b}, d)$. Suppose no such d exists. Let $q_{\delta}(x, y)$ be the restriction of q(x, y) to $\mathcal{L}_{\delta}^{\mathcal{A}}$.

$$\{q_{\delta}(x,y) \mid \delta < \omega_1^{\mathcal{A}}\} \text{ is } \Sigma_1^{L(\omega_1^{\mathcal{A}},\mathcal{A})}.$$
 (2.10)

For each $d \in \mathcal{A}$, there is a $\delta < \omega_1^{\mathcal{A}}$ such that $\mathcal{A} \models \neg q_{\delta}(\overrightarrow{b}, d)$. Since δ can be defined as a $\Sigma_1^{L(\omega_1^{\mathcal{A}}, \mathcal{A})}$ function of d, the Σ_1 admissibility of $L(\omega_1^{\mathcal{A}}, \mathcal{A})$ implies there is a $\delta_{\infty} < \omega_1^{\mathcal{A}}$ such that $\mathcal{A} \models \forall y \neg q_{\delta_{\infty}}(\overrightarrow{b}, y)$. But then

$$\mathcal{A} \models \forall y \neg q(\overrightarrow{a}, y). \tag{2.11}$$

A typical use of Scott rank in conjunction with Barwise compactness and Grilliot type omitting is as follows.

Proposition 2.1. Suppose $L(\alpha, T)$ is countable and Σ_1 admissible. If for each $\beta < \alpha$, T has a model of Scott rank $\geq \beta$, then T has a countable model of T such that.

$$sr(\mathcal{A}) \ge \omega_1^{T,\mathcal{A}} = \alpha.$$
 (2.12)

Note that the \mathcal{A} of (2.12) must have Scott rank either α or $\alpha + 1$ by (2.7). Forcing the outcome to be $\alpha + 1$ is a problem addressed in this paper but far from resolved.

3. Small
$$\Delta_0^{ZF}$$
 Sets

The following is one of many variations (e.g. Makkai[8]) on a theme initiated by Barwise[1], an extension of a recursion theoretic fact needed for the enumeration of models of both scattered and weakly scattered theories. The variation below was mentioned and used in [11]. The recursion theoretic fact is: if a set S of reals is Σ_1^1 and has cardinality less that 2^{ω} , then there exists a hyperarithmetic real H such that every member of S is Turing reducible to H; in addition an index for H can be computed uniformly from an index for S. The latter uniformity is key to establishing the Σ_1 character of the enumeration of models in sections 4 and 8. Let D(x, y) be a Δ_0^{ZF} lightface formula, and A a countable Σ_1 admissible set. Suppose $p, b \in A$. Define

$$S_{p,b} = \{x \mid x \subseteq b \land D(x,p)\}$$

$$(3.1)$$

Theorem 3.1. If $S_{p,b} \notin A$, then the cardinality of $S_{p,b}$ is 2^{ω} .

Proof. Let the language \mathcal{L} consist of: \in , bounded quantifiers $\forall x \in y$ and $\exists x \in y$, an individual constant \underline{e} for each $e \in A$, and a special individual constant \underline{c} different from all the \underline{e} 's. Z is the following Δ_1^A set of sentences of \mathcal{L} .

- (1) the atomic diagram of A: $\underline{d} \in \underline{e} \leftrightarrow d \in e$; $\underline{d} \notin \underline{e} \leftrightarrow d \notin e$ for $d, e \in A$.
- (2) $\underline{c} \subseteq \underline{b}, D(\underline{c}, p), \text{ and } \underline{c} \neq \underline{e} \text{ for all } e \in A.$

Suppose Z is not consistent in the sense of $\mathcal{L}_{\omega_1,\omega}$. Then there is a $z_0 \in A$ such that $z_0 \subseteq Z$ and z_0 is not consistent. z_0 consists of some $A_0 \in A$ such that A_0 is a subset of the atomic diagram of A, and

$$\underline{c} \subseteq \underline{b}, \ D(\underline{c}, p), \ \text{and} \ \{\underline{c} \neq \underline{e} \mid e \in f\}$$

$$(3.2)$$

for some $f \in A$. Since z_0 is inconsistent, there is a deduction $E \in A$ of

$$[\underline{c} \subseteq \underline{b} \land D(\underline{c}, \underline{p})] \longrightarrow \underline{c} \in f \tag{3.3}$$

from A_0 . But then $S_{p,b} \subseteq f$ and so $S_{p,b} \in A$.

Suppose Z is consistent. Then a Henkin style construction in ω many stages yields a model of Z, hence an actual $c \in (S_{p,b} - A)$. At stage j, a sentence σ of \mathcal{L} is considered, and σ_j is either σ or $\neg \sigma$ so long as $Z \cup \{\sigma_i \mid$

 $i \leq j$ is consistent. If σ_j is an infinite disjunction (e.g. σ_j begins with " $\exists x \in \underline{e}$ "), then some component of σ_j is added immediately.

The construction can be varied so 2^{ω} many c's are produced. Let t be a one-one map of ω onto $\{\underline{g} \mid g \in b\}$. After σ_j is chosen, and before σ_{j+1} is chosen, create a split as follows. Choose an n so that $(t(n) \in \underline{c})$ and $(t(n) \notin \underline{c})$ are each consistent with $Z \cup \{\sigma_i \mid i \leq j\}$. Then the construction takes 2^{ω} different paths, and different paths produce different c's. Such splits always exist. Otherwise there is a j such that $Z \cup \{\sigma_i \mid i \leq j\}$ is consistent and for each n there is a deduction $D_n \in \mathcal{A}$ from $Z \cup \{\sigma_i \mid i \leq j\}$ of either $(t(n) \in \underline{c})$ or $(t(n) \notin c)$. The Σ_1 admissibility of A puts all the D_n 's in some $D \in A$. D decides which elements of \underline{b} belong to \underline{c} . Hence there is an $e \in A$ such that $(\underline{c} = \underline{e})$ is deducible from $Z \cup \{\sigma_i \mid i \leq j\}$, a contradiction. \Box

Corollary 3.2. $S_{p,b}$ is countable $\longleftrightarrow S_{p,b} \in A$.

Theorem 3.3. There exists a lightface Σ_1^{ZF} formula $\mathcal{F}(u, v, w)$ such that for any countable Σ_1 admissible set A and any $p, b, s \in A$:

$$S_{p,b} \text{ is countable} \longrightarrow A \models \exists w \mathcal{F}(p, \underline{b}, w)$$
 (3.4)

$$(\forall s \in A) \ \{ [A \models \mathcal{F}(\underline{p}, \underline{b}, \underline{s})] \longrightarrow s = S_{p,b} \}.$$

$$(3.5)$$

Proof. The existence of \mathcal{F} is implicit in the proof of Theorem 3.1. Z is inconsistent iff $S_{p,b}$ is countable iff $S_{p,b} \in \mathcal{A}$. The statement

$$A \models \mathcal{F}(p, \underline{b}, \underline{s}) \tag{3.6}$$

says: (i) there exist $A_0 \in A$ and E such that $A_0 \subseteq$ atomic diagram of A, and E is a deduction of (3.3) from A_0 ; and (ii)

$$s = \{x \mid x \in f \land x \subseteq b \land D(x, p)\}.$$
(3.7)

4. Enumeration of Models for Scattered Theories

Let \mathcal{L}_0 be a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ for some countable first order language \mathcal{L} , and $T \subseteq \mathcal{L}_0$ a theory with a model. Throughout this section Tis scattered as defined in Section 1. For convenience assume T mentions all formulas of \mathcal{L}_0 ; thus \mathcal{L}_0 and \mathcal{L} are recoverable from T.

Review of ω -completeness and finitary consistency for fragments. Let \mathcal{L}' be a countable fragment of $\mathcal{L}_{\omega_1,\omega}$, and $T' \subseteq \mathcal{L}'$ a set of sentences. T' is ω - complete in \mathcal{L}' iff (1) and (2) hold.

(1) For every sentence $\mathcal{F} \in \mathcal{L}'$, either $\mathcal{F} \in T'$ or $(\neg \mathcal{F}) \in T'$.

(2) For any sentence $(\vee_i \mathcal{F}_i) \in T'$, there is an *i* such that $\mathcal{F}_i \in T'$.

T' is **finitarily consistent** iff no contradiction can be derived from T'using only the finitary rules of $\mathcal{L}_{\omega_1,\omega}$. The infinitary step being avoided is deriving an infinite conjunction by deriving each of its components. T' is ω -consistent iff for any sentence $(\vee_i \mathcal{F}_i) \in \mathcal{L}'$, if $T' \cup \{\vee_i \mathcal{F}_i\}$ is finitarily consistent, then there is an *i* such that $T' \cup \{\mathcal{F}_i\}$ is finitarily consistent.

Proposition 4.1. If T' is finitarily consistent and ω -complete, then T' has a model.

Proof. Note that T' is ω -consistent. The model is constructed by extending T' to a finitarily consistent and ω - complete set of sentences that includes Henkin axioms. At each stage of the construction, the set of sentences up to that point is ω -consistent.

Proposition 4.2. Suppose for all $\beta \leq \gamma < \lambda$, T_{β} is finitarily consistent and ω -complete in the fragment \mathcal{L}_{β} , $T_{\beta} \subseteq T_{\gamma}$, and $\mathcal{L}_{\beta} \subseteq \mathcal{L}_{\gamma}$. Then $\cup \{T_{\beta} \mid \beta < \lambda\}$ is finitarily consistent and ω -complete in the fragment $\cup \{\mathcal{L}_{\beta} \mid \beta < \lambda\}$.

End of Review.

Morley[9] showed that the scatteredness of T implies the countable models of T can be arranged in a hierarchy of height at most ω_1 based on Scott rank with at most countably many models on each level. The current section revisits [11] and presents a Σ_1 enumeration of the countable models of T with a recursion-theoretic eye on some constructive details. The enumeration is a continuous tree $\mathcal{TR}(\mathcal{T})$ with at most ω_1 levels, and at most countably many nodes on each level. Each node is a theory T' finitarily consistent and ω complete in a fragment $\mathcal{L}_{T'}$ with $T \subseteq T'$ and $\mathcal{L}_0 \subseteq \mathcal{L}_{T'}$. Each T' has an atomic model, and the class of all such models is the class of all countable models of T.

The enumeration of $\mathcal{TR}(T)$ is as follows.

Level 0. T' is a node iff T' is a finitarily consistent and ω -complete extension of T in the fragment $\mathcal{L}_0 (= \mathcal{L}_{T'})$.

Level λ (limit). T' is a node iff there is a sequence T_{β} ($\beta < \lambda$) such that: T_{β} is on level β ; $T_{\beta} \subseteq T_{\gamma}$ ($\beta < \gamma < \lambda$); and $T' = \bigcup \{T_{\beta} \mid \beta < \lambda\}$. $\mathcal{L}_{T'} = \bigcup \{\mathcal{L}_{T_{\beta}} \mid \beta < \lambda\}$.

Level $\delta + 1$. Suppose S is a node on level δ , i.e. a finitarily consistent theory ω -complete in its fragment \mathcal{L}_S . If S is ω -categorical, then S has no successors on level $\delta + 1$. Otherwise S has a non-principal *n*-type $p(\vec{x})$. Let \mathcal{L}'_S be the least fragment of $\mathcal{L}_{\omega_1,\omega}$ extending \mathcal{L}_S and containing the conjunction

$$\wedge \{ \mathcal{F}(\overrightarrow{x}) \mid \mathcal{F}(\overrightarrow{x}) \in p(\overrightarrow{x}) \}$$

$$(4.1)$$

for every non-principal *n*-type $p(\vec{x})$ of *S* for all n > 0. *T'* is a successor of *S* on level $\delta + 1$ if *T'* is a finitarily consistent and ω -complete extension of *S* in the fragment \mathcal{L}'_{S} (= $\mathcal{L}_{T'}$).

Proposition 4.3. If $\beta < \omega_1$, then $\mathcal{TR}(T)$ has only countably many nodes on level β .

Proof. By induction on β . Level 0 is countable by clause (b) of the definition of scattered. Suppose S is on level δ . Assume \mathcal{L}_S is countable. The set of all non-principal *n*-types of S is countable by clause (a) of the definition of scattered, hence \mathcal{L}'_S is countable. The set of all successors of S on level $\delta + 1$ is countable by clause (b) of the definition of scattered.

Let T' be any node on the countable limit level λ . Let \mathcal{L}_{λ} be the least fragment extending all the \mathcal{L}_S 's for all theories S on all levels below λ . By induction \mathcal{L}_{λ} is countable. Let T'' be any finitarily consistent and ω complete extension of T' in \mathcal{L}_{λ} . The set of all T'''s is countable, so the set of all T''s is countable.

Let $\mathcal{TR}(T) \upharpoonright \beta$ be the restriction of $\mathcal{TR}(T)$ to the levels below β .

Proposition 4.4. (i) If $\beta < \alpha < \omega_1$ and $L(\alpha, T)$ is Σ_1 admissible, then

$$(\mathcal{TR}(T) \restriction \beta) \in L(\alpha, T).$$

(ii) There exists a lightface Σ_1^{ZF} formula $\mathcal{G}(u, v, w)$ such that for all scattered T, all countable Σ_1 admissible $L(\alpha, T)$, and all $b \in L(\alpha, T)$:

$$(\mathcal{TR}(T) \upharpoonright \beta) = b \iff L(\alpha, T) \models \mathcal{G}(T, \beta, b).$$

Proof. By a $\Sigma_1^{L(\alpha,T)}$ recursion that relies on theorem 3.3. Suppose

$$(\mathcal{TR}(T) \upharpoonright (\delta+1)) \in L(\alpha, T), \tag{4.2}$$

and theory S is on level δ . The set of non-principal types of S is the unique $s \in L(\alpha, T)$ that satisfies the $\Sigma_1 \mathcal{F}$ of theorem 3.3 with p and b both equal to S. The statement "q is a non-principal type of S" is lightface Δ_0^{ZF} and corresponds to the formula D(x, y) of (3.1). The fragment \mathcal{L}'_S was defined just before equation (4.1). The set of successors of S on level $\delta+1$ is obtained from theorem 3.3 with parameters $\langle p, b \rangle$ equal to $\langle S, \mathcal{L}'_S \rangle$.

Let \mathcal{A} be a countable model of T (a scattered theory as above). The Scott analysis of \mathcal{A} differs little from its **tree analysis**:

 $T(0, \mathcal{A}) = \text{theory of } \mathcal{A} \text{ in } \mathcal{L}_0, \text{ and } \mathcal{L}_{T(0, \mathcal{A})} = \mathcal{L}_0.$ $T(\lambda, \mathcal{A}) = \cup \{T(\beta, \mathcal{A}) \mid \beta < \lambda\}.$ $\mathcal{L}_{T(\lambda, \mathcal{A})} = \cup \{\mathcal{L}_{T(\beta, \mathcal{A})} \mid \beta < \lambda\}.$ $\mathcal{L}_{T(\lambda, \mathcal{A})} = \cup \{\mathcal{L}_{T(\beta, \mathcal{A})} \mid \beta < \lambda\}.$

 $\mathcal{L}_{T(\delta+1,\mathcal{A})} = \mathcal{L}'_{T(\delta,A)}$ (defined similarly to \mathcal{L}'_S on level $\delta + 1$ of $\mathcal{TR}(T)$ above).

 $T(\delta + 1, \mathcal{A}) = \text{theory of } \mathcal{A} \text{ in } \mathcal{L}_{T(\delta + 1, \mathcal{A})}.$

Recall from section 2 the definition of $d_{\mathcal{A}}$, the distinction rank of \mathcal{A} , and the argument that the Scott rank of \mathcal{A} is either $d_{\mathcal{A}}$ or $d_{\mathcal{A}} + 1$. Clearly there is a $\delta < \omega_1$ such that for all n, any distinction made between n-tuples of \mathcal{A} by a formula of $\mathcal{L}_{T(\omega_1,\mathcal{A})}$ is made by a formula of $\mathcal{L}_{T(\delta,\mathcal{A})}$. The tree rank of \mathcal{A} , is defined by

$$tr(\mathcal{A}) = \text{least } \delta[\mathcal{A} \text{ is the atomic model of } T(\delta, \mathcal{A})].$$
 (4.3)

Proposition 4.5. $tr(\mathcal{A}) \leq sr(\mathcal{A})$.

Proof. $\mathcal{L}^{\mathcal{A}}_{\delta}$ was defined just after equation 2.3. By induction on δ , $\mathcal{L}^{\mathcal{A}}_{\delta} \subseteq \mathcal{L}_{T(\delta,\mathcal{A})}$. Thus $T^{\mathcal{A}}_{sr(\mathcal{A})} \subseteq T(sr(\mathcal{A}),\mathcal{A})$. \mathcal{A} is an atomic, hence homogeneous model of $T^{\mathcal{A}}_{sr(\mathcal{A})}$, and so \mathcal{A} is an atomic model of $T(sr(\mathcal{A}),\mathcal{A})$. \Box

Proposition 4.6. Suppose $\mathcal{A} \models T$ and $\mathcal{L}(\alpha, \langle T, \mathcal{A} \rangle)$ is Σ_1 admissible. Then

$$tr(\mathcal{A}) < \alpha \longrightarrow sr(\mathcal{A}) < \alpha.$$

Proof. Suppose not. Then D, the set of all distinctions between n-tuples (all n > 0) of \mathcal{A} made by formulas of $\mathcal{L}_{T(tr(\mathcal{A}),\mathcal{A})}$, belongs to $\mathcal{L}(\alpha, \langle T, \mathcal{A} \rangle)$ by proposition 4.4. And there is an unbounded $\Sigma_1^{L(\alpha, \langle T, \mathcal{A} \rangle)}$ map of D into α , a violation of the Σ_1 admissibility of $\mathcal{L}(\alpha, \langle T, \mathcal{A} \rangle)$. The map carries each distinction $d \in D$ to the least δ such that d is made by some formula of $\mathcal{L}_{\delta}^{\mathcal{A}}$.

T can be scattered up to a point. $\mathcal{TR}(T)$ is said to be **scattered below** β if the notion of scattered enumeration succeeds for T on all levels below β . To be more precise, $\mathcal{TR}(T)$ has only countably many nodes (perhaps none) on each level below β .

Proposition 4.7. Suppose $\alpha < \omega_1$, $L(\alpha, T)$ is Σ_1 admissible, T is scattered below $(\alpha + 1)$, and T has a model of Scott rank $\geq \beta$ for all $\beta < \alpha$. Then there exists a theory T_{α} on level α of $\mathcal{TR}(T)$ such that T_{α} is $\Delta_1^{L(\alpha,T)}$.

Proof. By proposition 4.6 $\mathcal{TR}(T)$ has nodes on all levels below α , if an \mathcal{A} can be found that satisfies the hypotheses of proposition 4.6 and also $sr(\mathcal{A}) \geq \alpha$. To find \mathcal{A} through Barwise compactness, consider the following set Z of sentences.

(Z1) Introduce a constant \underline{e} to name each $e \in L(\alpha, T)$. Add the atomic diagram (in the sense of $\mathcal{L}_{\omega_1,\omega}$) of $L(\alpha, T)$ to Z. For each $\beta < \alpha$,

$$\forall x [x \in \underline{\beta} \longleftrightarrow \forall \{x = \underline{\gamma} \mid \gamma < \beta\}]$$

$$(4.4)$$

is a typical member of (Z1). Any model of (Z1) is an end extension of $L(\alpha, T)$.

(Z2) Introduce a new constant \underline{d} , and add sentences saying \underline{d} is an ordinal greater than β for each $\beta < \alpha$.

(Z3) Add $\overline{\mathcal{A}} \models T$ and $sr(\mathcal{A}) > \beta$ for each $\beta < \alpha$.

(Z4) Add the axioms for Σ_1 admissibility.

Let M be a model of Z that omits α but extends $L(\alpha, T)$ as in [2] or [4]. $L(\alpha, \langle T, \mathcal{A} \rangle)$ is Σ_1 admissible, otherwise $\alpha \in M$. (Z3) insures $sr(\mathcal{A}) \geq \alpha$.

Let T' denote an arbitrary node below level α . Call T' unbounded if T' has extensions to theories on arbitrarily high levels below α . T can be regarded as an unbounded node.

Suppose T' is an unbounded node below level β for some $\beta < \alpha$; then T' has an unbounded extension on level β . Otherwise the Σ_1 admissibility of $L(\alpha, T)$ implies T' is bounded.

There exists a $\beta_0 < \alpha$ and an unbounded node T_{β_0} on level β_0 such for all $\beta \in (\beta, \alpha)$, T_{β_0} has a unique unbounded extension on level β . Otherwise a tree \mathcal{U} of unbounded nodes can be constructed such that \mathcal{U} is isomorphic to the binary branching tree $2^{<\omega}$, and the branches of \mathcal{U} define a continuum of nodes on some level $\alpha_0 \leq \alpha$ of $\mathcal{TR}(T) \upharpoonright (\alpha + 1)$.

The set S_{ub} of unbounded nodes above T_{β_0} form an expanding sequence whose union is the desired T_{α} . To see S_{ub} is $\Delta_1^{L(\alpha,T)}$, let N_{γ} be the set of all nodes on level γ extending T_{β_0} for each $\gamma \in (\beta_0, \alpha)$. N_{γ} , as a function of γ , is $\Sigma_1^{L(\alpha,T)}$ by proposition 4.4. $(N_{\gamma} - S_{ub}) \in L(\alpha,T)$ since $N_{\gamma} \cap S_{ub}$ has just one element. There is a $\Sigma_1^{L(\alpha,T)}$ function that takes each node $e \in (N_{\gamma} - S_{ub})$ to a bound on the levels occupied by extensions of e. But then there is a strict upper bound $b < \alpha$ on the levels occupied by extensions of members of $(N_{\gamma} - S_{ub})$. b singles out the unique member of $N_{\gamma} \cap S_{ub}$.

Proposition 4.8. Suppose $\alpha \leq \omega_1$, $L(\alpha, T)$ is Σ_2 admissible, T is scattered below α , and T has models of arbitrarily high Scott rank less than α . Then there exists a theory T_{α} on level α of $\mathcal{TR}(T)$ such that T_{α} is $\Delta_1^{L(\alpha,T)}$.

Proof. Similar to that of proposition 4.7. The only difference is in the handling of \mathcal{U} . Then and now \mathcal{U} can be defined by a $\Sigma_2^{L(\alpha,T)}$ recursion of length ω , since the set of unbounded nodes is $\Pi_1^{L(\alpha,T)}$. But now the Σ_2 admissibility of $L(\alpha,T)$ implies $\mathcal{U} \in L(\alpha,T)$, and so the branches of \mathcal{U} define a continuum of nodes on some level $\alpha_0 < \alpha$ of $\mathcal{TR}(T)$.

Two \mathcal{L} -structures are said to be $\mathcal{L}_{\omega_1,\omega}$ -equivalent if they satisfy the same sentences of $\mathcal{L}_{\omega_1,\omega}$. (Recall: if \mathcal{A} is countable and $\mathcal{L}_{\omega_1,\omega}$ -equivalent to \mathcal{B} , then \mathcal{A} is $\mathcal{L}_{\infty,\omega}$ -equivalent to \mathcal{B} .)

Theorem 4.9. Suppose Vaught's conjecture fails for T. Then there exist T_{β} , \mathcal{A}_{β} and \mathcal{L}_{β} ($\beta \leq \omega_1$) such that:

(i) If $\beta < \omega_1$, then T_{β} is an ω -complete theory in the countable fragment \mathcal{L}_{β} . (ii If $\beta \leq \gamma \leq \omega_1$, then $T_{\beta} \subseteq T_{\gamma}$, $\mathcal{A}_{\beta} \subseteq \mathcal{A}_{\gamma}$ and $\mathcal{L}_{\beta} \subseteq \mathcal{L}_{\gamma}$. (iii) If $\lambda(\text{limit}) \leq \omega_1$, then $T_{\lambda} = \cup \{T_{\beta} \mid \beta < \lambda\}$ and $\mathcal{A}_{\lambda} = \cup \{\mathcal{A}_{\beta} \mid \beta < \lambda\}$.

(iv) T_{ω_1} is $\Delta_1^{L(\omega_1,T)}$ definable.

(v) If $\beta \leq \omega_1$, then \mathcal{A}_{β} is an atomic model of T_{β} .

(vi) If $\beta < \omega_1$, then $\mathcal{A}_{\beta+1}$ realizes a non-principal type of T_{β} .

(vii) (Harnik & Makkai[3]) The cardinality of \mathcal{A}_{ω_1} is ω_1 , and \mathcal{A}_{ω_1} is not $\mathcal{L}_{\omega_1,\omega}$ -equivalent to any countable model.

Proof. A uncountable model \mathcal{A}_{ω_1} of T is constructed so that it is not $\mathcal{L}_{\omega_1,\omega}$ equivalent to any countable model. By proposition 4.8, there is a theory T_{ω_1} on level ω_1 of $\mathcal{TR}(\omega_1)$ such that T_{ω_1} is $\Delta_1^{L(\omega_1,T)}$. Thus $T_{\omega_1} = \bigcup \{T_{\gamma} \mid \gamma < \omega_1\}$,
and $(\gamma \leq \delta) \to (T_{\gamma} \subseteq T_{\delta})$. p, the parameter used in the $\Delta_1^{L(\alpha,T)}$ definition
of T_{ω_1} , belongs to $L(\alpha_0,T)$ for some $\alpha_0 < \omega_1$.Define

$$K = \{ \beta \mid \alpha_0 < \beta < \omega_1 \land L(\beta, T) \preccurlyeq_1 L(\omega_1, T) \}.$$

 $(X \preccurlyeq_1 Y \text{ means } X \text{ is a } \Sigma_1^{ZF} \text{ substructure of } Y.)$ Let $\{\gamma_{\delta} \mid \delta < \omega_1\}$ be an increasing enumeration of K. Then $L(\gamma_{\delta}, T)$ is Σ_1 admissible, and so

$$T_{\gamma_{\delta}} = T_{\omega_1} \cap L(\gamma_{\delta}, T)$$

by proposition 4.4(i). Also $T_{\gamma_{\delta}}$ is $\Delta_1^{L(\gamma_{\delta},T)}$ definable via the same Δ_1 definition that works for T_{ω_1} , since $p \in L(\gamma_{\delta},T) \preccurlyeq_1 L(\omega_1,T)$.

Structures \mathcal{A}_{δ} ($\delta \leq \omega_1$) and inclusion maps $i_{\beta,\delta} : \mathcal{A}_{\beta} \longrightarrow \mathcal{A}_{\delta}$ ($\beta < \delta$) are defined by recursion on δ . $i_{\beta,\delta}$ will be elementary with respect to the language $\mathcal{L}_{\gamma_{\beta}}$; i.e. any sentence of $\mathcal{L}_{\gamma_{\beta}}$ with parameters in \mathcal{A}_{β} and true in \mathcal{A}_{β} will also be true in \mathcal{A}_{δ} .

Stage 0. \mathcal{A}_0 is the countable atomic model of T_{γ_0} .

Stage $\delta + 1$. Assume \mathcal{A}_{δ} is the countable atomic model of $T_{\gamma_{\delta}}$. Extend \mathcal{A}_{δ} to $\mathcal{A}_{\delta+1}$, the countable atomic model of $T_{\gamma_{\delta+1}}$, so that the inclusion map, $i_{\delta,\delta+1}$ is $\mathcal{L}_{\gamma_{\delta}}$ -elementary.

Stage λ (limit $\leq \omega_1$). Let

$$\mathcal{A}_{\lambda} = \cup \{\mathcal{A}_{\delta} \mid \delta < \lambda\}$$

For all $\delta < \delta' < \lambda$, assume the inclusion map $i_{\delta,\delta'}$ is $\mathcal{L}_{\gamma_{\delta}}$ -elementary. Then for each $\delta < \lambda$: \mathcal{A}_{λ} is an $\mathcal{L}_{\gamma_{\delta}}$ -elementary extension of \mathcal{A}_{δ} , and so is a model of $T_{\gamma_{\delta}}$. Thus \mathcal{A}_{λ} is a model of $T\gamma_{\lambda}$.

To see \mathcal{A}_{λ} is an atomic model of $T\gamma_{\lambda}$, let \overrightarrow{a} be an *n*-tuple of \mathcal{A}_{λ} . For some $\delta < \lambda$, \overrightarrow{a} is an *n*-tuple of \mathcal{A}_{δ} . \overrightarrow{a} realizes some atom $\mathcal{F}(\overrightarrow{x})$ of $T_{\gamma_{\delta}}$. $\mathcal{F}(\overrightarrow{x})$ is an atom of T_{λ} , because $L(\gamma_{\delta}, T) \preccurlyeq_{1} L(\lambda, T)$. \overrightarrow{a} realizes $\mathcal{F}(\overrightarrow{x})$ in \mathcal{A}_{λ} , since $i_{\delta,\lambda}$ is \mathcal{L}_{δ} -elementary.

If \mathcal{A}_{ω_1} were $\mathcal{L}_{\omega_1,\omega}$ -equivalent to some countable model, then it would be an atomic model of $T_{\gamma_{\delta}}$ for some $\delta < \omega_1$. But $\mathcal{A}_{\delta+1}$, hence \mathcal{A}_{ω_1} , realizes a non-principal type of $T_{\gamma_{\delta}}$.

5. Absoluteness of Vaught's Conjecture

Let VC(T) be the predicate: Vaught's conjecture holds for T. Morley's work [9] implies that VC(T) is absolute. The enumeration tree, $\mathcal{TR}(T)$, of section 4 is applied below to make the statement of VC(T) more precise and to see in some detail how T can satisfy Vaught's conjecture. Suppose an attempt is made to develop $\mathcal{TR}(T)$ and the attempt fails to produce a tree with only countably many nodes on each level and ω_1 many non-empty levels. Then there must be a countable β such that one of the following holds.

- (1) $\beta = 0$ and T has uncountably many finitarily consistent, ω -complete extensions in \mathcal{L}_0 .
- (2) $\beta = \delta + 1$, some theory S is on level δ , and for some n, the set of n-types of S is uncountable.
- (3) $\beta = \delta + 1$ some theory S is on level δ , for all n the set of n-types of S is countable, and the set of all finitarily consistent, ω -complete extensions of S in \mathcal{L}'_S is uncountable. \mathcal{L}'_S is defined just before 4.1.
- (4) $\beta = \lambda$ and the set of nodes on level λ is uncountable.
- (5) Level β is empty.

Define the **Vaught Rank** of T, vr(T), to be the least countable β that satisfies one of 1-5 above. (If there is no such β , let vr(T) be ω_1 .)

Define the predicate VC(T) by $vr(T) < \omega_1$.

Suppose $vr(T) = \beta < \omega_1$. If $\beta = 0$, then T has 2^{ω} finitarily consistent, ω complete extensions in \mathcal{L}_0 by theorem 3.1, hence 2^{ω} many countable models. The same holds in cases 3 and 4. If 5 holds, then T has only countably many
countable models, and each one is the atomic model of a theory on some
level of $\mathcal{TR}(T)$ below level β . Suppose case 2 holds. Then for some n, there
are 2^{ω} n-types of S by theorem 3.1, hence 2^{ω} many countable models of T.

Recall that

$$\omega_1^{L(T)} = least \ \gamma[L(T) \models (\gamma \ is \ uncountable)].$$
(5.1)

Proposition 5.1. The predicate, Vaught's Conjecture holds for T, is $\Sigma_1^{L(\omega_1^{L(T)},T)}$, hence Σ_2^1 .

Proof. By proposition 4.4, $\mathcal{TR}(T) \subseteq L(\omega_1, T)$ and is $\Sigma_1^{L(\omega_1, T)}$. VC(T) says: at some level $\gamma < \omega_1$, either (a) $\mathcal{TR}(T)$ ends or (b) "blows up", i.e. a perfect kernel of theories or types is manifest. Let α_0 be the least $\alpha > \gamma$ such that $L(\alpha, T)$ is Σ_1 admissible.

Suppose (a) holds. Then Levy-Shoenfield absoluteness implies $\alpha_0 < \omega_1^{L(T)}$, and there is a $\mathcal{L}_{\omega_1,\omega}$ sentence $\mathcal{K} \in L(\alpha_0, T)$ that expresses the fact that every model of T is an atomic model of some theory on some level at or below γ of $\mathcal{TR}(T)$.

Suppose (b) holds. Theorem 3.1 implies the existence of a perfect kernel of theories or types. A coding of some such perfect kernel by a real is constructible from any counting of α_0 . The proof of 3.1 relies on the consistency of a certain set Z of axioms. Z is $\Sigma_1^{L(\alpha_0,T)}$, and the consistency of Z is $\Pi_1^{L(\alpha_0,T)}$. Hence Levy-Shoenfield absoluteness implies $\alpha_0 < \omega_1^{L(T)}$, and so a code for the perfect kernel belongs to $L(\omega_1^{L(T)}, T)$.

Proposition 5.2. Suppose T is a counterexample to Vaught's conjecture. Then there is a theory T_{ω_1} on level ω_1 of $\mathcal{TR}(T)$ such that T_{ω_1} is $\Delta_1^{L(\omega_1,T)}$. For all countable β : T_{β} , the restriction of T_{ω_1} to level β , has an atomic model whose Scott rank is β .

Proof. By proposition 4.8.

Suppose $L(\alpha, T)$ is Σ_1 admissible, \mathcal{A} is a countable model of T, and $\omega_1^{\mathcal{A}} = \alpha$. According to (2.6), \mathcal{A} is a homogenous model of $T_{\alpha}^{\mathcal{A}}$. \mathcal{A} is said to be α -saturated if every *n*-type $(n \geq 1)$ of $T_{\alpha}^{\mathcal{A}}$ is realized in \mathcal{A} .

Theorem 5.3. Suppose T is a counterexample to Vaught's conjecture. Then there is a $\Delta_1^{L(\omega_1,T)}$ theory T_{ω_1} on level ω_1 of $\mathcal{TR}(T)$ and a closed unbounded set $C \subseteq \omega_1$ such that $\forall \alpha \in C : T_{\alpha}$, the restriction of T_{ω_1} to level α , has an atomic model \mathcal{A}_{α} of Scott rank α and an α -saturated model \mathcal{B}_{α} of Scott rank $\alpha + 1$.

The atomic models form an expanding chain and each inclusion $\mathcal{A}_{\beta} \subset \mathcal{A}_{\gamma}$ $(\beta < \gamma)$ is elementary with respect to the language of T_{β} .

Proof. Proposition 4.8 provides T_{ω_1} . Let $p \in L(\omega_1, T)$ be the parameter needed for the $\Delta_1^{L(\omega_1,T)}$ definition of T_{ω_1} . For any α , let α^+ be the least $\beta > \alpha$ such that $L(\beta, T)$ is Σ_1 admissible.

For $x \in L(T)$, let $H_1(x)$ be the Σ_1 hull of x in L(T). Recall that

$$x \subseteq H_1(x) \preccurlyeq_1 L(T)$$

and that x and $H_1(x)$ have the same cardinality in L(T).

An expanding sequence of countable Σ_1 hulls, H^{δ} ($\delta < \omega_1$), is defined by recursion on δ .

 H^0 is $H_1(\{tc(p), \omega_1, tc(T)\})$. (tc is transitive closure.) Note: $\omega_1^+, \omega \in H^0$; if $d < e < \omega_1$ and $e \in H^0$, then $d \in H^0$. Let c_0 be the lub of the countable ordinals in H^0 . Let $L(\beta_0, T)$ be the transitive collapse of H^0 . Then

$$c_0 = \omega_1^{L(\beta_0, T)} \text{ and } L(c_0^+, T) \subseteq L(\beta_0, T).$$
 (5.2)

Stage $\delta + 1$. Assume H^{δ} is countable in V. Then $H^{\delta} \cap \omega_1$ is a proper initial segment of ω_1 . Let c_{δ} be the least countable ordinal not in H^{δ} . $H^{\delta+1}$ is $H_1(H^{\delta} \cup \{c_{\delta}\})$.

Stage λ (limit). H^{λ} is $\cup \{H_{\delta} \mid \delta < \lambda\}$.

 $C = \{c_{\delta} \mid \delta < \omega_1\}$ is a closed unbounded set.

Let $L(\beta_{\delta}, T)$ be the transitive collapse of H^{δ} . Then

$$c_{\delta} = \omega_1^{L(\beta_{\delta},T)} \text{ and } L(c_{\delta}^+,T) \subseteq L(\beta_{\delta},T).$$
 (5.3)

Let $T_{c_{\delta}}$ be the restriction of T_{ω_1} to level c_{δ} of $\mathcal{TR}(T)$. $T_{c_{\delta}}$ is $\Delta_1^{L(c_{\delta},T)}$ via parameter p. N, the set of non-principal types of $T_{c_{\delta}}$, is non-empty and countable in V. $T_{c_{\delta}} \in L(c_{\delta}^+, T)$, and so $N \in L(c_{\delta}^+, T)$ by theorem 3.1. Hence the structure $L[c_{\delta}, T; T_{c_{\delta}}, N]$ (i.e. $L(c_{\delta}, T)$ with $x \in T_{c_{\delta}}$ and $x \in N$ as additional atomic predicates) is Σ_1 admissible because no subset of c_{δ} in $L(\beta_{\delta}, T)$ can define a counting of $\omega_1^{L(\beta_{\delta}, T)}$. Now the construction of M in the proof of theorem 6.1 can be imitated to produce a model \mathcal{B} of $T_{c_{\delta}}$ such that \mathcal{B} realizes all the types in N and $\omega_1^{\mathcal{B}} = c_{\delta}$.

The atomic \mathcal{A}_{β} 's are supplied by Theorem 4.9.

6. Bounds on Scattered Theories

Once again \mathcal{L} is a countable first order language, \mathcal{L}_0 is a countable fragment of $\mathcal{L}_{\omega_1,\omega}$, and $T \subseteq \mathcal{L}_0$ has a model. \mathcal{L} and \mathcal{L}_0 are effectively recoverable from T_0 . T is scattered below β as was defined just before proposition 4.7.

Theorem 6.1. Suppose $\alpha < \omega_1$, $L(\alpha, T)$ is Σ_2 admissible, T is scattered below α , and for each $\beta < \alpha$, T has a model of Scott rank $\geq \beta$. Then T has a model \mathcal{A} such that $\omega_1^{\mathcal{A}} = \alpha$ and $sr(\mathcal{A}) = \alpha + 1$.

Proof. By proposition 4.8 $\mathcal{TR}(A)$ has a theory T_{α} on level α such that T_{α} is Δ_1^{α} . T_{α} is $\cup \{T_{\beta} \mid \beta < \alpha\}$, where T_{β} is a node on level β . Let Z be the following set of sentences.

(Z1) The atomic diagram of $L(\alpha, T)$ in the sense of $\mathcal{L}_{\omega_1,\omega}$.

(Z2) Add $(\underline{d} > \beta)$ for all $\beta < \alpha$. \underline{d} is a constant not occurring in (Z1).

(Z3) Let $T_{\underline{d}}$ be a theory on level \underline{d} of $\mathcal{TR}(T)$. Add \mathcal{A} is the countable atomic model of T_d and $\mathcal{F} \in T_d$ for each sentence $\mathcal{F} \in T_\alpha$.

(Z4) Add $(b(\vec{x})$ is an atom of $T_{\underline{d}}$) for each $b(\vec{x})$ that is an atom of T_{α} , i.e. $b(\vec{x})$ generates a principal type of T_{α} .

(Z5) Add the axioms of Σ_1 admissibility.

Z is $\Sigma_2^{L(\alpha,T)}$, since the set of atoms of T_{α} is $\Pi_1^{L(\alpha,T)}$.

Suppose $\beta < \alpha$, $L(\beta, T)$ is Σ_1 admissible, and Z_β is $Z \cap L(\beta, T)$. To check the consistency of Z_β , augment $L(\alpha, T)$ by adding a generic counting of $L(\beta, T)$ to $L(\alpha, T)$ that preserves the Σ_2 admissibility of $L(\alpha, T)$. Z_β can be modeled by the augmented $L(\alpha, T)$. By proposition 4.4, $T_\beta \subseteq L(\beta, T)$. Interpret \underline{d} as β . Interpret \mathcal{A} as the atomic model of T_β . Such an \mathcal{A} belongs to the augmented $L(\alpha, T)$ because there T_β is countable. If $b(\overrightarrow{x})$ is an atom of T_α and belongs to $L(\beta, T)$, then $b(\overrightarrow{x})$ is an atom of T_β .

Z has a model M that is a proper end extension of $L(\alpha, T)$ but omits α . $\omega_1^{\mathcal{A}} \leq \alpha$, otherwise α is recursive in \mathcal{A} , and then $\alpha \in M$. $\mathcal{A} \models T_{\beta}$ for all $\beta < \alpha$, hence $sr(\mathcal{A}) \geq \alpha$ by proposition 4.5, and so $\omega_1^{\mathcal{A}} = \alpha$ by (2.6).

Suppose $sr(\mathcal{A}) = \alpha$. Then $\alpha \in M$ as follows. \mathcal{A} is the atomic model of T_{α} . The rank of an atom $b(\overrightarrow{x})$ of T_{α} is the least $\beta < \alpha$ such that $b(\overrightarrow{x})$ is an atom of T_{β} . Let f be the function that carries each $\overrightarrow{a} \in \mathcal{A}$ to the rank of an atom of T_{α} that generates the principal type realized by \overrightarrow{a} in \mathcal{A} . Thanks to (Z4) f is definable from T_d , and so $f \in M$. Then $lub(range f) = \alpha \in M$.

Corollary 6.2. ([11]) Suppose for every countable model \mathcal{A} of T, the Scott rank of \mathcal{A} is less than or equal to $\omega_1^{\mathcal{A}}$. Then Vaught's conjecture holds for T.

Proof. Suppose VC(T) fails. Then T is scattered below ω_1 , and $\mathcal{TR}(T)$ has nodes on every countable level. Choose an $\alpha < \omega_1$ such that $L(\alpha, T)$ is Σ_2 admissible. Then T has a countable model \mathcal{A} such that $\omega_1^{\mathcal{A}} = \alpha$ and $sr(\mathcal{A}) = \alpha + 1$.

A more effective version of corollary 6.2 is as follows. Define

$$\sigma_2^T = least \; \alpha \; [L(\alpha, T) \; is \; \Sigma_2 \; admissible]. \tag{6.1}$$

vr(T), the Vaught rank of T, was defined at the beginning of section 6.

Corollary 6.3. Suppose T does not have a countable model \mathcal{A} such that

$$\omega_1^{\mathcal{A}} = \sigma_2^T \text{ and } sr(\mathcal{A}) = \sigma_2^T + 1.$$
(6.2)

Then $vr(T) < \sigma_2^T$.

Proof. If $vr(T) \ge \sigma_2^T$, then T is scattered below σ_2^T and $\mathcal{TR}(T)$ has nodes on every level below σ_2^T ,

As a warm-up to the main bounding results of the paper (section 8), the above is recast as an effective bounding theorem.

Corollary 6.4. Suppose T is scattered and

$$sr(\mathcal{A}) \le \omega_1^{\mathcal{A}} \text{ for every countable } \mathcal{A} \models T.$$
 (6.3)

Then $\exists \beta < \sigma_2^T$ such that

$$sr(\mathcal{A}) < \beta \text{ for every } \mathcal{A} \models T.$$
 (6.4)

SA(T) says: for every countable model \mathcal{A} of T, the theory $T_{\omega_1^A}^{\mathcal{A}}$ is ω categorical. Steel [13], as reported in Makkai[7], showed that VC(T) follows
from SA(T). Theorem 6.5 is an effective version of Steel's result.

 $L(\alpha, T)$ is said to be **recursively Mahlo** if $L(\alpha, T)$ is Σ_1 admissible and every $\Delta_1^{L(\alpha,T)}$ closed unbounded subset of α has a member β such that $L(\beta,T)$ is Σ_1 admissible. Define

$$rm(T) = least \gamma [L(\gamma, T) is recursively Mahlo].$$
 (6.5)

Note that $rm(T) < \sigma_2^T$.

Theorem 6.5. Suppose T is scattered and

$$T_{\omega_1^A}^{\mathcal{A}}$$
 is ω - categorical for every countable $\mathcal{A} \models T$. (6.6)

Then $\exists \beta < rm(T)$ such that

$$sr(\mathcal{A}) < \beta \text{ for every countable } \mathcal{A} \models T.$$
 (6.7)

Proof. Suppose there is no such β . Let α be rm(T). Then proposition 4.7 supplies a $\Delta_1^{L(\alpha,T)}$ theory T_{α} on level α of $\mathcal{TR}(T)$. $T_{\alpha} = \bigcup \{T_{\beta} \mid \beta < \alpha\}$, and T_{β} , as a function of β , is $\Sigma_1^{L(\alpha,T)}$.

There is a $\Sigma_1^{L(\alpha,T)}$ function f_0 such that $T_{\beta} \subseteq L(f_0(\beta),T)$ for all $\beta < \alpha$. Iteration of f_0 leads to a $\Delta_1^{L(\alpha,T)}$ closed unbounded set

$$C_0 = \{ \gamma \mid T_\gamma \subseteq L(\gamma, T) \}.$$
(6.8)

A similar argument produces a $\Delta_1^{L(\alpha,T)}$ closed unbounded set C_1 such that

$$\forall \gamma \in C_1[(T_\alpha \cap L(\gamma, T)) \text{ is } \Delta_1^{L(\gamma, T)}].$$
(6.9)

Then there is a $\Delta_1^{L(\alpha,T)}$ closed unbounded set K such that

$$\forall \gamma \in K[T_{\gamma} \subseteq L(\gamma, T) \text{ and } T_{\gamma} \text{ is } \Delta_1^{L(\gamma, T)}].$$
 (6.10)

Hence for some $\gamma_0 \in K$, $L(\gamma_0, T)$ is Σ_1 admissible. Consequently T_{γ_0} has a model \mathcal{B} such that $\omega_1^{\mathcal{B}} = \gamma_0$. But then $T_{\omega_1^{\mathcal{B}}}^{\mathcal{B}}$, hence T_{γ_0} , is ω -categorical, and so has no extension to a node on level α .

7. Iterated Classical Bounding

In this section classical bounding (reviewed in section 1) is translated into the language of Σ_1 admissible sets and revised to allow for iterated use in Σ_1 recursive definitions in section 8.

Let B(x) be a Δ_0^{ZF} formula with parameter p_0 . B(x) is β -bounded iff :

$$\forall c[B(c) \iff L[\beta, p_0; c] \models B(\underline{c})].$$
(7.1)

 $L[\beta, p_0; c]$ is the result of iterating first order definability with $y \in c$ as an additional atomic predicate through the ordinals less than β starting with the transitive closure (tc) of $\{p_0\}$. Assume B(x) is β -bounded. Define

$$c_{\beta} = c \cap L[\beta, p_0; c] \tag{7.2}$$

Then $B(c) \iff B(c_{\beta})$. For all z let A_z be the least Σ_1 admissible set with z as a member; thus

$$A_z = L(\omega_1^z, tc(\{z\})).$$
(7.3)

Let $\mathcal{F}(u,v)$ be a Σ_1^{ZF} formula with parameter p_1 , and let p be $\{p_0, p_1\}$. Suppose for all c: if B(c), then there exists a unique $\delta \in A_{\{p,\beta,c_{\beta}\}}$ such that

$$A_{\{p,\beta,c_{\beta}\}} \models \mathcal{F}(\underline{c_{\beta}},\underline{\delta}); \tag{7.4}$$

designate δ by $\delta_{p,\beta,c}$.

Theorem 7.1. (i) There exists a $\delta_{p,\beta} \in A_{\{p,\beta\}}$ such that for all c:

$$B(c) \Longrightarrow \delta_{p,\beta,c} \le \delta_{p,\beta}. \tag{7.5}$$

(ii) $\delta_{p,\beta}$ can be construed as a partial function of p and β whose restriction to any Σ_1 admissible A has a Σ_1^A definition uniformly in A, i.e. one Σ_1 formula works for all A.

Proof. Z is the following $\Sigma_1^{A_{\{p,\beta\}}}$ set of sentences. Let $\alpha = \omega_1^{\{p,\beta\}}$. (Z1) Introduce constants \underline{c} and c_{β} , and put $c_{\beta} = \underline{c} \cap L[\beta, p_0; \underline{c}]$ and $B(c_{\beta})$ in Z.

(Z2) Add constants that name the elements of (7.6) and sentences of $\mathcal{L}_{\omega_1,\omega}$ that define each element in terms of elements of lower definability rank.

$$L(\alpha, tc(\{p, \beta, c_{\beta}\})) \tag{7.6}$$

(Z3) Let $\mathcal{F}(u,v)$ be $\exists w \mathcal{G}(u,v,w)$ for some Δ_0^{ZF} formula $\mathcal{G}(u,v,w)$. Add $\neg \mathcal{G}(c_{\beta}, \underline{\delta}, \underline{r})$ for all $\delta < \alpha$ and every \underline{r} that names an element of (7.6).

(Z4) Add axioms for Σ_1 admissibility.

Suppose Z is consistent. Assume for a moment that

$$Z$$
 is countable. (7.7)

As in the proof of proposition 4.7, Z has a model M that is a proper end extension of (7.6) but omits α . Then (7.6) is Σ_1 admissible, and so

$$A_{\{p,\beta,c_{\beta}\}} = L(\alpha, tc(\{p,\beta,c_{\beta}\})).$$

$$(7.8)$$

But then $A_{\{p,\beta,c_{\beta}\}} \models \neg \mathcal{F}(\underline{c_{\beta}},\underline{\delta})$ for all $\delta < \alpha$, a contradiction since $\delta_{p,\beta,c_{\beta}} \in A_{\{p,\beta,c_{\beta}\}}$.

Thus Z is inconsistent.

To remove assumption (7.7), generically extend the universe V to V' so that Z is countable in V'. Then Z is inconsistent in V', hence in V by the absoluteness of provability in the sense of $\mathcal{L}_{\infty,\omega}$.

Since Z is $\Sigma_1^{A_{\{p,\beta\}}}$, there must be a inconsistent $W \subseteq Z$ such that $W \in A_{\{p,\beta\}}$. W consists of:

(W1) (Z1) and (Z4).

(W2) Some $A_0 \in A_{\{p,\beta\}}$ such that $A_0 \subseteq$ set of sentences of (Z2).

(W3) For some $\delta_1 < \alpha$, $\neg \mathcal{G}(\underline{c_\beta}, \underline{\delta}, \underline{r})$ for all $\delta < \delta_1$ and every \underline{r} of (Z2) that names an element of $L(\delta_1, tc(\overline{p}, \beta, c_\beta))$.

Then there is a deduction $D \in A_{\{p,\beta\}}$ from (W1) & (W2) of

$$\forall \{ \mathcal{F}(c_{\beta}, \delta) \mid \delta < \delta_1 \}.$$

$$(7.9)$$

Let ρ_0 be the least ρ such that there is such a $D \in L(\rho, tc(\{p, \beta\}))$; let $\delta_{\{p,\beta\}}$ be the least δ_1 associated with any such $D \in L(\rho_0, tc(\{p,\beta\}))$. Then

$$\delta_{p,\beta,c} \le \delta_{p,\beta}.\tag{7.10}$$

for any c such that B(c) holds. The Σ_1^{ZF} formula \mathcal{H} that defines $\delta_{p,\beta}$ as a partial function of p,β uniformly owes its existence to the effective nature of deducibility in $\mathcal{L}_{\omega_1,\omega}$. \mathcal{H} singles out a deduction in $A_{\{p,\beta\}}$ that establishes the value of $\delta_{p,\beta}$. \mathcal{H} can be formulated to succeed in every Σ_1 admissible A, because $p,\beta \in A$ implies $A_{\{p,\beta\}}$ is a Σ_1^A definable (uniformly) subclass of A.

8. Enumeration of Models under Weak Scattering

Let \mathcal{L}_0 be a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ for some countable first order language \mathcal{L} , and $T \subseteq \mathcal{L}_0$ a theory with a model. Assume T is weakly scattered as defined in section 1. For convenience assume T mentions all formulas of \mathcal{L}_0 ; thus \mathcal{L}_0 and \mathcal{L} are recoverable from T. Since T need not be scattered, there is no hope of enumerating theories in $L(\omega_1, T)$ whose atomic models are exactly the countable models of T. But some useful vestiges of the constructive features of scattering carry over to weak scattering, and $L(\omega_1, T)$ manages to say a great deal about the countable models of T.

First consider $\mathcal{RH}(T)$, the **raw hierarchy** for the countable models of T. On level 0 of $\mathcal{RH}(T)$, put every T_0 such that $T \subseteq T_0$ and T_0 is a finitarily consistent, ω -complete theory of \mathcal{L}_0 . (If needed, see the beginning of section 4 for a review.)

Suppose T_{δ} is on level δ of $\mathcal{RH}(T)$. Define

$$\delta - 1 \text{ if } \delta \text{ is a successor}$$

$$\delta - = \qquad (8.1)$$

 δ if δ is not a successor.

 $\mathcal{L}_0(T_{0-})$ is defined to be \mathcal{L}_0 . Assume T_{δ} extends a unique $T_{\delta-}$ on level δ and $\mathcal{L}_{\delta}(T_{\delta-})$ is countable. If all *n*-types $(n \geq 1)$ of T_{δ} are principal, then $\mathcal{L}_{\delta+1}(T_{\delta})$ is undefined and T_{δ} has no extensions on level $\delta+1$. Otherwise let $\mathcal{L}_{\delta+1}(T_{\delta})$ be the least fragment of $\mathcal{L}_{\omega_1,\omega}$ extending $\mathcal{L}_{\delta}(T_{\delta-})$ and having as a member the conjunction

$$\wedge \{\mathcal{F}(\overrightarrow{x}) \mid \mathcal{F}(\overrightarrow{x}) \in p(\overrightarrow{x})\}$$
(8.2)

for every non-principal *n*-type $p(\vec{x})$ of T_{δ} $(n \ge 1)$. Since *T* is weakly scattered, $\mathcal{L}_{\delta+1}(T_{\delta})$ is countable.

On level $\delta + 1$ of $\mathcal{RH}(T)$ put every $T_{\delta+1}$ that extends T_{δ} and is a finitarily consistent, ω -complete theory of $\mathcal{L}_{\delta+1}(T_{\delta})$.

Put T_{λ} on level λ if there is a sequence $T_{\delta}(\delta < \lambda)$ such that: T_{δ} is on level δ ; $T_{\beta} \subseteq T_{\gamma}$ if $\beta \leq \gamma$; and $T_{\lambda} = \bigcup \{T_{\delta} \mid \delta < \lambda\}$.

 $\mathcal{L}_{\lambda}(T_{\lambda})$ is $\cup \{\mathcal{L}_{\delta}(T_{\delta-}) \mid \delta < \lambda\}.$

It is straightforward to verify that \mathcal{A} is a countable model of T iff \mathcal{A} is the atomic model of T_{δ} for some countable δ . Define the **raw tree rank** of \mathcal{A} by

 $rtr(\mathcal{A}) = (\text{least } \delta)[\mathcal{A} \text{ is the atomic model of some } T_{\delta}].$ (8.3)

Propositions 4.5 and 4.6 hold when tr is rtr. Thus

$$rtr(\mathcal{A}) \le sr(\mathcal{A}),$$
(8.4)

and if $L(\alpha, \langle T, \mathcal{A} \rangle)$ is Σ_1 admissible, then

$$rtr(\mathcal{A}) < \alpha \longrightarrow sr(\mathcal{A}) < \alpha.$$
 (8.5)

What matters more is what can be expressed inside $L(\alpha, T)$ when $\alpha \leq \omega_1$ and $L(\alpha, T)$ is Σ_1 admissible. Let A_{δ} be the set of all T_{δ} 's on level δ of $\mathcal{RH}(T)$. A_{δ} will be defined by a β -bounded Δ_0^{ZF} formula (7.1), and its definition as such, denoted by $\lceil A_{\delta} \rceil$, will belong to $L(\alpha, T)$ when $\delta < \alpha$. The fragment $\mathcal{L}_{\delta}(T_{\delta-})$ will be constructible from $T_{\delta-}$ via an ordinal $\rho_{\delta} < \alpha$ for all $T_{\delta-} \in A_{\delta-}$. $\lceil A_{\delta} \rceil$ and ρ_{δ} will be defined by a simultaneous $\Sigma_1^{L(\alpha,T)}$ recursion uniformly in α , i.e. the same Σ_1 formula will work for all $\alpha \leq \omega_1$ such that $L(\alpha, T)$ is Σ_1 admissible.

Consider an arbitrary T_{δ} on level δ of $\mathcal{RH}(T)$. There exists a natural **recovery process** that can be applied to T_{δ} to recover the unique sequence T_{γ} ($\gamma < \delta$) such that

$$T_{\gamma} \text{ is on level } \gamma,$$

$$\gamma_1 \leq \gamma_2 \longrightarrow T_{\gamma_1} \subseteq T_{\gamma_2}, \text{ and}$$

$$T_{\lambda} = \cup \{T_{\gamma} \mid \gamma < \lambda\} \text{ for all limit } \lambda \leq \delta.$$
(8.6)

The recovery proceeds as follows. T_0 is $T_\delta \cap \mathcal{L}_0$. If γ is a successor, then

$$T_{\gamma} = T_{\delta} \cap \mathcal{L}_{\gamma}(T_{\gamma-}). \tag{8.7}$$

If γ is a limit, then $T_{\gamma} = \bigcup \{T_{\beta} \mid \beta < \lambda\}.$

The recovery process can be used to decide whether or not an arbitrary set c is a theory on level δ of $\mathcal{RH}(T)$. The answer is yes iff c passes the following tests at all levels $\gamma \leq \delta$.

Level 0. $c_0 = c \cap \mathcal{L}_0$. c_0 is an extension of T and a finitarily consistent, ω -complete theory of \mathcal{L}_0 .

Level $\gamma + 1 \leq \delta$. $\mathcal{L}_{\gamma+1}(c_{\gamma})$ is the least fragment extending $\mathcal{L}_{\gamma}(c_{\gamma-})$ and having as a member the conjunction

$$\wedge \{\mathcal{F}(\overrightarrow{x}) \mid \mathcal{F}(\overrightarrow{x}) \in p(\overrightarrow{x})\}$$
(8.8)

for every non-principal *n*-type $p(\vec{x})$ of $c_{\gamma-}$. $c_{\gamma+1} = c \cap \mathcal{L}_{\gamma+1}(c_{\gamma})$. $c_{\gamma+1}$ extends c_{γ} and is a finitarily consistent, ω -complete theory of $\mathcal{L}_{\gamma+1}(c_{\gamma})$.

Level λ (limit) $\leq \delta$. $c_{\lambda} = \cup \{c_{\gamma} \mid \gamma < \lambda\}$. $\mathcal{L}_{\lambda}(c_{\lambda}) = \cup \{\mathcal{L}_{\gamma}(c_{\gamma-}) \mid \gamma < \lambda\}$.

In short c is a theory on level δ of $\mathcal{RH}(T)$ iff c satisfies the recovery process on all levels $\gamma \leq \delta$ and $c = c_{\delta}$. It will follow below that A_{δ} is β -bounded Δ_0^{ZF} definable (7.1), where β is large enough to define the recovery process.

An effective version of the recovery process is woven into the $\Sigma_1^{L(\alpha,T)}$ recursive definitions of ρ_{δ} and $\lceil A_{\delta} \rceil$ for $0 < \delta < \alpha$. $\mathcal{L}_{\delta}(T_{\delta-})$ is constructible from $T_{\delta-}$ via the ordinal ρ_{δ} for all $T_{\delta-} \in A_{\delta-}$, and $\lceil A_{\delta} \rceil$ is a β -bounded Δ_0^{ZF} definition of A_{δ} . $\lceil A_{\delta} \rceil$ specifies the value of β , and the Δ_0^{ZF} formula.

Stage 0. $\mathcal{L}_0(T_{0-})$ is \mathcal{L}_0 . A_0 is the set of all finitarily consistent, ω -complete theories of \mathcal{L}_0 extending T. Since \mathcal{L}_0 is recoverable from T, A_0 is β -bounded Δ_0^{ZF} definable with $\beta = 0$ and parameter T.

Stage $\delta + 1$. Assume the recursion has produced sequences

$$\{\rho_{\gamma} \mid \gamma \leq \delta\}, \ \{\lceil A_{\gamma} \rceil \mid \gamma \leq \delta\} \in L(\alpha, T)$$

$$(8.9)$$

such that $\lceil A_{\gamma} \rceil$ is a β -bounded Δ_0^{ZF} definition of A_{γ} , and $\mathcal{L}_{\gamma}(T_{\gamma-})$ ($\gamma \leq \delta$) is first order definable over

$$L[\rho_{\gamma}, \mathcal{L}_0; T_{\gamma-}]. \tag{8.10}$$

(The definition of (8.10) follows (7.1).) Consider an arbitrary $T_{\delta} \in A_{\delta}$ ($\delta > 0$). Use the recovery process to construct the unique $T_{\delta-} \in A_{\delta-}$ such that

$$T_{\delta-} \subseteq T_{\delta} \subseteq \mathcal{L}_{\delta}(T_{\delta-}). \tag{8.11}$$

The recovery is effective thanks to the sequence ρ_{γ} ($\gamma \leq \delta$). Now $\mathcal{L}_{\delta+1}(T_{\delta})$ can be defined as above (8.2) but with an effective twist. Let ST_{δ} be the set of all *n*-types ($n \geq 1$) of T_{δ} . Since *T* is weakly scattered, corollary 3.2 implies

$$ST_{\delta} \in L(\omega_1^{T_{\delta}}, T_{\delta}),$$

$$(8.12)$$

the least Σ_1 admissible set with T_{δ} as a member. Let

$$\gamma_{T_{\delta}} = (least \ \gamma)[ST_{\delta} \in L(\gamma, T_{\delta})]. \tag{8.13}$$

By theorem 3.3, $\gamma_{T_{\delta}}$, as a function of T_{δ} , is uniformly Σ_1 ; the same Σ_1^{ZF} formula singles out $\gamma_{T_{\delta}}$ in $L(\omega_1^{T_{\delta}}, T_{\delta})$ for every $T_{\delta} \in A_{\delta}$ and for all δ . By

theorem 7.1(i), there is a γ_{δ} such that

$$(\forall T_{\delta} \in A_{\delta})[\gamma_{T_{\delta}} \le \gamma_{\delta} < \alpha]. \tag{8.14}$$

Hence $ST_{\delta} \in L(\gamma_{\delta}, T_{\delta})$ for all $T_{\delta} \in A_{\delta}$. Theorem 7.1(ii) implies γ_{δ} , as a function of δ , has a uniform Σ_1 definition utilizing the parameters occurring in $\lceil A_{\delta} \rceil$ and the uniform Σ_1 definition of $\gamma_{T_{\delta}}$. Any *n*-type $p(\overrightarrow{x}) \in ST_{\delta}$ for any $T_{\delta} \in A_{\delta}$ is constructible from T_{δ} via some ordinal less than γ_{δ} .

A set \mathcal{P}_{δ} of first order definitions can be assembled at level γ_{δ} of $L(\alpha, T)$ as follows. Let

$$\{p_j^{\mathcal{T}_\delta} \mid j \in \mathcal{J}_\delta\} \tag{8.15}$$

be the set of all first order definitions over $L(\gamma, T)$ for all $\gamma < \gamma_{\delta}$ with parameter \mathcal{T}_{δ} . For each $T_{\delta} \in A_{\delta}$, $p_j(T_{\delta})$ is the set defined by $p_j(\mathcal{T}_{\delta})$ when the parameter \mathcal{T}_{δ} is assigned the value T_{δ} . (8.15) has a natural wellordering W_{δ} definable at level γ_{δ} , since each $p_j^{\mathcal{T}_{\delta}}$ is specified by its level $\gamma < \gamma_{\delta}$ and its Gödel number $e < \omega$ as a formula of ZF. $d_{\delta}(\mathcal{T}_{\delta})$, the **default type for** \mathcal{T}_{δ} , is defined by its action on $T_{\delta} \in A_{\delta}$:

$$j(T_{\delta}) = (\text{least } j \text{ in sense of } W_{\delta})[p_j(T_{\delta}) \text{ is an } n\text{-type of } T_{\delta}]; (8.16)$$

$$d_{\delta}(T_{\delta}) = p_{j(T_{\delta})}(T_{\delta}). \qquad (8.17)$$

The formula $p_j^{\mathcal{T}_{\delta}}$ is a slight variant of $p_j(\mathcal{T}_{\delta})$ and is defined by its action on $T_{\delta} \in A_{\delta}$.

$$p_j(T_{\delta})$$
 if $p_j(T_{\delta})$ is an *n*-type of T_{δ} ;
 $p_j^{T_{\delta}} =$

 $d_{\delta}(T_{\delta})$, the default type, otherwise.

Let
$$\mathcal{P}_{\delta} = \{ p_j^{T_{\delta}} \mid j \in \mathcal{J}_{\delta} \}$$
. Then

- (1) For all $T_{\delta} \in A_{\delta}$ and $p(\vec{x}) \in ST_{\delta}$, there is a $j \in \mathcal{J}_{\delta}$ such that $p_j^{I_{\delta}}$ defines $p(\vec{x})$ at level γ_{δ} of $L(\alpha, T)$, and
- (2) $p_j^{T_{\delta}} \in ST_{\delta}$ for all $T_{\delta} \in A_{\delta}$ and all $j \in \mathcal{J}_{\delta}$.

It can happen for some $T_{\delta} \in A_{\delta}$ and $j, k \in \mathcal{J}_{\delta}$ that $j \neq k$ but $p_j^{T_{\delta}} = p_k^{T_{\delta}}$. Such repetitions are the price paid to have $\mathcal{P}_{\delta} \in L(\gamma_{\delta} + 1, T)$.

The ordinal $\rho_{\delta+1} < \alpha$ is chosen just large enough to develop the sequence ρ_{γ} ($\gamma \leq \delta$) needed for the recovery of $T_{\delta-}$ from T_{δ} ($\delta > 0$), and the ordinal γ_{δ} needed to assemble \mathcal{P}_{δ} . $\mathcal{L}_{\delta+1}(T_{\delta})$ is first order definable over $L[\rho_{\delta+1}, \mathcal{L}_0; T_{\delta}]$; its definition begins with $\mathcal{L}_{\delta}(T_{\delta-})$, adds the conjunction of all formulas in $p_j^{T_{\delta}}$ for each $p_j^{T_{\delta}} \in \mathcal{P}_{\delta}$, and closes under the finitary operations that generate a fragment of $\mathcal{L}_{\omega_1,\omega}$.

To complete stage $\delta + 1$, construe $A_{\delta+1}$ to be the set of all x such that the effective version of the recovery process applied to x reports that x is a theory on level $\delta + 1$ of $\mathcal{RH}(T)$. The effective version uses the sequence ρ_{γ} $(0 < \gamma \leq \delta + 1)$ to define $\mathcal{L}_{\gamma}(T_{\gamma-})$ from $T_{\gamma-}$ for all $T_{\gamma-} \in A_{\gamma-}$. Thus $A_{\delta+1}$

is β -bounded Δ_0^{ZF} definable with β equal to $\rho_{\delta+1}$, and $\lceil A_{\delta+1} \rceil \in L(\alpha, T)$. The parameter specified by $\lceil A_{\delta+1} \rceil$ is T.

Stage λ (limit). Assume for $0 < \gamma < \lambda$ that $\mathcal{L}_{\gamma}(T_{\gamma-})$ is constructible from $T_{\gamma-}$ via ρ_{γ} for all $T_{\gamma-} \in A_{\gamma-}$. Use the effective version of the recovery process to define A_{λ} as a β -bounded Δ_0^{ZF} class. For $T_{\gamma} \in A_{\lambda}$, effectively recover the unique sequence T_{γ} ($\gamma < \lambda$) such that T_{λ} is $\cup \{T_{\gamma} \mid \gamma < \lambda\}$, and then define $\mathcal{L}_{\lambda}(T_{\lambda})$ to be $\cup \{\mathcal{L}_{\gamma}(T_{\gamma-}) \mid 0 < \gamma < \lambda\}.$

Makkai[8] showed: if T is a counterexample to Vaught's conjecture, then T has a model of cardinality ω_1 that is $\mathcal{L}_{\infty,\omega}$ equivalent to a countable model. The following are variants of his results.

Suppose A is a countable Σ_1 admissible set and $T \in A$. Assume $T \subseteq \mathcal{L}_0$, \mathcal{L}_0 is a countable fragment of $\mathcal{L}_{\omega_1,\omega}$, and \mathcal{L} is a countable first order language. Also assume every symbol of \mathcal{L} is mentioned in T so that \mathcal{L} is recoverable from T. Let \mathcal{L}' denote an arbitrary fragment of $\mathcal{L}_{\omega_1,\omega}$ that extends \mathcal{L} , and T' an arbitrary finitarily consistent, ω -complete theory contained in \mathcal{L}' and extending T. Call T weakly scattered in A iff $ST' \in A$ for all $T' \in A$. According to Theorem 3.3,

Theorem 8.1. Suppose \mathcal{A} is a countable model of T, T is weakly scattered in $L(\omega_1^{T,\mathcal{A}}, \langle T, \mathcal{A} \rangle)$, and

$$sr(\mathcal{A}) \ge \omega_1^{T,\mathcal{A}}.$$

Then \mathcal{A} is $\mathcal{L}_{\infty,\omega}$ equivalent to a model of T of cardinality ω_1 .

Proof. Let $\alpha = \omega_1^{T,\mathcal{A}}$. Thus $\omega_1^{\mathcal{A}} = \alpha$, since $\omega_1^{\mathcal{A}} + 1 \ge sr(\mathcal{A})$. Let $T_{\beta}^{\mathcal{A}}$ ($\beta \le r_{\beta}$) $sr(\mathcal{A})$) be the Scott analysis of \mathcal{A} as defined in section 2. By Theorem 3.3 $ST^{\mathcal{A}}_{\beta} \in L(\alpha, \langle T, \mathcal{A} \rangle)$ (and so $T^{\mathcal{A}}_{\beta}$ has a countable atomic model) for all β such that $\beta + 1 < sr(\mathcal{A})$. Z is a $\Sigma_1^{L(\alpha, \langle T, \mathcal{A} \rangle)}$ set of sentences as follows: (Z1) the atomic diagram (in the sense of $\mathcal{L}_{\omega_1,\omega}$) of $L(\alpha, \langle T, \mathcal{A} \rangle)$.

- (Z2) \underline{d} is a countable ordinal and $\underline{d} \geq \delta$ (all $\delta < \omega_1^{T,\mathcal{A}}$).
- (Z3) $\forall y [y < \underline{d} \to T_y^{\mathcal{A}} \text{ has a countable atomic model}].$
- (Z3). axioms of Σ_1 admissibility.

Z is consistent since it can be modeled by V (the real world). Every model of Z is an end extension of $L(\alpha, \langle T, \mathcal{A} \rangle)$. Let M be a model of Z that omits α . Thus M has non-standard ordinals greater than every ordinal less than α . $sr(\mathcal{A}) \geq \alpha$ in V and $\alpha \notin M$, so $sr(\mathcal{A}) \geq \gamma$ for some non-standard $\gamma \in M.$

Now work inside M. Let $T^{\mathcal{A}}_{\delta}$ ($\delta \leq \gamma$) be the Scott analysis of \mathcal{A} up to level γ . Choose a non-standard $\beta < \gamma$. $T^{\mathcal{A}}_{\beta}$ has a countable atomic model \mathcal{A}_{β} . There is a map

$$i_{\beta\gamma}: \mathcal{A}_{\beta} \to \mathcal{A}$$
 (8.18)

that is elementary with respect to all formulas of $\mathcal{L}^{\mathcal{A}}_{\beta}$ (defined in section 2). Note that $i_{b\gamma}$ is not onto, since \mathcal{A}_{β} is not isomorphic to \mathcal{A} in M.

But \mathcal{A}_{β} is isomorphic to \mathcal{A} in V. $\omega_{1}^{\mathcal{A}_{\beta}} \leq \alpha$ since $\alpha \notin M$. $sr(\mathcal{A}_{\beta}) \geq \delta$ for all $\delta < \alpha$, hence $sr(\mathcal{A}_{\beta}) \geq \alpha$, and so $\omega_{1}^{\mathcal{A}_{\beta}} \geq \alpha$. Thus both \mathcal{A}_{β} and \mathcal{A} are

homogeneous models of $T_{\alpha}^{\mathcal{A}}$ by (2.6). To see they realize the same types of $T_{\alpha}^{\mathcal{A}}$, choose $p_{\alpha} \in ST_{\alpha}^{\mathcal{A}}$ and first suppose $\mathcal{A}_{\beta} \models p_{\alpha}(\overline{b})$. In $M, \mathcal{A}_{\beta} \models p_{\beta}(\overline{b})$ for some type p_{β} of $T_{\beta}^{\mathcal{A}}$, and $\mathcal{A} \models p_{\gamma}(i_{\beta\gamma}(\overline{b}))$ for some type p_{γ} of $T_{\gamma}^{\mathcal{A}}$.

$$p_{\alpha} \subseteq p_{\beta} \subseteq p_{\gamma} \tag{8.19}$$

since $i_{\beta\gamma}$ is $\mathcal{L}^{\mathcal{A}}_{\beta}$ elementary. Hence $\mathcal{A} \models p_{\alpha}(i_{\beta\gamma}(\overline{b}))$. It follows that

$$i_{\beta\gamma}$$
 is $\mathcal{L}_{\omega_1,\omega}$ elementary, (8.20)

since the types of $T^{\mathcal{A}}_{\alpha}$ realized in \mathcal{A}_{β} are atoms of $\mathcal{L}_{\omega_{1},\omega}$.

Now suppose $\mathcal{A} \models p_{\alpha}(\overline{a})$. In M, \overline{a} realizes p_{γ} in \mathcal{A} , a type of $T_{\gamma}^{\mathcal{A}}$. Choose a non-standard $\delta < \beta$. Let p_{β} be the restriction of p_{γ} to $\mathcal{L}_{\beta}^{\mathcal{A}}$, and p_{δ} the restriction to $\mathcal{L}_{\delta}^{\mathcal{A}}$. Then $p_{\alpha} \subseteq p_{\delta} \subseteq p_{\beta} \subseteq p_{\gamma}$. So

$$\mathcal{A} \models \exists \overline{x} p_{\delta}(\overline{x}). \tag{8.21}$$

But then $\exists \overline{x} p_{\delta}(\overline{x}) \in T_{\delta+1} \subseteq T_{\beta}$, so p_{δ} , hence p_{α} , is realized in \mathcal{A}_{β} .

Thanks to the above there exist structures \mathcal{B}_0 and \mathcal{B}_1 , both isomorphic to \mathcal{A} , such that $\mathcal{B}_0 \subsetneq \mathcal{B}_1$ and the inclusion map *i* is $\mathcal{L}_{\omega_1,\omega}$ elementary. A strictly expanding $\mathcal{L}_{\omega_1,\omega}$ elementary chain \mathcal{B}_{δ} ($\delta \leq \omega_1$) is defined by iterating *i*.

For $\delta < \omega_1$, assume \mathcal{B}_{δ} is isomorphic to \mathcal{A} . Then enlarge \mathcal{B}_{δ} to $\mathcal{B}_{\delta+1}$, another copy of \mathcal{A} .

For limit $\lambda \leq \omega_1$, let \mathcal{B}_{λ} be the union of the \mathcal{B}_{δ} 's ($\delta < \lambda$).

 \mathcal{B}_{ω_1} is an $\mathcal{L}_{\omega_1,\omega}$ elementary extension of $\mathcal{B}_{0,}$ hence $\mathcal{L}_{\omega_1,\omega}$ - equivalent to \mathcal{A} , consequently $\mathcal{L}_{\infty,\omega}$ -equivalent to \mathcal{A} .

Corollary 8.2. Suppose T is weakly scattered. If for each $\beta < \omega_1^T$, T has a model of Scott rank $\geq \beta$, then T has a countable model \mathcal{A} such that

$$sr(\mathcal{A}) \ge \omega_1^{T,\mathcal{A}} = \omega_1^T$$

and every such \mathcal{A} is $\mathcal{L}_{\infty,\omega}$ equivalent to a model of T of cardinality ω_1 .

9. Bounds on Weakly Scattered Theories

Once again let \mathcal{L}_0 be a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ for some countable first order language \mathcal{L} , and $T \subseteq \mathcal{L}_0$ a weakly scattered theory with a model. Assume $L(\alpha, T)$ is Σ_1 admissible. B_α is a $\Delta_1^{L(\alpha,T)}$ set of sentences designed so that every model of B_α constitutes a node on level α of $\mathcal{RH}(T)$, the raw hierarchy for T. The axioms of B_α are:

 $T \subseteq T_0$ and T_0 is a finitarily consistent, ω -complete theory of \mathcal{L}_0 .

 T_{δ} has a non-principal *n*-type for some *n* (all $\delta < \alpha$).

 $T_{\delta} \subseteq T_{\delta+1}$ and $T_{\delta+1}$ is a finitarily consistent, ω -complete theory of $\mathcal{L}_{\delta+1}(T_{\delta})$ (all $\delta < \alpha$).

 $T_{\lambda} = \bigcup \{T_{\delta} \mid \delta < \lambda\} \text{ and } \mathcal{L}_{\lambda}(T_{\lambda}) = \bigcup \{\mathcal{L}_{\delta}(T_{\delta-} \mid \delta < \lambda\} \text{ (all limit } \lambda < \alpha).$ $B_{\alpha} \text{ is } \Delta_{1}^{L(\alpha,T)}$ because section 8 shows how to construct $\mathcal{L}_{\delta}(T_{\delta-})$ from $T_{\delta-}$ via the ordinal ρ_{δ} defined by a $\Sigma_{1}^{L(\alpha,T)}$ recursion on $\delta < \alpha$.

 \mathcal{P}_{δ} and \mathcal{J}_{δ} were defined below (8.14). Define *p* is on level δ by

$$p = p_j^{\mathcal{T}_\delta} \text{ for some } j \in \mathcal{J}_\delta.$$
 (9.1)

A split at level δ is a sentence of the form: p is on level δ , and there exist r and r' on level $\delta + 1$ such that $r \neq r'$ and both r and r' extend p. The sentence in abbreviated form is < p, r, r' >. A split is a sentence of $\mathcal{L}_{\omega_1,\omega} \cap L(\alpha,T)$, because $\mathcal{P}_{\delta}, \mathcal{P}_{\delta+1} \in L(\alpha,T)$. < p, r, r' > is a k-split if p has arity k. Let K denote a set of k-splits. K is unbounded iff

$$\forall \beta < \alpha (\exists \delta > \beta) [K \text{ has a } k \text{-split on level } \delta]. \tag{9.2}$$

K has the **predecessor property** iff there is a partial function $f(p, \gamma)$ such that: if $\gamma < \delta$ and $\langle p, r, r' \rangle \in K$ and asserts p splits at level δ , then $f(p, \gamma)$ is defined and belongs to \mathcal{J}_{γ} , and

$$B_{\alpha} \vdash [\langle p, r, r' \rangle \longrightarrow (p_{f(p,\gamma)}^{T_{\gamma}} \text{ is extended by } p)].$$
 (9.3)

If such an f exists, then there is one that is $\Sigma_1^{L(\alpha,T)}$ definable, since the $\Delta_1^{L(\alpha,T)}$ definability of B_{α} implies the deduction claimed by (9.3) can be found in $L(\alpha,T)$.

The effective k-splitting hypothesis holds for T at α iff there exists an unbounded $\Delta_1^{L(\alpha,T)}$ set K of k-splits such that K has the predecessor property and $B_{\alpha} \cup K$ is consistent (in the sense of $\mathcal{L}_{\omega_1,\omega}$ restricted to $L(\alpha,T)$) if B_{α} is. Consider Makkai's example [7] (also [5]) mentioned in section 1. It can be formulated as a fragment \mathcal{L}_0 and a theory $T_M \subseteq \mathcal{L}_0$, both arithmetically definable, with the following properties:

(1) T_M is not weakly scattered.

(2) Every countable model \mathcal{A} of T_M has Scott rank at most $\omega_1^{\mathcal{A}}$.

(3) For every countable Σ_1 admissible $L(\alpha)$, T_M has a countable model \mathcal{A} such that $\omega_1^{\mathcal{A}} = \alpha = sr(\mathcal{A})$. Despite (1) it is possible to develop a crude hierarchy for T_M with a

Despite (1) it is possible to develop a crude hierarchy for T_M with a superficial resemblance to the raw hierarchy $\mathcal{RH}(T)$ of section 8. For $\delta < \omega_1$ put theory $T' \supseteq T_M$ on level δ if there exists a countable model \mathcal{A} of T_M such that $sr(\mathcal{A}) = \delta$ and $T' = T^{\mathcal{A}}_{sr(\mathcal{A})}$ (as defined in section 2). Since T_M is not weakly scattered, it is not possible to give a bounded description of all types associated with all theories on level δ , as was done with \mathcal{P}_{δ} in section 8. Nonetheless some of the types on level δ have properties that lend credence to the effective k-splitting hypothesis. The model \mathcal{A} of (3) above is a tree with ω many levels and infinite paths. Some nodes of \mathcal{A} have foundation rank $(fr) < \infty$. Foundation rank $\omega\delta + m$ corresponds to atoms of $T^{\mathcal{A}}_{\omega_1}$ of rank δ . Associated with level δ of $\mathcal{CH}(T_M)$, the crude hierarchy for T_M , are types of the form

$$x \text{ is on level } \delta \text{ of } \mathcal{A} \text{ and } fr(x) \ge \omega \delta + m$$

$$(9.4)$$

that split on level $\delta + 1$ of $\mathcal{CH}(T)$. On level $\gamma < \delta$ (9.4) has a predecessor similar to 9.4 with δ replaced by γ .

Theorem 9.1. Suppose T is weakly scattered, $L(\alpha, T)$ is countable and Σ_2 admissible, and for each $\beta < \alpha$, T has a model of Scott rank at least β . If for some k, the effective k-splitting hypothesis holds for T at α , then T has a countable model \mathcal{A} such that

$$\omega_1^{\mathcal{A}} = \alpha \text{ and } sr(\mathcal{A}) = \alpha + 1.$$

Proof. By Barwise compactness, T has a model \mathcal{A} such that $L(\alpha, \langle T, \mathcal{A} \rangle)$ is Σ_1 admissible and $sr(\mathcal{A}) \geq \alpha$. Then $rtr(\mathcal{A}) \geq \alpha$ by (8.5) and so B_{α} is consistent. Let K be an unbounded $\Delta_1^{L(\alpha,T)}$ set of k-splits with a $\Sigma_1^{L(\alpha,T)}$ predecessor function $f(\gamma, p)$. A model of $B_{\alpha} \cup K$ is constructed so that T_{α} has a non-principal type q_{α} and the structure

$$L[\alpha, T; T_{\alpha}, q_{\alpha}] \tag{9.5}$$

is Σ_1 admissible with respect to Σ_1 formulas that include T_{α} and q_{α} as atomic predicates. Then, as in the type omitting proof of theorem 6.1, Thas a model \mathcal{A}_1 realizing q_{α} and such that $\omega_1^{\mathcal{A}_1} = \alpha$. The universe of (9.5) is the result of iterating first order definability through the ordinals less than α starting with T and with T_{α}, q_{α} as additional atomic predicates. The construction of (9.5) is Henkinesque and gradually decides all sentences of rank less than α in a standard language $\mathcal{L}_{\alpha,T} \in \Delta_1^{L(\alpha,T)}$ that names all elements of (9.5) and is able to express how each one is defined from those of lower definability rank. $\mathcal{L}_{\alpha,T}$ does not have symbols T_{α} or q_{α} but does have symbols T_{β} and q_{β} for all $\beta < \alpha$. There is one twist. The Σ_1 admissibility of (9.5) is not obtained by an effective type omitting argument that omits α as in the proof of theorem 6.1, but by direct manipulation of ranked sentences of $\mathcal{L}_{\alpha,T}$. The twist avoids Henkin constants.

Let S_n be the set of sentences chosen by the end of stage n. S_n will be $\Sigma_2^{L(\alpha,T)}$ definable. S_0 requires some preparation. Consider $p_j^{\mathcal{T}_{\gamma}}$ for some $j \in \mathcal{J}_{\gamma}$. $p_j^{\mathcal{T}_{\gamma}}$ is said to be *K*-unbounded if the set of all δ such that

$$\exists < p, r, r' > [< p, r, r' > \in K, p \text{ is on level } \delta, f(p, \gamma) = p_j^{\mathcal{T}_{\gamma}}]$$
(9.6)

is unbounded in α . Thus $B_{\alpha} \cup K$ implies $p_j^{\mathcal{T}_{\gamma}}$ has unboundedly many extensions that split in K. K-unboundedness is a $\Pi_2^{L(\alpha,T)}$ property. K-bounded means: not K-unbounded.

Claim: For all γ there is a K-unbounded type on level γ . (9.7)

Suppose not. Then for each $j \in \mathcal{J}_{\gamma}$, there is a least β_j such that for all $\delta \geq \beta_j$, (9.6) is false. β_j , as a function of j, is $\Sigma_2^{L(\alpha,T)}$, hence bounded by some $\beta_{\infty} < \alpha$. But then K is bounded by β_{∞} . $U \subseteq K$ is said to be bounded if

 $\exists \beta < \alpha (\forall \delta > \beta) [U \text{ does not have a } k \text{-split on level } \delta].$

Definition of S_0 . Start with $B_{\alpha} \cup K$. Add: sentences of $\mathcal{L}_{\alpha,T}$ that express how each element of (9.5) is defined from elements of lower rank; q_{β} is a type

on level β ($\beta < \alpha$); q_{β} is extended by q_{γ} ($\beta < \gamma < \alpha$); $q_{\beta} \neq p$ ($\beta < \alpha$ and p is *K*-bounded). Note that " q_{β} is a type on level β " is a ranked sentence, in particular a disjunction, by the remarks following (8.14).

 S_0 is $\Sigma_2^{L(\alpha,T)}$ definable since K-boundedness is $\Sigma_2^{L(\alpha,T)}$. To check the consistency of S_0 , let M be a model of $B_\alpha \cup K$ that specifies the structure of $L(\alpha,T;T_\alpha)$ but says nothing about q_γ for any $\gamma < \alpha$. Fix $\tau < \alpha$. Suppose $\gamma < \tau$; then M can be interpreted as a model of those sentences in S_0 that mention q_γ only for $\gamma < \tau$. Choose a K-unbounded p_τ on level τ with the aid of 9.7. Define

$$U_{\tau} = \{s \mid \exists t, t' \mid (< s, t, t' > \in K] \text{ and } f(s, \tau) = p_{\tau}\},$$
(9.8)

$$U_{\gamma}^{r} = \{s \mid s \in U_{\tau} \land f(s,\gamma) = r\} \ (\gamma < \tau).$$

$$(9.9)$$

Fix $\gamma < \tau$. There must be a K-unbounded r on level γ . Suppose not. Then U_{γ}^{r} is bounded for every r on level γ . But

$$U_{\tau} = \bigcup \{ U_{\gamma}^r \mid r \text{ is on level } \gamma \}.$$

$$(9.10)$$

Hence U_{τ} is bounded by the Σ_2 admissibility argument used to prove (9.7), and so p_{τ} is K-bounded.

For each $\gamma < \tau$, choose a K-unbounded r_{γ} on level γ . To see that for each $\gamma < \tau$,

$$B_{\alpha} \cup K \vdash r_{\gamma} \text{ is extended by } p_{\tau},$$
 (9.11)

let $s \in U_{\gamma}^{r_{\gamma}}$. Then $s \in U_{\tau}$. Assume $B_{\alpha} \cup K$. Then s extends $f(s,\tau) = p_{\tau}$ and s extends $f(s,\gamma) = r_{\gamma}$. Hence p_{τ} extends r_{γ} .

It follows from (9.11) that

$$B_{\alpha} \cup K \vdash r_{\gamma_1}$$
 is extended by r_{γ_2} (9.12)

when $\gamma_1 < \gamma_2 < \tau$. Now M, as promised above, can be interpreted as a model of that part of S_0 that mentions q_{γ} only for $\gamma < \tau$ by setting the interpretation of q_{γ} in M equal to that of r_{γ} .

Definition of S_{n+1} . Assume S_n is consistent and $\Sigma_2^{L(\alpha,T)}$. There are two cases.

Case a. Suppose $\mathcal{F} = \bigcup \{\mathcal{F}_i \mid i \in I\}$ is a ranked sentence such that $S_n \cup \{\mathcal{F}\}$ is consistent. S_{n+1} is $S_n \cup \{\mathcal{F}_{i'}\}$ for some $i' \in I$ such that $S_n \cup \{\mathcal{F}_{i'}\}$ is consistent.

Case b. The purpose of this case is to establish Δ_0 bounding, hence Σ_1 replacement, for (9.5). Let $\mathcal{D}(x, y)$ be a Δ_0^{ZF} formula with constants naming elements of (9.5). Fix $\rho < \alpha$, and regard $\mathcal{D}(x, y)$ as possibly defining a many-valued function d(x) from ρ into α that is Δ_0 in the sense of (9.5) For each $\delta < \rho$, define

$$H_{\delta} = \{\neg D(\delta, \gamma) \mid \gamma < \alpha\}.$$
(9.13)

Subcase b1. Suppose there is a $\delta < \rho$ such that $S_n \cup H_{\delta}$ is consistent. Let δ' be such a δ , and put S_{n+1} equal to $S_n \cup H_{\delta'}$. Then $d(\delta')$ will be undefined. Subcase b2. Suppose b1 fails. Then for each $\delta < \rho$:

$$S_n \vdash \forall \{ D(\delta, \gamma) \mid \gamma < \alpha \}; \tag{9.14}$$

so by Barwise compactness there is a $c(\delta) < \alpha$ such that

$$S_n \vdash \forall \{ D(\delta, \gamma) \mid \gamma < c(\delta) \}.$$
(9.15)

 $c(\delta)$ can be defined via deductions from S_n as a $\Sigma_2^{L(\alpha,T)}$ function of δ . Let c be $\sup\{c(\delta) \mid \delta < \rho\}$. Then $c < \alpha$ and $d(\delta)$ ($\delta < \rho$) will be bounded by c.

Define $S = \bigcup \{S_n \mid n < \omega\}$. By case a, S specifies (9.5). q_α is a nonprincipal type of T_α , because for every $\beta < \alpha$, S_0 and (9.7) compel q_β to be K-unbounded and consequently to split. (An instance of case a results in the choice of a K-unbounded p such that $(q_\beta = p)$ belongs to S.) By case b, (9.5) is Σ_1 admissible. It follows, as in the proof of theorem 6.1, that T has a model \mathcal{A}_1 that realizes q_α and such that $\omega_1^{\mathcal{A}_1} = \alpha$. Hence $sr(\mathcal{A}) = \alpha + 1$. \Box

Corollary 9.2. (bounding) Suppose T is weakly scattered and for some k satisfies the effective k-splitting hypothesis at α . If $L(\alpha, T)$ is Σ_2 admissible and

$$(\forall \ countable \ \mathcal{A}) \left[\mathcal{A} \models T \longrightarrow sr(\mathcal{A}) \le \omega_1^{\mathcal{A}} \right], \qquad (9.16)$$

then

$$(\exists \beta < \alpha) (\forall \mathcal{A}) \left[\mathcal{A} \models T \longrightarrow sr(\mathcal{A}) < \beta \right].$$
(9.17)

10. Further Results and Open Questions

Weakening the assumption of effective k-splitting in section 9 is under study. At this writing it appears likely that the predecessor (9.3) property can be dropped from the assumption: all that is needed is an unbounded $\Delta_1^{L(\alpha,T)}$ set of k-splits consistent with B_α ; then the existence of a predecessor function can be proved. There is a price to pay: the type structure $p_j^{T_\delta}$ $(\delta < \alpha)$ of a weakly scattered theory T has to be treated with greater delicacy. A further weakening, less likely but more than plausible, is to rule out the existence of RN-models of T. \mathcal{A} is an **RN-model** of T iff (i) $sr(\mathcal{A}) = \omega_1^{\mathcal{A}}$, (ii) $T_{\omega_1^{\mathcal{A}}}^{\mathcal{A}}$ is ω -categorical, and (iii) for each n there is a $\beta < \omega_1^{\mathcal{A}}$ such that each principal n-type of $T_{\omega_1^{\mathcal{A}}}^{\mathcal{A}}$ of arity n is generated by a formula of rank less than β . $(T_{\omega_1^{\mathcal{A}}}^{\mathcal{A}}$ is defined in section 2.) Makkai[7] produces an \mathcal{A} that satisfies (i) and (ii) but not (iii).

It appears that iterated forcing has a role to play above and also in the construction of an α -saturated model of T when T is weakly scattered and has countable models of unbounded Scott rank. But that is another story.

References

- Barwise, J. Admissible sets and structures. An approach to definability theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin-New York, 1975. xiii+394 pp.
- [2] Grilliot, Thomas J. Omitting types: applications to recursion theory. J. Symbolic Logic 37 (1972), 81-89.
- [3] Harnik, V. & Makkai, M. A tree argument in infinitary model theory. Proc. Amer. Math. Soc. 67 (1977), no. 2, 309-314.

- [4] Keisler, H. Jerome. Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers. Studies in Logic and the Foundations of Mathematics, vol. 62, North-Holland, Amsterdam, 1971, v+208 pp.
- [5] Knight, J. F. & Young, J. M. Computable structures of rank ω_1^{CK} . preprint (2004), 14 pp.
- [6] Knight, Robin. The Vaught conjecture: a counterexample. preprints (2002-04).
- [7] Makkai, M. An example concerning Scott heights. J. Symbolic Logic 46 (1981), no. 2, 301-318.
- [8] Makkai, M. An admissible generalization of a theorem on countable Σ_1^1 sets of reals with applications. Ann. Math. Logic 11 (1977), no.1, 1-30.
- [9] Morley, Michael. The number of countable models. J. Symbolic Logic 35 (1970), 14-18.
- [10] Nadel, Mark. Scott sentences and admissible sets. Ann. math. Logic 7 (1974), 267-294.
- [11] Sacks, Gerald E. On the number of countable models. Southeast Asian conference on logic (Singapore, 1981) 185-195, Studies in Logic and the Foundations of Mathematics, vol. 111, North-Holland, Amsterdam, 1983.
- [12] Scott, Dana. Logic with denumerably long formulas and finite strings of quantifiers. 1965 Theory of Models (Proc. 1963 Internat. Sympos. Berkeley) pp. 329-341 North-Holland, Amsterdam.
- [13] Steel, John R. On Vaught's conjecture. Cabal Seminar 76-77 (Proc. CalTech-UCLA Logic Sem. 1976-77), pp. 193-208, Lectures Notes in Math., 689, Springer, Berlin, 1978.

HARVARD UNIVERSITY, MASSACHUSETTS INSTITUTE OF TECHNOLOGY *E-mail address*: sacks@math.harvard.edu, sacks@math.mit.edu