BOUNDS ON WEAK SCATTERING

GERALD E. SACKS

In Memory of Jon Barwise

CONTENTS

1. INTRODUCTION

This paper has two themes less disparate than they seem at first reading:

Extending classical descriptive set theoretic results that impose bounds on suitably defined functions from ω^{ω} into ω_1 .

Extending and clarifying some early results on Scott ranks of countable structures sketched in $[11]$ ¹.

Let F be a function, possibly partial, from ω^{ω} into ω_1 . A typical *classical* bounding theorem says the range of F is bounded by a countable ordinal if the graph of F has a suitable definition. For example, the graph of F is boldface Σ_1^1 ; in this formulation the graph of F is viewed as a subset of $\omega^{\omega} \times \omega_1$ by requiring each value of F to be a well ordering of ω . The effective version of the theorem says that the bound is an ordinal below ω_1^p $_1^p$, the least

Date: December 9, 2004.

¹⁹⁹¹ Mathematics Subject Classification. 03C70, 03D60.

Key words and phrases. weakly scattered theories, bounds on Scott rank.

Many thanks to Julia Knight for her patience and encouragement.

¹ [11] was a hasty writeup of a talk given at the 1971 meeting of the International Congress of Logic, Methodology and Philosophy of Science. Some details absent from [11] but needed here are presented below..

ordinal not recursive in p, the real parameter in the boldface Σ_1^1 definition of F .

One way to reach the effective bound is to reduce the classical result to a special case: there is a Turing reducibility procedure $\{e\}$ such that for all $X \in \omega^{\omega}$, $\{e\}^{X,p}$ is a well ordering of ω whose ordinal height is $F(X)$. Thus

$$
F(X) < \omega_1^{X,p} \tag{1.1}
$$

for all $X \in \omega^{\omega}$, and then a recursion-theoretic trick "averages out" the X in (1.1) leaving an ordinal below ω_1^p $_1^p$ to bound the range of F.

A model theoretic approach to effective bounds is the path taken in this paper. A sketch may help to clarify later sections. $A(p)$ is the least Σ_1 admissible set with p as a member. Z is a $\Sigma_1^{A(p)}$ $_1^{A(p)}$ definable set of sentences of $\mathcal{L}_{\omega_1,\omega}$ coded by elements of $A(p)$ such that every model M of Z has the following properties.

- (1) The ordinals recursive in p form a proper initial segment of the ordinals in the sense of M .
- (2) There is an $X_0 \in M$ such that for all $\gamma < \omega_1^p$, $F(X_0) > \gamma$.
- (3) $p \in M$ and M is a Σ_1 admissible structure.

Assume the range of F is not bounded by an ordinal below ω_1^p $_{1}^{p}$. Then each $A(p)$ -finite subset of Z (i.e. each subset of Z that is a member of $A(p)$) is consistent, and so Z has a model by Barwise compactness. With the addition of "effective" type omitting, as in Grilliot^[2] or Keisler^[4], Z has a model M that omits ω_1^p $\frac{p}{1}$, but has non-standard ordinals greater than all standard ordinals less than ω_1^p $_1^p$. Then

$$
\omega_1^{p,X_0} \le \omega_1^p,\tag{1.2}
$$

otherwise ω_1^p ^p is recursive in $\langle p, X_0 \rangle$ and so $\omega_1^p \in M$. But then $\omega_1^{p, X_0} = \omega_1^p$ 1 and $F(X_0) \geq \omega_1^{p,X_0}$ by property (2) of Z, which contradicts (1.1).

The search for a bounding theorem that extends the classical result seems hopeless at first. An extension has to talk about an F that allows $F(X) \geq$ $\omega_1^{X,p}$ $X^{X,p}_{1}$, but $\omega_1^{X,p}$ $_{1}^{\Lambda,p}$, as a function of X, is unbounded. Model theory comes to the rescue. Every countable structure A has a Scott rank [12], $sr(\mathcal{A})$, an ordinal that can be as high as $\omega_1^{\mathcal{A}} + 1$ (see section 2 for elaboration).

Let T be a countable theory. A reasonable starting assumption on T is

$$
\forall \mathcal{A}[\mathcal{A} \models T \longrightarrow sr(\mathcal{A}) \le \omega_1^{\mathcal{A}}]. \tag{1.3}
$$

An ingenious example (MA) devised by Makkai[7] shows that (1.3) is not enough. Examination of (MA) and its illuminative extensions in Knight & Young^[5] leads to two further assumptions on T. The first, *effective* ksplitting, is technical and perhaps peripheral and is discussed further in sections 9 and 10. The second, weakly scattered, is central. The theory T_M associated with (MA) satisfies (1.3) and has properties similar to effective k-splitting. In addition for every Σ_1 admissible countable α , T_M has a model

A such that

$$
\omega_1^{\mathcal{A}} = \alpha = sr(\mathcal{A}). \tag{1.4}
$$

Corollary 9.2 says: if T is weakly scattered, satisfies (1.3) , and has effective ksplitting, then there is a countable bound on the Scott ranks of the countable models of T; the effective version provides a bound less than the first Σ_2 admissible ordinal relative to T in contrast to the classical case (1.1) where the effective bound on the range of F is less than ω_1^p $_1^p$, the first Σ_1 admissible ordinal relative to p .

The notion of weakly scattered is inspired by Morley's concept of scattered. Let $\mathcal L$ be a countable first order language, $\mathcal L_0$ a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ and $T \subseteq \mathcal{L}_0$ a theory (i.e. a set of sentences) with a model. For (a) and (b) below, let \mathcal{L}' be any countable fragment of $\mathcal{L}_{\omega_1,\omega}$ extending \mathcal{L}_0 , and T' any finitarily consistent, ω -complete theory contained in \mathcal{L}' and extending T. (The notions of finitary consistency and ω -completeness for fragments are reviewed at the beginning of Section 4.) T is said to be **scattered** iff (a) and (b) hold.

(a) For all $n > 0$ and all T', S_nT' , the set of all *n*-types over T', is countable.

(b) For all \mathcal{L}' , the set $\{T' | T' \subseteq \mathcal{L}'\}$ is countable.

The above definition of scattered is equivalent to the one in Morley's ground breaking $[9]$. T is said to be **weakly scattered** iff (a) holds. By $[9]$ a scattered theory can have at most ω_1 many countable models. In contrast a weakly scattered theory can have 2^{ω} many countable models.

Robin Knight^[6] has devised an extraordinary counterexample to Vaught's conjecture (VC), a scattered first order theory with ω_1 many countable models. VC has a precise formulation in section 5.

In [11] the following bounding result was established: if T is scattered and satisfies (1.3) , then T has only countably many countable models; furthermore every countable model of T has a countable copy in $L(\beta,T)$ for some $\beta < \sigma_2^T$, the least α such that $L(\alpha, T)$ is Σ_2 admissible. Hence Vaught's conjecture holds for T if T satisfies (1.3) . The proofs given in [11] were somewhat sketchy, so missing details needed in later sections of this paper are given in sections 3 through 5 . In the light of Robin Knight's counterexample, results for scattered theories yield information about models of counterexamples to VC. Theorem 4.9(vii) says: if Vaught's conjecture fails for T , then T has a model of cardinality ω_1 not elementarily equivalent in the sense of $\mathcal{L}_{\omega_1,\omega}$ to any countable model (Harnik & Makkai^[3]). Theorem 5.3 describes an ω_1 -sequence of atomic and saturated models that every counterexample must possess. Section 5 includes a related absoluteness result implicit in Morley^[9]: VC(*T*), Vaught's Conjecture for *T*, is a $\Sigma_1^{L(\omega_1^{L(T)},T)}$ $\frac{L(\omega_1, \ldots, L)}{1}$ predicate of T, hence Σ_2^1 .

Steel[13], as reported in [7], used an assumption stronger than (1.3) to prove $\mathrm{VC}(T)$. In Section 2 an arbitrary countable structure A is associated with a theory $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ contained in a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ canonically

generated from A . By an argument of Nadel[10], A is a homogeneous model of $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$. Steel's assumption, is equivalent to: for every \mathcal{A} a model of $T, T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ is ω -categorical. Assumption (1.3) is equivalent to: for every A a model of T, A is an atomic model of $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$. Sacks & Young (circa 1999) produced a structure A such that A is an atomic model of $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$, but $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ is not ω -categorical. (In addition $\omega_1^{\mathcal{A}} = \omega_1^{CK}$ and $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ is a Δ_1 subset of $L(\omega_1^{CK})$.)

Sections 7 through 9 are devoted to bounding for weakly scattered theories.

2. SCOTT ANALYSIS AND RANK

This section revisits [11] as promised in section 1. Scott[12] showed an arbitrary countable structure $\mathcal A$ with underlying first order language $\mathcal L$ can be characterized up to isomorphism by a single sentence of $\mathcal{L}_{\omega_1,\omega}$. In essence there is a countable fragment $\mathcal{L}^{\mathcal{A}}$ of $\mathcal{L}_{\omega_{1,\omega}}$ such that \mathcal{A} is the atomic model of $T^{\mathcal{A}}$, the complete theory of \mathcal{A} in $\mathcal{L}^{\mathcal{A}}$. Nadel[10] pointed the way to a canonical choice for $\mathcal{L}^{\mathcal{A}}$.

 $L(\omega_1^{\mathcal{A}}, \mathcal{A})$ is Gödel's L relativised to \mathcal{A} as an element², and chopped off at $\omega_1^{\mathcal{A}}$, the least γ such that $L(\gamma, \mathcal{A})$ is Σ_1 admissible. Let

$$
\mathcal{L}_{\omega_1^{\mathcal{A}},\omega}^{\mathcal{A}} = \mathcal{L}_{\omega_1,\omega} \cap L(\omega_1^{\mathcal{A}}, \mathcal{A}). \tag{2.1}
$$

Nadel[10] showed:

 ${\cal A}$ is a homogeneous model of its complete theory $T^{\cal A}_{\omega_1^{\cal A},\omega}$ in ${\cal L}^{\cal A}_{\omega_1^{\cal A},\omega}.$ (2.2)

It follows that A is the atomic model of its complete theory in

$$
\mathcal{L}_{\omega_1,\omega} \cap L(\omega_1^{\mathcal{A}} + 1, \mathcal{A}), \tag{2.3}
$$

since the types over $T^{\mathcal{A}}_{\omega_1^A,\omega}$ realized in \mathcal{A} are first order definable over $L(\omega_1^{\mathcal{A}}, \mathcal{A})$ and so become atoms of the complete theory of A contained in (2.3) .

 $A \Sigma_1$ recursion defines a canonical choice for $\mathcal{L}^{\mathcal{A}}$ and yields the definition of Scott rank for A:

 $\mathcal{L}_0^{\mathcal{A}} = \mathcal{L}.$ $\mathcal{L}^{\mathcal{A}}_{\lambda} = \cup \{ \mathcal{L}^{\mathcal{A}}_{\delta} \mid \delta < \lambda \}$ for limit λ .

 $T_{\delta}^{\mathcal{A}} =$ complete theory of \mathcal{A} in $\mathcal{L}_{\delta}^{\mathcal{A}}$. $\mathcal{L}^{\mathcal{A}}_{\delta+1}$ = least fragment \mathcal{L}^+ of $\mathcal{L}_{\omega_1,\omega}$ such that $\mathcal{L}^+ \supseteq \mathcal{L}^{\mathcal{A}}_{\delta}$, and for each $n > 0$, if $p(\vec{x})$ is a non-principal *n*-type of $T_{\delta}^{\mathcal{A}}$ realized in \mathcal{A} , then the conjunction

$$
\wedge \{ \mathcal{F}(\overrightarrow{x}) \mid \mathcal{F}(\overrightarrow{x}) \in p(\overrightarrow{x}) \}
$$

is a member of \mathcal{L}^+ .

Note that if A is isomorphic to B, then $\mathcal{L}_{\delta}^{\mathcal{A}} = \mathcal{L}_{\delta}^{\mathcal{B}}$ and $T_{\delta}^{\mathcal{A}} = T_{\delta}^{\mathcal{B}}$ for all δ . For some $\delta < \omega_1$, all the $n - types$ of $T_{\delta}^{\mathcal{A}}$ realized in \mathcal{A} are principal. To see this, fix γ and suppose some non-principal type $p_{\gamma+1}$ of $T^{\mathcal{A}}_{\gamma+1}$ is realized

²Strictly speaking, the relativisation is to the transitive closure of A .

in A. Let p_{γ} be the restriction of $p_{\gamma+1}$ to T_{γ}^{A} . Since $p_{\gamma+1}$ is non-principal, there is a formula $\mathcal{G}(\overrightarrow{x})$ of $\mathcal{L}^{\mathcal{A}}_{\gamma+1}$ such that both

$$
\exists \overrightarrow{x} [p_{\gamma}(\overrightarrow{x}) \land \mathcal{G}(\overrightarrow{x})] \text{ and } \exists \overrightarrow{x} [p_{\gamma}(\overrightarrow{x}) \land \neg \mathcal{G}(\overrightarrow{x})]
$$

belong to $T_{\gamma+1}^{\mathcal{A}}$. Then there are $n - tuples$ \overrightarrow{b} and \overrightarrow{c} of \mathcal{A} such that

$$
\mathcal{A} \models [p_{\gamma}(\overrightarrow{b}) \land \mathcal{G}(\overrightarrow{b})], \text{ and } \mathcal{A} \models [p_{\gamma}(\overrightarrow{c}) \land \neg \mathcal{G}(\overrightarrow{c})].
$$

Thus a distinction between \overrightarrow{b} and \overrightarrow{c} is made by a formula of $\mathcal{L}^{\mathcal{A}}_{\gamma+1}$ but not by any formula of $\mathcal{L}^{\mathcal{A}}_{\gamma}$. Since \mathcal{A} is countable, only countably many distinctions can be made.

Let d_A be the the least $\delta < \omega_1$ such that every distinction ever made is made by a formula of $\mathcal{L}_{\delta}^{\mathcal{A}}$. Then

$$
\mathcal{A} \text{ is the atomic model of } T_{d_{\mathcal{A}}+1}^{\mathcal{A}}.\tag{2.4}
$$

The Scott Rank of A is defined by

$$
sr(\mathcal{A}) = least \alpha[\mathcal{A} \text{ is the atomic model of } T_{\delta}^{\mathcal{A}}]. \tag{2.5}
$$

If A is isomorphic to B, then $sr(\mathcal{A}) = sr(\mathcal{B})$. Nadel's proof of $(2.2)(pg. 273)$ of [10]), sketched below, also shows

$$
\mathcal{A} \text{ is a homogeneous model of } T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}.\tag{2.6}
$$

Hence $d_{\mathcal{A}} \leq \omega_1^{\mathcal{A}}$, and so

$$
sr(\mathcal{A}) \le \omega_1^{\mathcal{A}} + 1. \tag{2.7}
$$

 $\mathcal{L}_{\delta}^{\mathcal{A}}$ and $T_{\delta}^{\mathcal{A}}$, as functions of $\delta < \omega_1^{\mathcal{A}}$, are $\Sigma_1^{L(\omega_1^{\mathcal{A}}, \mathcal{A})}$, i.e. their graphs are Σ_1 definable subsets of $L(\omega_1^{\mathcal{A}}, \mathcal{A})$. Since the formulas of $\mathcal{L}^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ and $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ are "enumerated" in increasing order of complexity,

$$
\mathcal{L}_{\omega_1^{\mathcal{A}}}^{\mathcal{A}} \text{ and } T_{\omega_1^{\mathcal{A}}}^{\mathcal{A}} \text{ are } \Delta_1^{L(\omega_1^{\mathcal{A}}, \mathcal{A})}.
$$
 (2.8)

To prove (2.6) , let $p(\vec{x})$ be an $n - type$, and $q(\vec{x}, y)$ an $(n+1) - type$, of $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$, and \overrightarrow{a} , \overrightarrow{b} *n – tuples* of \mathcal{A} . Suppose $p(\overrightarrow{x}) \subseteq q(\overrightarrow{x}, y)$ and

$$
\mathcal{A} \models [p(\overrightarrow{a}) \land p(\overrightarrow{b}) \land \exists y q(\overrightarrow{a}, y)]. \tag{2.9}
$$

For homogeneity, a $d \in \mathcal{A}$ is required so that $\mathcal{A} \models q(\overrightarrow{b}, d)$. Suppose no such d exists. Let $q_\delta(x, y)$ be the restriction of $q(x, y)$ to $\mathcal{L}_{\delta}^{\mathcal{A}}$.

$$
\{q_\delta(x,y) \mid \delta < \omega_1^{\mathcal{A}}\} \text{ is } \Sigma_1^{L(\omega_1^{\mathcal{A}}, \mathcal{A})}.\tag{2.10}
$$

For each $d \in \mathcal{A}$, there is a $\delta < \omega_1^{\mathcal{A}}$ such that $\mathcal{A} \models \neg q_{\delta}(\overrightarrow{b}, d)$. Since δ can be defined as a $\Sigma_1^{L(\omega_1^{\mathcal{A}}, \mathcal{A})}$ function of d, the Σ_1 admissibility of $L(\omega_1^{\mathcal{A}}, \mathcal{A})$ implies there is a $\delta_{\infty} < \omega_1^{\mathcal{A}}$ such that $\mathcal{A} \models \forall y \neg q_{\delta_{\infty}}(\overrightarrow{b}, y)$. But then

$$
\mathcal{A} \models \forall y \neg q(\overrightarrow{a}, y). \tag{2.11}
$$

A typical use of Scott rank in conjunction with Barwise compactness and Grilliot type omitting is as follows.

Proposition 2.1. Suppose $L(\alpha,T)$ is countable and Σ_1 admissible. If for each $\beta < \alpha$, T has a model of Scott rank $\geq \beta$, then T has a countable model $of T such that.$

$$
sr(\mathcal{A}) \ge \omega_1^{T,\mathcal{A}} = \alpha. \tag{2.12}
$$

Note that the A of (2.12) must have Scott rank either α or $\alpha+1$ by (2.7). Forcing the outcome to be $\alpha + 1$ is a problem addressed in this paper but far from resolved.

3. SMALL
$$
\Delta_0^{ZF}
$$
 SETS

The following is one of many variations (e.g. Makkai $[8]$) on a theme $initial$ initiated by Barwise $|1|$, an extension of a recursion theoretic fact needed for the enumeration of models of both scattered and weakly scattered theories. The variation below was mentioned and used in [11]. The recursion theoretic fact is: if a set S of reals is Σ_1^1 and has cardinality less that 2^ω , then there exists a hyperarithmetic real H such that every member of S is Turing reducible to H ; in addition an index for H can be computed uniformly from an index for S. The latter uniformity is key to establishing the Σ_1 character of the enumeration of models in sections 4 and 8. Let $D(x, y)$ be a Δ_0^{ZF} lightface formula, and A a countable Σ_1 admissible set. Suppose $p, b \in A$. DeÖne

$$
S_{p,b} = \{x \mid x \subseteq b \land D(x,p)\}\tag{3.1}
$$

Theorem 3.1. If $S_{p,b} \notin A$, then the cardinality of $S_{p,b}$ is 2^{ω} .

Proof. Let the language $\mathcal L$ consist of: \in , bounded quantifiers $\forall x \in y$ and $\exists x \in y$, an individual constant e for each $e \in A$, and a special individual constant \underline{c} different from all the \underline{e} 's. Z is the following Δ_1^A set of sentences of \mathcal{L} .

- (1) the atomic diagram of A: $\underline{d} \in \underline{e} \leftrightarrow d \in e$; $\underline{d} \notin \underline{e} \leftrightarrow d \notin e$ for $d, e \in A$.
- (2) $\underline{c} \subseteq \underline{b}$, $D(\underline{c},\underline{p})$, and $\underline{c} \neq \underline{e}$ for all $e \in A$.

Suppose Z is not consistent in the sense of $\mathcal{L}_{\omega_1,\omega}$. Then there is a $z_0 \in A$ such that $z_0 \subseteq Z$ and z_0 is not consistent. z_0 consists of some $A_0 \in A$ such that A_0 is a subset of the atomic diagram of A , and

$$
\underline{c} \subseteq \underline{b}, \ D(\underline{c}, \underline{p}), \text{ and } \{\underline{c} \neq \underline{e} \mid e \in f\} \tag{3.2}
$$

for some $f \in A$. Since z_0 is inconsistent, there is a deduction $E \in A$ of

$$
[\underline{c} \subseteq \underline{b} \land D(\underline{c}, \underline{p})] \longrightarrow \underline{c} \in f \tag{3.3}
$$

from A_0 . But then $S_{p,b} \subseteq f$ and so $S_{p,b} \in A$.

Suppose Z is consistent. Then a Henkin style construction in ω many stages yields a model of Z, hence an actual $c \in (S_{p,b} - A)$. At stage j, a sentence σ of $\mathcal L$ is considered, and σ_j is either σ or $\neg \sigma$ so long as $Z \cup \{\sigma_i |$

 $i \leq j$ is consistent. If σ_j is an infinite disjunction (e.g. σ_j begins with " $\exists x \in \underline{e}$ "), then some component of σ_i is added immediately.

The construction can be varied so 2^{ω} many c's are produced. Let t be a one-one map of ω onto $\{g \mid g \in b\}$. After σ_j is chosen, and before σ_{j+1} is chosen, create a split as follows. Choose an n so that $(t(n) \in \underline{c})$ and $(t(n) \notin \underline{c})$ are each consistent with $Z \cup {\sigma_i \mid i \leq j}$. Then the construction takes 2^{ω} different paths, and different paths produce different c's. Such splits always exist. Otherwise there is a j such that $Z \cup \{\sigma_i \mid i \leq j\}$ is consistent and for each *n* there is a deduction $D_n \in \mathcal{A}$ from $Z \cup \{\sigma_i \mid i \leq j\}$ of either $(t(n) \in \underline{c})$ or $(t(n) \notin c)$. The Σ_1 admissibility of A puts all the D_n 's in some $D \in A$. D decides which elements of <u>b</u> belong to <u>c</u>. Hence there is an $e \in A$ such that $(c = e)$ is deducible from $Z \cup \{\sigma_i \mid i \leq j\}$, a contradiction. such that $(\underline{c} = \underline{e})$ is deducible from $Z \cup {\sigma_i \mid i \leq j}$, a contradiction. \square

Corollary 3.2. $S_{p,b}$ is countable $\longleftrightarrow S_{p,b} \in A$.

Theorem 3.3. There exists a lightface Σ_1^{ZF} formula $\mathcal{F}(u, v, w)$ such that for any countable Σ_1 admissible set A and any $p, b, s \in A$:

$$
S_{p,b} \text{ is countable } \longrightarrow A \models \exists w \mathcal{F}(\underline{p}, \underline{b}, w) \tag{3.4}
$$

$$
(\forall s \in A) \ \{ [A \models \mathcal{F}(\underline{p}, \underline{b}, \underline{s})] \longrightarrow s = S_{p,b} \}. \tag{3.5}
$$

Proof. The existence of $\mathcal F$ is implicit in the proof of Theorem 3.1. Z is inconsistent iff $S_{p,b}$ is countable iff $S_{p,b} \in \mathcal{A}$. The statement

$$
A \models \mathcal{F}(\underline{p}, \underline{b}, \underline{s}) \tag{3.6}
$$

says: (i) there exist $A_0 \in A$ and E such that $A_0 \subseteq$ atomic diagram of A, and E is a deduction of (3.3) from A_0 ; and (ii)

$$
s = \{x \mid x \in f \land x \subseteq b \land D(x, p)\}.
$$
\n
$$
(3.7)
$$

 \Box

4. Enumeration of Models for Scattered Theories

Let \mathcal{L}_0 be a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ for some countable first order language \mathcal{L} , and $T \subseteq \mathcal{L}_0$ a theory with a model. Throughout this section T is scattered as defined in Section 1. For convenience assume T mentions all formulas of \mathcal{L}_0 ; thus \mathcal{L}_0 and $\mathcal L$ are recoverable from T.

Review of ω -completeness and finitary consistency for fragments. Let \mathcal{L}' be a countable fragment of $\mathcal{L}_{\omega_1,\omega}$, and $T' \subseteq \mathcal{L}'$ a set of sentences. T' is $\boldsymbol{\omega}$ - complete in \mathcal{L}' iff (1) and (2) hold.

(1) For every sentence $\mathcal{F} \in \mathcal{L}'$, either $\mathcal{F} \in T'$ or $(\neg \mathcal{F}) \in T'$.

(2) For any sentence $(\vee_i \mathcal{F}_i) \in T'$, there is an i such that $\mathcal{F}_i \in T'$.

 T' is finitarily consistent iff no contradiction can be derived from T' using only the finitary rules of $\mathcal{L}_{\omega_1,\omega}$. The infinitary step being avoided is deriving an infinite conjunction by deriving each of its components. T' is ω **-consistent** iff for any sentence $(\vee_i \mathcal{F}_i) \in \mathcal{L}'$, if $T' \cup \{\vee_i \mathcal{F}_i\}$ is finitarily consistent, then there is an i such that $T' \cup {\{\mathcal{F}_i\}}$ is finitarily consistent.

Proposition 4.1. If T' is finitarily consistent and ω -complete, then T' has a model.

Proof. Note that T' is ω -consistent. The model is constructed by extending T' to a finitarily consistent and ω - complete set of sentences that includes Henkin axioms. At each stage of the construction, the set of sentences up to that point is ω -consistent.

Proposition 4.2. Suppose for all $\beta \leq \gamma < \lambda$, T_{β} is finitarily consistent and ω -complete in the fragment \mathcal{L}_{β} , $T_{\beta} \subseteq T_{\gamma}$, and $\mathcal{L}_{\beta} \subseteq \mathcal{L}_{\gamma}$. Then $\cup \{T_{\beta} \mid \beta < \lambda\}$ is finitarily consistent and ω -complete in the fragment $\cup \{\mathcal{L}_{\beta} \mid \beta < \lambda\}.$

End of Review.

Morley^[9] showed that the scatteredness of T implies the countable models of T can be arranged in a hierarchy of height at most ω_1 based on Scott rank with at most countably many models on each level. The current section revisits [11] and presents a Σ_1 enumeration of the countable models of T with a recursion-theoretic eye on some constructive details. The enumeration is a continuous tree $\mathcal{TR}(\mathcal{T})$ with at most ω_1 levels, and at most countably many nodes on each level. Each node is a theory T' finitarily consistent and ω complete in a fragment $\mathcal{L}_{T'}$ with $T \subseteq T'$ and $\mathcal{L}_0 \subseteq \mathcal{L}_{T'}$. Each T' has an atomic model, and the class of all such models is the class of all countable models of T.

The *enumeration* of $TR(T)$ is as follows.

Level 0. T' is a node iff T' is a finitarily consistent and ω -complete extension of T in the fragment \mathcal{L}_0 (= $\mathcal{L}_{T'}$).

Level λ (limit). T' is a node iff there is a sequence T_{β} ($\beta < \lambda$) such that: T_{β} is on level β ; $T_{\beta} \subseteq T_{\gamma}$ ($\beta < \gamma < \lambda$); and $T' = \bigcup \{T_{\beta} | \beta < \lambda\}.$ $\mathcal{L}_{T'} = \cup \{ \mathcal{L}_{T_\beta} \mid \beta < \lambda \}.$

Level $\delta + 1$. Suppose S is a node on level δ , i.e. a finitarily consistent theory ω -complete in its fragment \mathcal{L}_S . If S is ω -categorical, then S has no successors on level $\delta + 1$. Otherwise S has a non-principal n-type $p(\vec{x})$. Let \mathcal{L}'_S be the least fragment of $\mathcal{L}_{\omega_1,\omega}$ extending \mathcal{L}_S and containing the conjunction

$$
\wedge \{ \mathcal{F}(\overrightarrow{x}) \mid \mathcal{F}(\overrightarrow{x}) \in p(\overrightarrow{x}) \}
$$
\n(4.1)

for every non-principal *n*-type $p(\vec{x})$ of S for all $n > 0$. T' is a successor of S on level $\delta + 1$ if T' is a finitarily consistent and ω -complete extension of S in the fragment \mathcal{L}'_S (= $\mathcal{L}_{T'}$).

Proposition 4.3. If $\beta < \omega_1$, then $TR(T)$ has only countably many nodes on level β .

Proof. By induction on β . Level 0 is countable by clause (b) of the definition of scattered. Suppose S is on level δ . Assume \mathcal{L}_S is countable. The set of all non-principal *n*-types of S is countable by clause (a) of the definition of scattered, hence \mathcal{L}'_S is countable. The set of all successors of S on level $\delta + 1$ is countable by clause (b) of the definition of scattered.

Let T' be any node on the countable limit level λ . Let \mathcal{L}_{λ} be the least fragment extending all the \mathcal{L}_S 's for all theories S on all levels below λ . By induction \mathcal{L}_{λ} is countable. Let T'' be any finitarily consistent and ω complete extension of T' in \mathcal{L}_{λ} . The set of all T''s is countable, so the set of all T 's is countable.

Let $TR(T) \upharpoonright \beta$ be the restriction of $TR(T)$ to the levels below β .

Proposition 4.4. (i) If $\beta < \alpha < \omega_1$ and $L(\alpha, T)$ is Σ_1 admissible, then

$$
(\mathcal{TR}(T) \restriction \beta) \in L(\alpha, T).
$$

(ii) There exists a lightface Σ_1^{ZF} formula $\mathcal{G}(u, v, w)$ such that for all scattered T, all countable Σ_1 admissible $L(\alpha,T)$, and all $b \in L(\alpha,T)$:

$$
(\mathcal{TR}(T) \restriction \beta) = b \Longleftrightarrow L(\alpha, T) \models \mathcal{G}(T, \beta, b).
$$

Proof. By a $\Sigma_1^{L(\alpha,T)}$ $_{1}^{L(\alpha,1)}$ recursion that relies on theorem 3.3. Suppose

$$
(\mathcal{TR}(T) \restriction (\delta + 1)) \in L(\alpha, T), \tag{4.2}
$$

and theory S is on level δ . The set of non-principal types of S is the unique $s \in L(\alpha, T)$ that satisfies the Σ_1 F of theorem 3.3 with p and b both equal to S. The statement "q is a non-principal type of S " is lightface Δ_0^{ZF} and corresponds to the formula $D(x, y)$ of (3.1). The fragment \mathcal{L}'_S was defined just before equation (4.1). The set of successors of S on level $\delta+1$ is obtained from theorem 3.3 with parameters $\langle p, b \rangle$ equal to $\langle S, \mathcal{L}'_S \rangle$ \rangle .

Let A be a countable model of T (a scattered theory as above). The Scott analysis of A differs little from its tree analysis:

 $T(0, \mathcal{A}) =$ theory of \mathcal{A} in \mathcal{L}_0 , and $\mathcal{L}_{T(0, \mathcal{A})} = \mathcal{L}_0$. $T(\lambda, \mathcal{A}) = \cup \{T(\beta, \mathcal{A}) \mid \beta < \lambda\}.$ $\mathcal{L}_{T(\lambda,\mathcal{A})} = \cup \{ \mathcal{L}_{T(\beta,\mathcal{A})} \mid \beta < \lambda \}.$

 $\mathcal{L}_{T(\delta+1,\mathcal{A})} = \mathcal{L}^{'}_{T(\delta,A)}$ (defined similarly to $\mathcal{L}^{'}_S$ on level $\delta+1$ of $\mathcal{TR}(T)$ above).

 $T(\delta+1, \mathcal{A}) =$ theory of \mathcal{A} in $\mathcal{L}_{T(\delta+1, \mathcal{A})}$.

Recall from section 2 the definition of $d_{\mathcal{A}}$, the distinction rank of \mathcal{A} , and the argument that the Scott rank of A is either d_A or $d_A + 1$. Clearly there is a $\delta < \omega_1$ such that for all n, any distinction made between n-tuples of A by a formula of $\mathcal{L}_{T(\omega_1,\mathcal{A})}$ is made by a formula of $\mathcal{L}_{T(\delta,\mathcal{A})}$. The tree rank of \mathcal{A} , is defined by

$$
tr(\mathcal{A}) =
$$
 least $\delta[\mathcal{A} \text{ is the atomic model of } T(\delta, \mathcal{A})].$ (4.3)

Proposition 4.5. $tr(\mathcal{A}) \leq sr(\mathcal{A})$.

Proof. \mathcal{L}_{δ}^A was defined just after equation 2.3. By induction on δ , \mathcal{L}_{δ}^A $\mathcal{L}_{T(\delta,\mathcal{A})}$. Thus $T^{\mathcal{A}}_{sr(\mathcal{A})} \subseteq T(sr(\mathcal{A}), \mathcal{A})$. A is an atomic, hence homogeneous model of $T_{sr(\mathcal{A})}^{\mathcal{A}},$ and so \mathcal{A} is an atomic model of $T(sr(\mathcal{A}), \mathcal{A}).$

Proposition 4.6. Suppose $A \models T$ and $\mathcal{L}(\alpha, \langle T, A \rangle)$ is Σ_1 admissible. Then

$$
tr(\mathcal{A}) < \alpha \longrightarrow sr(\mathcal{A}) < \alpha.
$$

Proof. Suppose not. Then D , the set of all distinctions between *n*-tuples (all $n > 0$) of A made by formulas of $\mathcal{L}_{T(tr(\mathcal{A}), \mathcal{A})}$, belongs to $\mathcal{L}(\alpha, < T, \mathcal{A}>)$ by proposition 4.4. And there is an unbounded $\Sigma_1^{L(\alpha,\langle T,\mathcal{A}\rangle)}$ map of D into α , a violation of the Σ_1 admissibility of $\mathcal{L}(\alpha, \langle T, \mathcal{A} \rangle)$. The map carries each distinction $d \in D$ to the least δ such that d is made by some formula of $\mathcal{L}_{s}^{\mathcal{A}}$. of $\mathcal{L}_{\delta}^{\mathcal{A}}$:

T can be scattered up to a point. $TR(T)$ is said to be **scattered below** β if the notion of scattered enumeration succeeds for T on all levels below β . To be more precise, $T\mathcal{R}(T)$ has only countably many nodes (perhaps none) on each level below β .

Proposition 4.7. Suppose $\alpha < \omega_1$, $L(\alpha, T)$ is Σ_1 admissible, T is scattered below $(\alpha + 1)$, and T has a model of Scott rank $\geq \beta$ for all $\beta < \alpha$. Then there exists a theory T_{α} on level α of $\mathcal{TR}(T)$ such that T_{α} is $\Delta_1^{L(\alpha,T)}$ $\frac{L(\alpha,1)}{1}$.

Proof. By proposition 4.6 $TR(T)$ has nodes on all levels below α , if an $\mathcal A$ can be found that satisfies the hypotheses of proposition 4.6 and also $sr(\mathcal{A}) \geq \alpha$. To find A through Barwise compactness, consider the following set Z of sentences.

(Z1) Introduce a constant e to name each $e \in L(\alpha, T)$. Add the atomic diagram (in the sense of $\mathcal{L}_{\omega_1,\omega}$) of $L(\alpha,T)$ to Z. For each $\beta < \alpha$,

$$
\forall x [x \in \underline{\beta} \longleftrightarrow \lor \{x = \underline{\gamma} \mid \gamma < \beta\}] \tag{4.4}
$$

is a typical member of $(Z1)$. Any model of $(Z1)$ is an end extension of $L(\alpha, T)$.

 $(Z2)$ Introduce a new constant d, and add sentences saying d is an ordinal greater than β for each $\beta < \alpha$.

(Z3) Add $\mathcal{A} \models T$ and $sr(\mathcal{A}) > \beta$ for each $\beta < \alpha$.

(Z4) Add the axioms for Σ_1 admissibility.

Let M be a model of Z that omits α but extends $L(\alpha,T)$ as in [2] or[4]. $L(\alpha, \langle T, \mathcal{A} \rangle)$ is Σ_1 admissible, otherwise $\alpha \in M$. (Z3) insures $sr(\mathcal{A}) \geq \alpha$.

Let T' denote an arbitrary node below level α . Call T' unbounded if T' has extensions to theories on arbitrarily high levels below α . T can be regarded as an unbounded node.

Suppose T' is an unbounded node below level β for some $\beta < \alpha$; then T' has an unbounded extension on level β . Otherwise the Σ_1 admissibility of $L(\alpha, T)$ implies T' is bounded.

There exists a $\beta_0 < \alpha$ and an unbounded node T_{β_0} on level β_0 such for all $\beta \in (\beta, \alpha)$, T_{β_0} has a unique unbounded extension on level β . Otherwise a tree U of unbounded nodes can be constructed such that U is isomorphic to the binary branching tree $2^{<\omega}$, and the branches of U define a continuum of nodes on some level $\alpha_0 \leq \alpha$ of $\mathcal{TR}(T) \restriction (\alpha + 1)$.

The set S_{ub} of unbounded nodes above T_{β_0} form an expanding sequence whose union is the desired T_{α} . To see S_{ub} is $\Delta_1^{L(\alpha,T)}$ $_1^{L(\alpha,1)}$, let N_{γ} be the set of all nodes on level γ extending T_{β_0} for each $\gamma \in (\beta_0, \alpha)$. N_{γ} , as a function of γ , is $\Sigma_1^{L(\alpha,T)}$ $L(\alpha, I)$ by proposition 4.4. $(N_{\gamma} - S_{ub}) \in L(\alpha, T)$ since $N_{\gamma} \cap S_{ub}$ has just one element. There is a $\Sigma_1^{L(\alpha,T)}$ $L(\alpha,1)$ function that takes each node $e \in (N_{\gamma} - S_{ub})$ to a bound on the levels occupied by extensions of e . But then there is a strict upper bound $b < \alpha$ on the levels occupied by extensions of members of $(N_\gamma - S_{ub})$. b singles out the unique member of $N_\gamma \cap S_{ub}$.

Proposition 4.8. Suppose $\alpha \leq \omega_1$, $L(\alpha,T)$ is Σ_2 admissible, T is scattered below α , and T has models of arbitrarily high Scott rank less than α . Then there exists a theory T_{α} on level α of $\mathcal{TR}(T)$ such that T_{α} is $\Delta_1^{L(\alpha,T)}$ $\frac{L(\alpha,1)}{1}$.

Proof. Similar to that of proposition 4.7. The only difference is in the handling of U. Then and now U can be defined by a $\Sigma_2^{L(\alpha,T)}$ $_2^{L(\alpha,1)}$ recursion of length ω , since the set of unbounded nodes is $\Pi_1^{L(\alpha,T)}$ $\frac{L(\alpha,1)}{1}$. But now the Σ_2 admissibility of $L(\alpha, T)$ implies $\mathcal{U} \in L(\alpha, T)$, and so the branches of \mathcal{U} define a continuum
of nodes on some level $\alpha_0 < \alpha$ of $TR(T)$. of nodes on some level $\alpha_0 < \alpha$ of $\mathcal{TR}(T)$.

Two *L*-structures are said to be $\mathcal{L}_{\omega_1,\omega}$ -equivalent if they satisfy the same sentences of $\mathcal{L}_{\omega_1,\omega}$. (Recall: if A is countable and $\mathcal{L}_{\omega_1,\omega}$ -equivalent to B, then A is $\mathcal{L}_{\infty,\omega}$ -equivalent to B.)

Theorem 4.9. Suppose Vaught's conjecture fails for T . Then there exist T_{β} , \mathcal{A}_{β} and \mathcal{L}_{β} ($\beta \leq \omega_1$) such that:

(i) If $\beta < \omega_1$, then T_β is an ω -complete theory in the countable fragment \mathcal{L}_β . (ii If $\beta \leq \gamma \leq \omega_1$, then $T_{\beta} \subseteq T_{\gamma}$, $\mathcal{A}_{\beta} \subseteq \mathcal{A}_{\gamma}$ and $\mathcal{L}_{\beta} \subseteq \mathcal{L}_{\gamma}$.

(iii) If λ (limit) $\leq \omega_1$, then $T_{\lambda} = \bigcup \{T_{\beta} \mid \beta < \lambda\}$ and $\mathcal{A}_{\lambda} = \bigcup \{\mathcal{A}_{\beta} \mid \beta < \lambda\}.$

(iv) T_{ω_1} is $\Delta_1^{L(\omega_1,T)}$ $_1^{L(\omega_1,1)}$ definable. (v) If $\beta \leq \omega_1$, then \mathcal{A}_{β} is an atomic model of T_{β} .

(vi) If $\beta < \omega_1$, then $\mathcal{A}_{\beta+1}$ realizes a non-principal type of T_{β} .

(vii) (Harnik & Makkai[3]) The cardinality of \mathcal{A}_{ω_1} is ω_1 , and \mathcal{A}_{ω_1} is not $\mathcal{L}_{\omega_1,\omega}$ -equivalent to any countable model.

Proof. A uncountable model \mathcal{A}_{ω_1} of T is constructed so that it is not $\mathcal{L}_{\omega_1,\omega}$ equivalent to any countable model. By proposition 4.8, there is a theory T_{ω_1} on level ω_1 of $\mathcal{TR}(\omega_1)$ such that T_{ω_1} is $\Delta_1^{L(\omega_1,T)}$ $T_1^{\omega_1,\iota}$. Thus $T_{\omega_1} = \bigcup_{\tau \in \mathcal{F}} \{T_{\gamma} \mid \gamma < \omega_1\},\$ and $(\gamma \leq \delta) \to (T_{\gamma} \subseteq T_{\delta})$, p, the parameter used in the $\Delta_1^{L(\alpha,T)}$ $_1^{\text{L}(\alpha,1)}$ definition of T_{ω_1} , belongs to $L(\alpha_0, T)$ for some $\alpha_0 < \omega_1$. Define

$$
K = \{ \beta \mid \alpha_0 < \beta < \omega_1 \land L(\beta, T) \preccurlyeq_1 L(\omega_1, T) \}.
$$

 $(X \preccurlyeq_1 Y \text{ means } X \text{ is a } \sum_{1}^{ZF} \text{ substructure of } Y.)$ Let $\{\gamma_{\delta} \mid \delta < \omega_1\}$ be an increasing enumeration of K. Then $L(\gamma_{\delta}, T)$ is Σ_1 admissible, and so

$$
T_{\gamma_\delta}=T_{\omega_1}\cap L(\gamma_\delta,T)
$$

by proposition 4.4(i). Also $T_{\gamma_{\delta}}$ is $\Delta_1^{L(\gamma_{\delta},T)}$ $\mathcal{L}(\gamma_{\delta},I)$ definable via the same Δ_1 definition that works for T_{ω_1} , since $p \in L(\gamma_\delta, T) \preccurlyeq_1 L(\omega_1, T)$.

Structures \mathcal{A}_{δ} ($\delta \leq \omega_1$) and inclusion maps $i_{\beta,\delta} : \mathcal{A}_{\beta} \longrightarrow \mathcal{A}_{\delta}$ ($\beta < \delta$) are defined by recursion on δ . $i_{\beta,\delta}$ will be elementary with respect to the language $\mathcal{L}_{\gamma_{\beta}}$; i.e. any sentence of $\mathcal{L}_{\gamma_{\beta}}$ with parameters in \mathcal{A}_{β} and true in \mathcal{A}_{β} will also be true in \mathcal{A}_{δ} .

Stage 0. \mathcal{A}_0 is the countable atomic model of T_{γ_0} .

Stage $\delta + 1$. Assume \mathcal{A}_{δ} is the countable atomic model of $T_{\gamma_{\delta}}$. Extend \mathcal{A}_{δ} to $\mathcal{A}_{\delta+1}$, the countable atomic model of $T_{\gamma_{\delta+1}}$, so that the inclusion map, $i_{\delta,\delta+1}$ is $\mathcal{L}_{\gamma_{\delta}}$ -elementary.

Stage λ (limit $\leq \omega_1$). Let

$$
\mathcal{A}_\lambda=\cup\{\mathcal{A}_\delta\mid\delta<\lambda\}
$$

For all $\delta < \delta' < \lambda$, assume the inclusion map $i_{\delta,\delta'}$ is $\mathcal{L}_{\gamma_{\delta}}$ -elementary. Then for each $\delta < \lambda$: \mathcal{A}_{λ} is an $\mathcal{L}_{\gamma_{\delta}}$ -elementary extension of \mathcal{A}_{δ} , and so is a model of $T_{\gamma_{\delta}}$. Thus \mathcal{A}_{λ} is a model of $T\gamma_{\lambda}$.

To see \mathcal{A}_{λ} is an atomic model of $T\gamma_{\lambda}$, let \vec{a} be an *n*-tuple of \mathcal{A}_{λ} . For some $\delta < \lambda$, \vec{a} is an *n*-tuple of \mathcal{A}_{δ} . \vec{a} realizes some atom $\mathcal{F}(\vec{x})$ of $T_{\gamma_{\delta}}$. $\mathcal{F}(\vec{x})$ is an atom of T_{λ} , because $L(\gamma_{\delta}, T) \preccurlyeq_1 L(\lambda, T)$. \vec{a} realizes $\mathcal{F}(\vec{x})$ in \mathcal{A}_{λ} , since $i_{\delta,\lambda}$ is \mathcal{L}_{δ} -elementary.

If \mathcal{A}_{ω_1} were $\mathcal{L}_{\omega_1,\omega}$ -equivalent to some countable model, then it would be an atomic model of $T_{\gamma_{\delta}}$ for some $\delta < \omega_1$. But $\mathcal{A}_{\delta+1}$, hence \mathcal{A}_{ω_1} , realizes a non-principal type of T_{γ_s} . .

5. ABSOLUTENESS OF VAUGHT'S CONJECTURE

Let $VC(T)$ be the predicate: Vaught's conjecture holds for T. Morley's work [9] implies that $VC(T)$ is absolute. The enumeration tree, $\mathcal{TR}(T)$, of section 4 is applied below to make the statement of $VC(T)$ more precise and to see in some detail how T can satisfy Vaught's conjecture. Suppose an attempt is made to develop $\mathcal{TR}(T)$ and the attempt fails to produce a tree with only countably many nodes on each level and ω_1 many non-empty levels Then there must be a countable β such that one of the following holds.

- (1) $\beta = 0$ and T has uncountably many finitarily consistent, ω -complete extensions in \mathcal{L}_0 .
- (2) $\beta = \delta + 1$, some theory S is on level δ , and for some n, the set of n -types of S is uncountable.
- (3) $\beta = \delta + 1$ some theory S is on level δ , for all n the set of n-types of S is countable, and the set of all finitarily consistent, ω -complete extensions of S in \mathcal{L}'_S is uncountable. \mathcal{L}'_S is defined just before 4.1.
- (4) $\beta = \lambda$ and the set of nodes on level λ is uncountable.
- (5) Level β is empty.

Define the **Vaught Rank** of T, $vr(T)$, to be the least countable β that satisfies one of 1-5 above. (If there is no such β , let $vr(T)$ be ω_1 .)

Define the predicate $VC(T)$ by $vr(T) < \omega_1$.

Suppose $vr(T) = \beta < \omega_1$. If $\beta = 0$, then T has 2^{ω} finitarily consistent, ω complete extensions in \mathcal{L}_0 by theorem 3.1, hence 2^{ω} many countable models. The same holds in cases 3 and 4. If 5 holds, then T has only countably many countable models, and each one is the atomic model of a theory on some level of $TR(T)$ below level β . Suppose case 2 holds. Then for some n, there are 2^{ω} n-types of S by theorem 3.1, hence 2^{ω} many countable models of T.

Recall that

$$
\omega_1^{L(T)} = least \ \gamma[L(T) \models (\gamma \ is \ uncountable)]. \tag{5.1}
$$

Proposition 5.1. The predicate, Vaught's Conjecture holds for T , is $\Sigma_1^{L(\omega_1^{L(T)},T)}$ $\frac{L(\omega_1 \wedge \ldots \wedge T)}{1}$, hence Σ_2^1 .

Proof. By proposition 4.4, $\mathcal{TR}(T) \subseteq L(\omega_1, T)$ and is $\Sigma_1^{L(\omega_1,T)}$ $_1^{L(\omega_1,1)}$. $VC(T)$ says: at some level $\gamma < \omega_1$, either (a) $TR(T)$ ends or (b) "blows up", i.e. a perfect kernel of theories or types is manifest. Let α_0 be the least $\alpha > \gamma$ such that $L(\alpha,T)$ is Σ_1 admissible.

Suppose (a) holds. Then Levy-Shoenfield absoluteness implies α_0 < $\omega_1^{L(T)}$ $L^{(1)}$, and there is a $\mathcal{L}_{\omega_1,\omega}$ sentence $\mathcal{K} \in L(\alpha_0,T)$ that expresses the fact that every model of T is an atomic model of some theory on some level at or below γ of $TR(T)$.

Suppose (b) holds. Theorem 3.1 implies the existence of a perfect kernel of theories or types. A coding of some such perfect kernel by a real is constructible from any counting of α_0 . The proof of 3.1 relies on the consistency of a certain set Z of axioms. Z is $\Sigma_1^{L(\alpha_0,T)}$ $\frac{L(\alpha_0, I)}{1}$, and the consistency of Z is $\Pi_1^{L(\alpha_0,T)}$ $L^{(\alpha_0,T)}$. Hence Levy-Shoenfield absoluteness implies $\alpha_0 < \omega_1^{L(T)}$, and so a code for the perfect kernel belongs to $L(\omega_1^{L(T)})$ $L^{(1)}, T$).

Proposition 5.2. Suppose T is a counterexample to Vaught's conjecture. Then there is a theory T_{ω_1} on level ω_1 of $TR(T)$ such that T_{ω_1} is $\Delta_1^{L(\omega_1,T)}$ $\frac{L(\omega_1, I)}{1}$. For all countable β : T_{β} , the restriction of T_{ω_1} to level β , has an atomic model whose Scott rank is β .

Proof. By proposition 4.8.

Suppose $L(\alpha,T)$ is Σ_1 admissible, A is a countable model of T, and $\omega_1^A = \alpha$. According to (2.6), A is a homogenous model of T_α^A . A is said to be α -saturated if every *n*-type $(n \geq 1)$ of $T_{\alpha}^{\mathcal{A}}$ is realized in \mathcal{A} .

Theorem 5.3. Suppose T is a counterexample to Vaught's conjecture. Then there is a $\Delta_1^{L(\omega_1,T)}$ $\int_1^{L(\omega_1,I)}$ theory T_{ω_1} on level ω_1 of $\mathcal{TR}(T)$ and a closed unbounded set $C \subseteq \omega_1$ such that $\forall \alpha \in C$: T_α , the restriction of T_{ω_1} to level α , has an atomic model A_{α} of Scott rank α and an α -saturated model \mathcal{B}_{α} of Scott rank $\alpha + 1.$

The atomic models form an expanding chain and each inclusion $A_{\beta} \subset A_{\gamma}$ $(\beta < \gamma)$ is elementary with respect to the language of T_{β} .

Proof. Proposition 4.8 provides T_{ω_1} . Let $p \in L(\omega_1, T)$ be the parameter needed for the $\Delta_1^{L(\omega_1,T)}$ $L^{(\omega_1,T)}$ definition of T_{ω_1} . For any α , let α^+ be the least $\beta > \alpha$ such that $L(\beta, T)$ is Σ_1 admissible.

For $x \in L(T)$, let $H_1(x)$ be the Σ_1 hull of x in $L(T)$. Recall that

$$
x \subseteq H_1(x) \preccurlyeq_1 L(T)
$$

and that x and $H_1(x)$ have the same cardinality in $L(T)$.

An expanding sequence of countable Σ_1 hulls, H^{δ} ($\delta < \omega_1$), is defined by recursion on δ .

 H^0 is $H_1({\lbrace tc(p), \omega_1, tc(T) \rbrace})$. (*tc* is transitive closure.) Note: $\omega_1^+, \omega \in H^0$; if $d < e < \omega_1$ and $e \in H^0$, then $d \in H^0$. Let c_0 be the lub of the countable ordinals in H^0 . Let $L(\beta_0, T)$ be the transitive collapse of H^0 . Then

$$
c_0 = \omega_1^{L(\beta_0, T)}
$$
 and $L(c_0^+, T) \subseteq L(\beta_0, T)$. (5.2)

Stage $\delta + 1$ **.** Assume H^{δ} is countable in V. Then $H^{\delta} \cap \omega_1$ is a proper initial segment of ω_1 . Let c_{δ} be the least countable ordinal not in H^{δ} . $H^{\delta+1}$ is $H_1(H^{\delta} \cup \{c_{\delta}\}).$

Stage λ (limit). H^{λ} is $\cup \{H_{\delta} \mid \delta < \lambda\}$.

 $C = \{c_{\delta} \mid \delta < \omega_1\}$ is a closed unbounded set.

Let $L(\beta_{\delta}, T)$ be the transitive collapse of H^{δ} . Then

$$
c_{\delta} = \omega_1^{L(\beta_{\delta}, T)} \text{ and } L(c_{\delta}^+, T) \subseteq L(\beta_{\delta}, T). \tag{5.3}
$$

Let $T_{c_{\delta}}$ be the restriction of T_{ω_1} to level c_{δ} of $\mathcal{TR}(T)$. $T_{c_{\delta}}$ is $\Delta_1^{L(c_{\delta},T)}$ via parameter p. N, the set of non-principal types of $T_{c\delta}$, is non-empty and countable in V. $T_{c_{\delta}} \in L(c_{\delta}^{+})$ $(\frac{1}{\delta}, T)$, and so $N \in L(c_{\delta}^+)$ $(\frac{+}{\delta}, T)$ by theorem 3.1. Hence the structure $L[c_{\delta}, T; T_{c_{\delta}}, N]$ (i.e. $L(c_{\delta}, T)$ with $x \in T_{c_{\delta}}$ and $x \in N$ as additional atomic predicates) is Σ_1 admissible because no subset of c_{δ} in $L(\beta_{\delta}, T)$ can define a counting of $\omega_1^{L(\beta_{\delta}, T)}$ $\mathcal{L}^{L(\rho_{\delta},I)}$. Now the construction of M in the proof of theorem 6.1 can be imitated to produce a model \mathcal{B} of $T_{c\delta}$ such that B realizes all the types in N and $\omega_1^B = c_{\delta}$.

The atomic A_{β} 's are supplied by Theorem 4.9.

6. Bounds on Scattered Theories

Once again $\mathcal L$ is a countable first order language, $\mathcal L_0$ is a countable fragment of $\mathcal{L}_{\omega_1,\omega}$, and $T \subseteq \mathcal{L}_0$ has a model. \mathcal{L} and \mathcal{L}_0 are effectively recoverable from T_0 . T is scattered below β as was defined just before proposition 4.7.

Theorem 6.1. Suppose $\alpha < \omega_1$, $L(\alpha,T)$ is Σ_2 admissible, T is scattered below α , and for each $\beta < \alpha$, T has a model of Scott rank $\geq \beta$. Then T has a model A such that $\omega_1^A = \alpha$ and $sr(A) = \alpha + 1$.

Proof. By proposition 4.8 $TR(A)$ has a theory T_{α} on level α such that T_{α} is Δ_1^{α} . T_{α} is $\cup \{T_{\beta} \mid \beta < \alpha\}$, where T_{β} is a node on level β . Let Z be the following set of sentences.

(Z1) The atomic diagram of $L(\alpha,T)$ in the sense of $\mathcal{L}_{\omega_1,\omega}$.

(Z2) Add $(\underline{d} > \beta)$ for all $\beta < \alpha$. \underline{d} is a constant not occurring in (Z1).

(Z3) Let T_d be a theory on level \underline{d} of $\mathcal{TR}(T)$. Add $\mathcal A$ is the countable atomic model of T_d and $\mathcal{F} \in T_d$ for each sentence $\mathcal{F} \in T_\alpha$.

(Z4) Add $(b(\vec{x})$ is an atom of T_d) for each $b(\vec{x})$ that is an atom of T_{α} , i.e. $b(\vec{x})$ generates a principal type of T_{α} .

(Z5) Add the axioms of Σ_1 admissibility.

Z is $\Sigma_2^{L(\alpha,T)}$ $L(\alpha,T)$, since the set of atoms of T_{α} is $\Pi_1^{L(\alpha,T)}$ $\frac{L(\alpha,1)}{1}$.

Suppose $\beta < \alpha$, $L(\beta,T)$ is Σ_1 admissible, and Z_β is $Z \cap L(\beta,T)$. To check the consistency of Z_{β} , augment $L(\alpha,T)$ by adding a generic counting of $L(\beta,T)$ to $L(\alpha,T)$ that preserves the Σ_2 admissibility of $L(\alpha,T)$. Z_β can be modeled by the augmented $L(\alpha, T)$. By proposition 4.4, $T_{\beta} \subseteq L(\beta, T)$. Interpret \underline{d} as β . Interpret $\mathcal A$ as the atomic model of T_{β} . Such an $\mathcal A$ belongs to the augmented $L(\alpha, T)$ because there T_{β} is countable. If $b(\overrightarrow{x})$ is an atom of T_{α} and belongs to $L(\beta,T)$, then $b(\overrightarrow{x})$ is an atom of T_{β} .

Z has a model M that is a proper end extension of $L(\alpha,T)$ but omits α . $\omega_1^{\mathcal{A}} \leq \alpha$, otherwise α is recursive in \mathcal{A} , and then $\alpha \in M$. $\mathcal{A} \models T_{\beta}$ for all $\beta < \alpha$, hence $sr(\mathcal{A}) \ge \alpha$ by proposition 4.5, and so $\omega_1^{\mathcal{A}} = \alpha$ by (2.6).

Suppose $sr(\mathcal{A}) = \alpha$. Then $\alpha \in M$ as follows. $\mathcal A$ is the atomic model of T_{α} . The rank of an atom $b(\vec{x})$ of T_{α} is the least $\beta < \alpha$ such that $b(\vec{x})$ is an atom of T_{β} . Let f be the function that carries each $\vec{a} \in \mathcal{A}$ to the rank of an atom of T_{α} that generates the principal type realized by \overrightarrow{a} in A. Thanks to (Z4) f is definable from T_d , and so $f \in M$. Then $lub(range$
 $f) = \alpha \in M$. $f) = \alpha \in M$.

Corollary 6.2. ([11]) Suppose for every countable model A of T , the Scott rank of A is less than or equal to ω_1^A . Then Vaught's conjecture holds for T.

Proof. Suppose $VC(T)$ fails. Then T is scattered below ω_1 , and $TR(T)$ has nodes on every countable level. Choose an $\alpha < \omega_1$ such that $L(\alpha, T)$ is Σ_2 admissible. Then T has a countable model A such that $\omega_1^A = \alpha$ and $sr(\mathcal{A}) = \alpha + 1.$

A more effective version of corollary 6.2 is as follows. Define

$$
\sigma_2^T = least \alpha [L(\alpha, T) is \Sigma_2 admissible]. \tag{6.1}
$$

 $vr(T)$, the Vaught rank of T, was defined at the beginning of section 6.

Corollary 6.3. Suppose T does not have a countable model A such that

$$
\omega_1^{\mathcal{A}} = \sigma_2^T \text{ and } sr(\mathcal{A}) = \sigma_2^T + 1. \tag{6.2}
$$

Then $vr(T) < \sigma_2^T$.

Proof. If $vr(T) \geq \sigma_2^T$, then T is scattered below σ_2^T and $\mathcal{TR}(T)$ has nodes on every level below σ_2^T $\overline{}$

As a warm-up to the main bounding results of the paper (section 8), the above is recast as an effective bounding theorem.

Corollary 6.4. Suppose T is scattered and

$$
sr(\mathcal{A}) \le \omega_1^{\mathcal{A}} \text{ for every countable } \mathcal{A} \models T. \tag{6.3}
$$

Then $\exists \beta < \sigma_2^T$ such that

$$
sr(\mathcal{A}) < \beta \ for \ every \ \mathcal{A} \models T. \tag{6.4}
$$

 $SA(T)$ says: for every countable model A of T, the theory $T^{\mathcal{A}}_{\omega_1^A}$ is ω categorical. Steel [13], as reported in Makkai^[7], showed that $VC(T)$ follows from $SA(T)$. Theorem 6.5 is an effective version of Steel's result.

 $L(\alpha,T)$ is said to be **recursively** Mahlo if $L(\alpha,T)$ is Σ_1 admissible and every $\Delta_1^{L(\alpha,T)}$ $L(\alpha,1)$ closed unbounded subset of α has a member β such that $L(\beta,T)$ is Σ_1 admissible. Define

$$
rm(T) = \text{ least } \gamma \ [L(\gamma, T) \text{ is recursively Mahlo}]. \tag{6.5}
$$

Note that $rm(T) < \sigma_2^T$.

Theorem 6.5. Suppose T is scattered and

$$
T_{\omega_1^A}^{\mathcal{A}} \text{ is } \omega-\text{categorical for every countable } \mathcal{A} \models T. \tag{6.6}
$$

Then $\exists \beta < rm(T)$ such that

$$
sr(\mathcal{A}) < \beta \ for \ every \ countable \ \mathcal{A} \models T. \tag{6.7}
$$

Proof. Suppose there is no such β . Let α be $rm(T)$. Then proposition 4.7 supplies a $\Delta_1^{L(\alpha,T)}$ $T_1^{L(\alpha,T)}$ theory T_α on level α of $\mathcal{TR}(T)$. $T_\alpha = \cup \{T_\beta \mid \beta < \alpha\}$, and T_{β} , as a function of β , is $\Sigma_1^{L(\alpha,T)}$ $\frac{L(\alpha,1)}{1}$.

There is a $\Sigma_1^{L(\alpha,T)}$ $T_1^{L(\alpha,T)}$ function f_0 such that $T_\beta \subseteq L(f_0(\beta),T)$ for all $\beta < \alpha$. Iteration of f_0 leads to a $\Delta_1^{L(\alpha,T)}$ $_1^{L(\alpha,1)}$ closed unbounded set

$$
C_0 = \{ \gamma \mid T_\gamma \subseteq L(\gamma, T) \}. \tag{6.8}
$$

A similar argument produces a $\Delta_1^{L(\alpha,T)}$ $L^{(\alpha,1)}$ closed unbounded set C_1 such that

$$
\forall \gamma \in C_1[(T_\alpha \cap L(\gamma, T)) \text{ is } \Delta_1^{L(\gamma, T)}]. \tag{6.9}
$$

Then there is a $\Delta_1^{L(\alpha,T)}$ $L^{(\alpha,1)}$ closed unbounded set K such that

$$
\forall \gamma \in K[T_{\gamma} \subseteq L(\gamma, T) \text{ and } T_{\gamma} \text{ is } \Delta_1^{L(\gamma, T)}]. \tag{6.10}
$$

Hence for some $\gamma_0 \in K$, $L(\gamma_0, T)$ is Σ_1 admissible. Consequently T_{γ_0} has a model B such that $\omega_1^B = \gamma_0$. But then $T^B_{\omega_1^B}$, hence T_{γ_0} , is ω -categorical, and so has no extension to a node on level α .

7. Iterated Classical Bounding

In this section classical bounding (reviewed in section 1) is translated into the language of Σ_1 admissible sets and revised to allow for iterated use in Σ_1 recursive definitions in section 8.

Let
$$
B(x)
$$
 be a Δ_0^{ZF} formula with parameter p_0 . $B(x)$ is β -bounded iff :
\n
$$
\forall c[B(c) \iff L[\beta, p_0; c] \models B(\underline{c})]. \tag{7.1}
$$

 $L[\beta, p_0; c]$ is the result of iterating first order definability with $y \in c$ as an additional atomic predicate through the ordinals less than β starting with the transitive closure (tc) of $\{p_0\}$. Assume $B(x)$ is β -bounded. Define

$$
c_{\beta} = c \cap L[\beta, p_0; c] \tag{7.2}
$$

Then $B(c) \iff B(c_{\beta})$. For all z let A_z be the least Σ_1 admissible set with z as a member; thus

$$
A_z = L(\omega_1^z, tc({z})).
$$
\n(7.3)

Let $\mathcal{F}(u, v)$ be a Σ_1^{ZF} formula with parameter p_1 , and let p be $\{p_0, p_1\}$. Suppose for all c: if $B(c)$, then there exists a unique $\delta \in A_{\{p,\beta,c_\beta\}}$ such that

$$
A_{\{p,\beta,c_{\beta}\}} \models \mathcal{F}(\underline{c_{\beta}},\underline{\delta});\tag{7.4}
$$

designate δ by $\delta_{p,\beta,c}$.

Theorem 7.1. (i) There exists a $\delta_{p,\beta} \in A_{\{p,\beta\}}$ such that for all c:

$$
B(c) \Longrightarrow \delta_{p,\beta,c} \le \delta_{p,\beta}.\tag{7.5}
$$

(ii) $\delta_{p,\beta}$ can be construed as a partial function of p and β whose restriction to any Σ_1 admissible A has a Σ_1^A definition uniformly in A, i.e. one Σ_1 formula works for all A.

Proof. Z is the following $\Sigma_1^{A_{\{p,\beta\}}}$ set of sentences. Let $\alpha = \omega_1^{\{p,\beta\}}$.

(Z1) Introduce constants \underline{c} and \underline{c}_{β} , and put $\underline{c}_{\beta} = \underline{c} \cap L[\beta, p_0; \underline{c}]$ and $B(\underline{c}_{\beta})$ in Z.

(Z2) Add constants that name the elements of (7.6) and sentences of $\mathcal{L}_{\omega_1,\omega}$ that define each element in terms of elements of lower definability rank.

$$
L(\alpha, tc(\lbrace p, \beta, c_{\beta} \rbrace)) \tag{7.6}
$$

(Z3) Let $\mathcal{F}(u, v)$ be $\exists w \mathcal{G}(u, v, w)$ for some Δ_0^{ZF} formula $\mathcal{G}(u, v, w)$. Add $\neg \mathcal{G}(c_{\beta}, \underline{\delta}, \underline{r})$ for all $\delta < \alpha$ and every <u>r</u> that names an element of (7.6).

(Z4) Add axioms for Σ_1 admissibility.

Suppose Z is consistent. Assume for a moment that

$$
Z \t{is countable.} \t(7.7)
$$

As in the proof of proposition 4.7, Z has a model M that is a proper end extension of (7.6) but omits α . Then (7.6) is Σ_1 admissible, and so

$$
A_{\{p,\beta,c_{\beta}\}} = L(\alpha, tc(\{p,\beta,c_{\beta}\})).
$$
\n(7.8)

But then $A_{\{p,\beta,c_{\beta}\}}\models \neg \mathcal{F}(\underline{c_{\beta}},\underline{\delta})$ for all $\delta<\alpha$, a contradiction since $\delta_{p,\beta,c_{\beta}}\in$ $A_{\{p,\beta,c_\beta\}}.$

Thus Z is inconsistent.

To remove assumption (7.7) , generically extend the universe V to V' so that Z is countable in V' . Then Z is inconsistent in V' , hence in V by the absoluteness of provability in the sense of $\mathcal{L}_{\infty,\omega}$.

Since Z is $\Sigma_1^{A_{\{p,\beta\}}}$, there must be a inconsistent $W \subseteq Z$ such that $W \in$ $A_{\{p,\beta\}}$. W consists of:

 $(W1)$ $(Z1)$ and $(Z4)$.

 $(W2)$ Some $A_0 \in A_{p,\beta}$ such that $A_0 \subseteq$ set of sentences of $(Z2)$.

(W3) For some $\delta_1 < \alpha$, $\neg \mathcal{G}(c_\beta, \underline{\delta}, \underline{r})$ for all $\delta < \delta_1$ and every r of (Z2) that names an element of $L(\delta_1, tc({p, \beta, c_{\beta}}))$.

Then there is a deduction $D \in A_{\{p,\beta\}}$ from $(W1)$ & $(W2)$ of

$$
\vee \{ \mathcal{F}(\underline{c_{\beta}}, \delta) \mid \delta < \delta_1 \}. \tag{7.9}
$$

Let ρ_0 be the least ρ such that there is such a $D \in L(\rho, tc({p, \beta})):$ let $\delta_{\{p, \beta\}}$ be the least δ_1 associated with any such $D \in L(\rho_0, tc({p, \beta})).$ Then

$$
\delta_{p,\beta,c} \le \delta_{p,\beta}.\tag{7.10}
$$

for any c such that $B(c)$ holds. The Σ_1^{ZF} formula H that defines $\delta_{p,\beta}$ as a partial function of p, β uniformly owes its existence to the effective nature of deducibility in $\mathcal{L}_{\omega_1,\omega}$. H singles out a deduction in $A_{\{p,\beta\}}$ that establishes the value of $\delta_{p,\beta}$. H can be formulated to succeed in every Σ_1 admissible A, because $p, \beta \in A$ implies $A_{\{p,\beta\}}$ is a Σ_1^A definable (uniformly) subclass of $A.$

8. Enumeration of Models under Weak Scattering

Let \mathcal{L}_0 be a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ for some countable first order language \mathcal{L} , and $T \subseteq \mathcal{L}_0$ a theory with a model. Assume T is weakly scattered as defined in section 1. For convenience assume T mentions all formulas of \mathcal{L}_0 ; thus \mathcal{L}_0 and \mathcal{L} are recoverable from T. Since T need not be scattered, there is no hope of enumerating theories in $L(\omega_1, T)$ whose atomic models are exactly the countable models of T . But some useful vestiges of the constructive features of scattering carry over to weak scattering, and $L(\omega_1, T)$ manages to say a great deal about the countable models of T.

First consider $\mathcal{RH}(T)$, the raw hierarchy for the countable models of T. On level 0 of $\mathcal{RH}(T)$, put every T_0 such that $T \subseteq T_0$ and T_0 is a finitarily consistent, ω -complete theory of \mathcal{L}_0 . (If needed, see the beginning of section 4 for a review.)

Suppose T_{δ} is on level δ of $\mathcal{RH}(T)$. Define

$$
\delta - 1 \text{ if } \delta \text{ is a successor} \tag{8.1}
$$

 δ if δ is not a successor.

 $\mathcal{L}_0(T_{0-})$ is defined to be \mathcal{L}_0 . Assume T_δ extends a unique $T_{\delta-}$ on level δ and $\mathcal{L}_{\delta}(T_{\delta-})$ is countable. If all *n*-types $(n \geq 1)$ of T_{δ} are principal, then $\mathcal{L}_{\delta+1}(T_{\delta})$ is undefined and T_{δ} has no extensions on level $\delta+1$. Otherwise let $\mathcal{L}_{\delta+1}(T_{\delta})$ be the least fragment of $\mathcal{L}_{\omega_1,\omega}$ extending $\mathcal{L}_{\delta}(T_{\delta-})$ and having as a member the conjunction

$$
\wedge \{ \mathcal{F}(\overrightarrow{x}) \mid \mathcal{F}(\overrightarrow{x}) \in p(\overrightarrow{x}) \} \tag{8.2}
$$

for every non-principal *n*-type $p(\vec{x})$ of T_δ ($n \ge 1$). Since T is weakly scattered, $\mathcal{L}_{\delta+1}(T_{\delta})$ is countable.

On level $\delta + 1$ of $\mathcal{RH}(T)$ put every $T_{\delta+1}$ that extends T_{δ} and is a finitarily consistent, ω -complete theory of $\mathcal{L}_{\delta+1}(T_{\delta})$.

Put T_{λ} on level λ if there is a sequence $T_{\delta}(\delta \langle \lambda \rangle)$ such that: T_{δ} is on level δ ; $T_{\beta} \subseteq T_{\gamma}$ if $\beta \leq \gamma$; and $T_{\lambda} = \bigcup \{T_{\delta} \mid \delta < \lambda\}.$

 $\mathcal{L}_{\lambda}(T_{\lambda})$ is $\cup \{ \mathcal{L}_{\delta}(T_{\delta-}) \mid \delta < \lambda \}.$

It is straightforward to verify that A is a countable model of T iff A is the atomic model of T_{δ} for some countable δ . Define the raw tree rank of $\mathcal A$ by

 $rtr(\mathcal{A}) =$ (least δ)[\mathcal{A} is the atomic model of some T_{δ}]. (8.3)

Propositions 4.5 and 4.6 hold when tr is rtr. Thus

$$
rtr(\mathcal{A}) \le sr(\mathcal{A}),\tag{8.4}
$$

and if $L(\alpha, \langle T, \mathcal{A} \rangle)$ is Σ_1 admissible, then

$$
rtr(\mathcal{A}) < \alpha \longrightarrow sr(\mathcal{A}) < \alpha. \tag{8.5}
$$

What matters more is what can be expressed inside $L(\alpha,T)$ when $\alpha \leq \omega_1$ and $L(\alpha,T)$ is Σ_1 admissible. Let A_δ be the set of all T_δ 's on level δ of $\mathcal{RH}(T)$. A_{δ} will be defined by a β -bounded Δ_{0}^{ZF} formula (7.1), and its definition as such, denoted by $\ulcorner A_\delta\urcorner$, will belong to $L(\alpha,T)$ when $\delta < \alpha$. The fragment $\mathcal{L}_{\delta}(T_{\delta-})$ will be constructible from $T_{\delta-}$ via an ordinal $\rho_{\delta}<\alpha$ for all $T_{\delta-} \in A_{\delta-}$. A_{δ} ^T and ρ_{δ} will be defined by a simultaneous $\Sigma_1^{L(\alpha,T)}$ 1 recursion uniformly in α , i.e. the same Σ_1 formula will work for all $\alpha \leq \omega_1$ such that $L(\alpha, T)$ is Σ_1 admissible.

Consider an arbitrary T_{δ} on level δ of $\mathcal{RH}(T)$. There exists a natural recovery process that can be applied to T_{δ} to recover the unique sequence T_{γ} ($\gamma < \delta$) such that

$$
T_{\gamma} \text{ is on level } \gamma,
$$

\n
$$
\gamma_1 \le \gamma_2 \longrightarrow T_{\gamma_1} \subseteq T_{\gamma_2}, \text{ and}
$$

\n
$$
T_{\lambda} = \bigcup \{ T_{\gamma} \mid \gamma < \lambda \} \text{ for all limit } \lambda \le \delta.
$$
\n(8.6)

The recovery proceeds as follows. T_0 is $T_\delta \cap \mathcal{L}_0$. If γ is a successor, then

$$
T_{\gamma} = T_{\delta} \cap \mathcal{L}_{\gamma}(T_{\gamma-}). \tag{8.7}
$$

If γ is a limit, then $T_{\gamma} = \bigcup \{ T_{\beta} \mid \beta < \lambda \}.$

The recovery process can be used to decide whether or not an arbitrary set c is a theory on level δ of $\mathcal{RH}(T)$. The answer is yes iff c passes the following tests at all levels $\gamma \leq \delta$.

Level 0. $c_0 = c \cap \mathcal{L}_0$. c_0 is an extension of T and a finitarily consistent, ω -complete theory of \mathcal{L}_0 .

Level $\gamma + 1 \leq \delta$. $\mathcal{L}_{\gamma+1}(c_{\gamma})$ is the least fragment extending $\mathcal{L}_{\gamma}(c_{\gamma-})$ and having as a member the conjunction

$$
\wedge \{ \mathcal{F}(\overrightarrow{x}) \mid \mathcal{F}(\overrightarrow{x}) \in p(\overrightarrow{x}) \} \tag{8.8}
$$

for every non-principal *n*-type $p(\vec{x})$ of $c_{\gamma-}$. $c_{\gamma+1} = c \cap \mathcal{L}_{\gamma+1}(c_{\gamma})$. $c_{\gamma+1}$ extends c_{γ} and is a finitarily consistent, ω -complete theory of $\mathcal{L}_{\gamma+1}(c_{\gamma})$.

Level λ (limit) $\leq \delta$. $c_{\lambda} = \bigcup \{c_{\gamma} \mid \gamma < \lambda\}$. $\mathcal{L}_{\lambda}(c_{\lambda}) = \bigcup \{\mathcal{L}_{\gamma}(c_{\gamma-}) \mid \gamma < \lambda\}$.

In short c is a theory on level δ of $\mathcal{RH}(T)$ iff c satisfies the recovery process on all levels $\gamma \leq \delta$ and $c = c_{\delta}$. It will follow below that A_{δ} is β -bounded Δ_0^{ZF} definable (7.1), where β is large enough to define the recovery process.

An effective version of the recovery process is woven into the $\Sigma_1^{L(\alpha,T)}$ 1 recursive definitions of ρ_{δ} and $\lceil A_{\delta} \rceil$ for $0 < \delta < \alpha$. $\mathcal{L}_{\delta}(T_{\delta-})$ is constructible from $T_{\delta-}$ via the ordinal ρ_{δ} for all $T_{\delta-} \in A_{\delta-}$, and $\ulcorner A_{\delta} \urcorner$ is a β -bounded Δ_0^{ZF} definition of A_δ . $\ulcorner A_\delta \urcorner$ specifies the value of β , and the Δ_0^{ZF} formula.

Stage 0. $\mathcal{L}_0(T_{0-})$ is \mathcal{L}_0 . A_0 is the set of all finitarily consistent, ω -complete theories of \mathcal{L}_0 extending T. Since \mathcal{L}_0 is recoverable from T, A_0 is β -bounded Δ_0^{ZF} definable with $\beta=0$ and parameter T.

Stage $\delta + 1$. Assume the recursion has produced sequences

$$
\{\rho_{\gamma} \mid \gamma \le \delta\}, \ \{\ulcorner A_{\gamma} \urcorner \mid \gamma \le \delta\} \in L(\alpha, T) \tag{8.9}
$$

such that $\ulcorner A_\gamma \urcorner$ is a β -bounded Δ_0^{ZF} definition of A_γ , and $\mathcal{L}_\gamma(T_{\gamma-})$ $(\gamma \leq \delta)$ is first order definable over

$$
L[\rho_{\gamma}, \mathcal{L}_0; T_{\gamma-}]. \tag{8.10}
$$

(The definition of (8.10) follows (7.1).) Consider an arbitrary $T_{\delta} \in A_{\delta}$ $(\delta > 0)$. Use the recovery process to construct the unique $T_{\delta-} \in A_{\delta-}$ such that

$$
T_{\delta-} \subseteq T_{\delta} \subseteq \mathcal{L}_{\delta}(T_{\delta-}).\tag{8.11}
$$

The recovery is effective thanks to the sequence ρ_{γ} ($\gamma \leq \delta$). Now $\mathcal{L}_{\delta+1}(T_{\delta})$ can be defined as above (8.2) but with an effective twist. Let ST_{δ} be the set of all *n*-types $(n \geq 1)$ of T_{δ} . Since T is weakly scattered, corollary 3.2 implies

$$
ST_{\delta} \in L(\omega_1^{T_{\delta}}, T_{\delta}), \tag{8.12}
$$

the least Σ_1 admissible set with T_δ as a member. Let

$$
\gamma_{T_{\delta}} = (least \ \gamma)[ST_{\delta} \in L(\gamma, T_{\delta})]. \tag{8.13}
$$

By theorem 3.3, $\gamma_{T_{\delta}}$, as a function of T_{δ} , is uniformly Σ_1 ; the same Σ_1^{ZF} formula singles out γ_{T_δ} in $L(\omega_1^{T_\delta}, T_\delta)$ for every $T_\delta \in A_\delta$ and for all δ . By

theorem 7.1(i), there is a γ_{δ} such that

$$
(\forall T_{\delta} \in A_{\delta})[\gamma_{T_{\delta}} \le \gamma_{\delta} < \alpha]. \tag{8.14}
$$

Hence $ST_{\delta} \in L(\gamma_{\delta}, T_{\delta})$ for all $T_{\delta} \in A_{\delta}$. Theorem 7.1(ii) implies γ_{δ} , as a function of δ , has a uniform Σ_1 definition utilizing the parameters occurring in $\ulcorner A_\delta \urcorner$ and the uniform Σ_1 definition of γ_{T_δ} . Any n-type $p(\vec{x}) \in ST_\delta$ for any $T_{\delta} \in A_{\delta}$ is constructible from T_{δ} via some ordinal less than γ_{δ} .

A set P_{δ} of first order definitions can be assembled at level γ_{δ} of $L(\alpha,T)$ as follows. Let

$$
\{p_j^{\mathcal{T}_\delta} \mid j \in \mathcal{J}_\delta\} \tag{8.15}
$$

be the set of all first order definitions over $L(\gamma,T)$ for all $\gamma < \gamma_{\delta}$ with parameter \mathcal{T}_{δ} . For each $T_{\delta} \in A_{\delta}$, $p_j(T_{\delta})$ is the set defined by $p_j(T_{\delta})$ when the parameter \mathcal{T}_{δ} is assigned the value T_{δ} . (8.15) has a natural wellordering W_{δ} definable at level γ_{δ} , since each $p_j^{I_{\delta}}$ is specified by its level $\gamma < \gamma_{\delta}$ and its Gödel number $e < \omega$ as a formula of ZF. $d_{\delta}(\mathcal{T}_{\delta})$, the **default type for** \mathcal{T}_{δ} , is defined by its action on $T_{\delta} \in A_{\delta}$:

$$
j(T_{\delta}) = (\text{least } j \text{ in sense of } W_{\delta})[p_j(T_{\delta}) \text{ is an } n\text{-type of } T_{\delta}]; (8.16)
$$

$$
d_{\delta}(T_{\delta}) = p_{j(T_{\delta})}(T_{\delta}). \tag{8.17}
$$

The formula $p_j^{1\delta}$ is a slight variant of $p_j(\mathcal{T}_{\delta})$ and is defined by its action on $T_{\delta} \in A_{\delta}$.

$$
p_j(T_\delta) \text{ if } p_j(T_\delta) \text{ is an } n\text{-type of } T_\delta; \\
p_j^{T_\delta} =
$$

 $d_{\delta}(T_{\delta})$, the default type, otherwise.

Let
$$
\mathcal{P}_{\delta} = \{p_j^{T_{\delta}} \mid j \in \mathcal{J}_{\delta}\}\.
$$
 Then

- (1) For all $T_{\delta} \in A_{\delta}$ and $p(\vec{x}) \in ST_{\delta}$, there is a $j \in \mathcal{J}_{\delta}$ such that $p_j^{T_{\delta}}$ defines $p(\vec{x})$ at level γ_{δ} of $L(\alpha, T)$, and
- (2) $p_j^{T_\delta} \in ST_\delta$ for all $T_\delta \in A_\delta$ and all $j \in \mathcal{J}_\delta$.

It can happen for some $T_{\delta} \in A_{\delta}$ and $j, k \in \mathcal{J}_{\delta}$ that $j \neq k$ but $p_j^{T_{\delta}} = p_k^{T_{\delta}}$. Such repetitions are the price paid to have $P_{\delta} \in L(\gamma_{\delta} + 1, T)$.

The ordinal $\rho_{\delta+1} < \alpha$ is chosen just large enough to develop the sequence ρ_{γ} ($\gamma \leq \delta$) needed for the recovery of T_{δ} from T_{δ} ($\delta > 0$), and the ordinal γ_{δ} needed to assemble \mathcal{P}_{δ} . $\mathcal{L}_{\delta+1}(T_{\delta})$ is first order definable over $L[\rho_{\delta+1}, \mathcal{L}_0; T_{\delta}];$ its definition begins with $\mathcal{L}_{\delta}(T_{\delta-})$, adds the conjunction of all formulas in $p_j^{T_\delta}$ for each $p_j^{T_\delta} \in \mathcal{P}_\delta$, and closes under the finitary operations that generate a fragment of $\mathcal{L}_{\omega_1,\omega}$.

To complete stage $\delta + 1$, construe $A_{\delta+1}$ to be the set of all x such that the effective version of the recovery process applied to x reports that x is a theory on level $\delta + 1$ of $\mathcal{RH}(T)$. The effective version uses the sequence ρ_{γ} $(0 < \gamma \leq \delta + 1)$ to define $\mathcal{L}_{\gamma}(T_{\gamma-})$ from $T_{\gamma-}$ for all $T_{\gamma-} \in A_{\gamma-}$. Thus $A_{\delta+1}$

is β -bounded Δ_0^{ZF} definable with β equal to $\rho_{\delta+1}$, and $\ulcorner A_{\delta+1}\urcorner \in L(\alpha,T)$. The parameter specified by $\ulcorner A_{\delta+1} \urcorner$ is T.

Stage λ (limit). Assume for $0 < \gamma < \lambda$ that $\mathcal{L}_{\gamma}(T_{\gamma-})$ is constructible from $T_{\gamma-}$ via ρ_{γ} for all $T_{\gamma-} \in A_{\gamma-}$. Use the effective version of the recovery process to define A_{λ} as a β -bounded Δ_0^{ZF} class. For $T_{\gamma} \in A_{\lambda}$, effectively recover the unique sequence T_{γ} ($\gamma < \lambda$) such that T_{λ} is $\cup \{T_{\gamma} \mid \gamma < \lambda\}$, and then define $\mathcal{L}_{\lambda}(T_{\lambda})$ to be $\cup \{ \mathcal{L}_{\gamma}(T_{\gamma-}) \mid 0 < \gamma < \lambda \}.$

Makkai^[8] showed: if T is a counterexample to Vaught's conjecture, then T has a model of cardinality ω_1 that is $\mathcal{L}_{\infty,\omega}$ equivalent to a countable model. The following are variants of his results.

Suppose A is a countable Σ_1 admissible set and $T \in A$. Assume $T \subseteq \mathcal{L}_0$, \mathcal{L}_0 is a countable fragment of $\mathcal{L}_{\omega_1,\omega}$, and $\mathcal L$ is a countable first order language. Also assume every symbol of $\mathcal L$ is mentioned in T so that $\mathcal L$ is recoverable from T. Let \mathcal{L}' denote an arbitrary fragment of $\mathcal{L}_{\omega_1,\omega}$ that extends \mathcal{L} , and T' an arbitrary finitarily consistent, ω -complete theory contained in \mathcal{L}' and extending T. Call T weakly scattered in A iff $ST' \in A$ for all $T' \in A$. According to Theorem 3.3,

Theorem 8.1. Suppose A is a countable model of T , T is weakly scattered in $L(\omega_1^{T,\mathcal{A}}, \langle T, \mathcal{A} \rangle)$, and

$$
sr(\mathcal{A}) \geq \omega_1^{T,\mathcal{A}}.
$$

Then A is $\mathcal{L}_{\infty,\omega}$ equivalent to a model of T of cardinality ω_1 .

Proof. Let $\alpha = \omega_1^T A$. Thus $\omega_1^A = \alpha$, since $\omega_1^A + 1 \geq sr(A)$. Let T_β^A ($\beta \leq$ $sr(\mathcal{A})$) be the Scott analysis of $\mathcal A$ as defined in section 2. By Theorem 3.3 $ST_{\beta}^{\mathcal{A}} \in L(\alpha, \langle T, \mathcal{A} \rangle)$ (and so $T_{\beta}^{\mathcal{A}}$ has a countable atomic model) for all β such that $\beta + 1 < sr(\mathcal{A})$. Z is a $\Sigma_1^{L(\alpha,\langle T,\mathcal{A}\rangle)}$ set of sentences as follows:

- (Z1) the atomic diagram (in the sense of $\mathcal{L}_{\omega_1,\omega}$) of $L(\alpha,\langle T,\mathcal{A}\rangle)$.
- (Z2) <u>d</u> is a countable ordinal and $\underline{d} \geq \delta$ (all $\delta < \omega_1^{T,A}$).
- $(23) \ \forall y[y \leq \underline{d} \rightarrow T_y^{\mathcal{A}}]$ has a countable atomic model].
- (Z3). axioms of Σ_1 admissibility.

 Z is consistent since it can be modeled by V (the real world). Every model of Z is an end extension of $L(\alpha, \langle T, A \rangle)$. Let M be a model of Z that omits α . Thus M has non-standard ordinals greater than every ordinal less than α . $sr(\mathcal{A}) \geq \alpha$ in V and $\alpha \notin M$, so $sr(\mathcal{A}) \geq \gamma$ for some non-standard $\gamma \in M$.

Now work inside M. Let $T^{\mathcal{A}}_{\delta}$ ($\delta \leq \gamma$) be the Scott analysis of A up to level γ . Choose a non-standard $\beta < \gamma$. $T_{\beta}^{\mathcal{A}}$ has a countable atomic model \mathcal{A}_{β} . There is a map

$$
i_{\beta\gamma} : \mathcal{A}_{\beta} \to \mathcal{A} \tag{8.18}
$$

that is elementary with respect to all formulas of $\mathcal{L}_{\beta}^{\mathcal{A}}$ (defined in section 2). Note that $i_{b\gamma}$ is not onto, since \mathcal{A}_{β} is not isomorphic to \mathcal{A} in M.

But \mathcal{A}_{β} is isomorphic to \mathcal{A} in V. $\omega_1^{\mathcal{A}_{\beta}} \leq \alpha$ since $\alpha \notin M$. $sr(\mathcal{A}_{\beta}) \geq \delta$ for all $\delta < \alpha$, hence $sr(\mathcal{A}_{\beta}) \geq \alpha$, and so $\omega_1^{\mathcal{A}_{\beta}} \geq \alpha$. Thus both \mathcal{A}_{β} and \mathcal{A} are

homogeneous models of $T^{\mathcal{A}}_{\alpha}$ by (2.6). To see they realize the same types of $T_{\alpha}^{\mathcal{A}}$, choose $p_{\alpha} \in ST_{\alpha}^{\mathcal{A}}$ and first suppose $\mathcal{A}_{\beta} \models p_{\alpha}(b)$. In M , $\mathcal{A}_{\beta} \models p_{\beta}(b)$ for some type p_{β} of $T_{\beta}^{\mathcal{A}}$, and $\mathcal{A} \models p_{\gamma}(i_{\beta\gamma}(b))$ for some type p_{γ} of $T_{\gamma}^{\mathcal{A}}$.

$$
p_{\alpha} \subseteq p_{\beta} \subseteq p_{\gamma} \tag{8.19}
$$

since $i_{\beta\gamma}$ is $\mathcal{L}^{\mathcal{A}}_{\beta}$ elementary. Hence $\mathcal{A}\models p_{\alpha}(i_{\beta\gamma}(b))$. It follows that

$$
i_{\beta\gamma} \text{ is } \mathcal{L}_{\omega_1,\omega} \text{ elementary,}
$$
 (8.20)

since the types of $T^{\mathcal{A}}_{\alpha}$ realized in \mathcal{A}_{β} are atoms of $\mathcal{L}_{\omega_1,\omega}$.

Now suppose $\mathcal{A} \models p_{\alpha}(\overline{a})$. In M , \overline{a} realizes p_{γ} in \mathcal{A} , a type of $T_{\gamma}^{\mathcal{A}}$. Choose a non-standard $\delta < \beta$. Let p_{β} be the restriction of p_{γ} to \mathcal{L}_{β}^A , and p_{δ} the restriction to $\mathcal{L}_{\delta}^{\mathcal{A}}$. Then $p_{\alpha} \subseteq p_{\delta} \subseteq p_{\beta} \subseteq p_{\gamma}$. So

$$
\mathcal{A} \models \exists \overline{x} p_{\delta}(\overline{x}). \tag{8.21}
$$

But then $\exists \overline{x}p_{\delta}(\overline{x}) \in T_{\delta+1} \subseteq T_{\beta}$, so p_{δ} , hence p_{α} , is realized in \mathcal{A}_{β} .

Thanks to the above there exist structures B_0 and B_1 , both isomorphic to A, such that $\mathcal{B}_0 \subsetneq \mathcal{B}_1$ and the inclusion map i is $\mathcal{L}_{\omega_1,\omega}$ elementary. A strictly expanding $\mathcal{L}_{\omega_1,\omega}$ elementary chain \mathcal{B}_{δ} ($\delta \leq \omega_1$) is defined by iterating *i*.

For $\delta < \omega_1$, assume \mathcal{B}_{δ} is isomorphic to A. Then enlarge \mathcal{B}_{δ} to $\mathcal{B}_{\delta+1}$, another copy of A.

For limit $\lambda \leq \omega_1$, let \mathcal{B}_{λ} be the union of the \mathcal{B}_{δ} 's ($\delta < \lambda$).

 \mathcal{B}_{ω_1} is an $\mathcal{L}_{\omega_1,\omega}$ elementary extension of \mathcal{B}_0 , hence $\mathcal{L}_{\omega_1,\omega}$ - equivalent to \mathcal{A}_0 consequently $\mathcal{L}_{\infty,\omega}$ -equivalent to \mathcal{A} .

Corollary 8.2. Suppose T is weakly scattered. If for each $\beta < \omega_1^T$, T has a model of Scott rank $\geq \beta$, then T has a countable model A such that

$$
sr(\mathcal{A}) \geq \omega_1^{T,\mathcal{A}} = \omega_1^T
$$

;

and every such A is $\mathcal{L}_{\infty,\omega}$ equivalent to a model of T of cardinality ω_1 .

9. BOUNDS ON WEAKLY SCATTERED THEORIES

Once again let \mathcal{L}_0 be a countable fragment of $\mathcal{L}_{\omega_1,\omega}$ for some countable first order language \mathcal{L} , and $T \subseteq \mathcal{L}_0$ a weakly scattered theory with a model. Assume $L(\alpha, T)$ is Σ_1 admissible. B_α is a $\Delta_1^{L(\alpha,T)}$ $L(\alpha,1)$ set of sentences designed so that every model of B_{α} constitutes a node on level α of $\mathcal{RH}(T)$, the raw hierarchy for T. The axioms of B_{α} are:

 $T \subseteq T_0$ and T_0 is a finitarily consistent, ω -complete theory of \mathcal{L}_0 .

 T_{δ} has a non-principal *n*-type for some *n* (all $\delta < \alpha$).

 $T_{\delta} \subseteq T_{\delta+1}$ and $T_{\delta+1}$ is a finitarily consistent, ω -complete theory of $\mathcal{L}_{\delta+1}(T_{\delta})$ (all $\delta < \alpha$).

 $T_{\lambda} = \bigcup \{T_{\delta} \mid \delta < \lambda\}$ and $\mathcal{L}_{\lambda}(T_{\lambda}) = \bigcup \{\mathcal{L}_{\delta}(T_{\delta-} \mid \delta < \lambda\})$ (all limit $\lambda < \alpha$). B_{α} is $\Delta_1^{L(\alpha,T)}$ $L(\alpha, I)$ because section 8 shows how to construct $\mathcal{L}_{\delta}(T_{\delta-})$ from $T_{\delta-}$ via the ordinal ρ_{δ} defined by a $\Sigma_1^{L(\alpha,T)}$ $_1^{L(\alpha,1)}$ recursion on $\delta < \alpha$.

 P_{δ} and \mathcal{J}_{δ} were defined below (8.14). Define **p** is on level δ by

$$
p = p_j^{T_\delta} \text{ for some } j \in \mathcal{J}_\delta. \tag{9.1}
$$

A split at level δ is a sentence of the form: p is on level δ , and there exist r and r' on level $\delta + 1$ such that $r \neq r'$ and both r and r' extend p. The sentence in abbreviated form is $\langle p, r, r' \rangle$. A split is a sentence of $\mathcal{L}_{\omega_1,\omega} \cap L(\alpha,T)$, because $\mathcal{P}_{\delta}, \mathcal{P}_{\delta+1} \in L(\alpha,T)$. $\langle p,r,r' \rangle$ is a k-split if p has arity k . Let K denote a set of k -splits. K is unbounded iff

$$
\forall \beta < \alpha (\exists \delta > \beta)[K \text{ has a } k\text{-split on level } \delta]. \tag{9.2}
$$

K has the **predecessor property** iff there is a partial function $f(p, \gamma)$ such that: if $\gamma < \delta$ and $\langle p, r, r' \rangle \in K$ and asserts p splits at level δ , then $f(p, \gamma)$ is defined and belongs to \mathcal{J}_{γ} , and

$$
B_{\alpha} \vdash [\langle p, r, r' \rangle \longrightarrow (p_{f(p,\gamma)}^{\mathcal{T}_{\gamma}} \text{ is extended by } p)]. \tag{9.3}
$$

If such an f exists, then there is one that is $\Sigma_1^{L(\alpha,T)}$ $_1^{L(\alpha,1)}$ definable, since the $\Delta_1^{L(\alpha,T)}$ $\frac{L(\alpha,1)}{1}$ definability of B_{α} implies the deduction claimed by (9.3) can be found in $L(\alpha, T)$.

The effective k-splitting hypothesis holds for T at α iff there exists an unbounded $\Delta_1^{L(\alpha,T)}$ $L(\alpha,1)$ set K of k-splits such that K has the predecessor property and $B_{\alpha} \cup K$ is consistent (in the sense of $\mathcal{L}_{\omega_1,\omega}$ restricted to $L(\alpha,T)$) if B_{α} is. Consider Makkai's example [7] (also [5]) mentioned in section 1. It can be formulated as a fragment \mathcal{L}_0 and a theory $T_M \subseteq \mathcal{L}_0$, both arithmetically definable, with the following properties:

(1) T_M is not weakly scattered.

(2) Every countable model A of T_M has Scott rank at most ω_1^A .

(3) For every countable Σ_1 admissible $L(\alpha)$, T_M has a countable model A such that $\omega_1^{\mathcal{A}} = \alpha = sr(\mathcal{A}).$

Despite (1) it is possible to develop a crude hierarchy for T_M with a superficial resemblance to the raw hierarchy $\mathcal{RH}(T)$ of section 8. For $\delta < \omega_1$ put theory $T' \supseteq T_M$ on level δ if there exists a countable model $\mathcal A$ of T_M such that $sr(\mathcal{A}) = \delta$ and $T' = T_{sr(\mathcal{A})}^{\mathcal{A}}$ (as defined in section 2). Since T_M is not weakly scattered, it is not possible to give a bounded description of all types associated with all theories on level δ , as was done with \mathcal{P}_{δ} in section 8. Nonetheless some of the types on level δ have properties that lend credence to the effective k-splitting hypothesis. The model A of (3) above is a tree with ω many levels and infinite paths. Some nodes of $\mathcal A$ have foundation rank $(fr) < \infty$. Foundation rank $\omega\delta + m$ corresponds to atoms of $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ of rank δ . Associated with level δ of $\mathcal{CH}(T_M)$, the crude hierarchy for T_M , are types of the form

$$
x \text{ is on level } \delta \text{ of } \mathcal{A} \text{ and } fr(x) \ge \omega\delta + m \tag{9.4}
$$

that split on level $\delta + 1$ of $\mathcal{CH}(T)$. On level $\gamma < \delta$ (9.4) has a predecessor similar to 9.4 with δ replaced by γ .

Theorem 9.1. Suppose T is weakly scattered, $L(\alpha,T)$ is countable and Σ_2 admissible, and for each $\beta < \alpha$, T has a model of Scott rank at least β . If for some k, the effective k-splitting hypothesis holds for T at α , then T has a countable model A such that

$$
\omega_1^{\mathcal{A}} = \alpha \ and \ sr(\mathcal{A}) = \alpha + 1.
$$

Proof. By Barwise compactness, T has a model A such that $L(\alpha, \langle T, A \rangle)$) is Σ_1 admissible and $sr(\mathcal{A}) \geq \alpha$. Then $rtr(\mathcal{A}) \geq \alpha$ by (8.5) and so B_{α} is consistent. Let K be an unbounded $\Delta_1^{L(\alpha,T)}$ $_1^{L(\alpha,1)}$ set of k-splits with a $\Sigma_1^{L(\alpha,T)}$ $f(\gamma, p)$. A model of $B_\alpha \cup K$ is constructed so that T_{α} has a non-principal type q_{α} and the structure

$$
L[\alpha, T; T_{\alpha}, q_{\alpha}] \tag{9.5}
$$

is Σ_1 admissible with respect to Σ_1 formulas that include T_α and q_α as atomic predicates. Then, as in the type omitting proof of theorem 6.1, T has a model \mathcal{A}_1 realizing q_α and such that $\omega_1^{\mathcal{A}_1} = \alpha$. The universe of (9.5) is the result of iterating first order definability through the ordinals less than α starting with T and with T_{α}, q_{α} as additional atomic predicates. The construction of (9.5) is Henkinesque and gradually decides all sentences of rank less than α in a standard language $\mathcal{L}_{\alpha,T} \in \Delta_1^{L(\alpha,T)}$ $_1^{L(\alpha,1)}$ that names all elements of (9.5) and is able to express how each one is defined from those of lower definability rank. $\mathcal{L}_{\alpha,T}$ does not have symbols T_{α} or q_{α} but does have symbols T_{β} and q_{β} for all $\beta < \alpha$. There is one twist. The Σ_1 admissibility of (9.5) is not obtained by an effective type omitting argument that omits α as in the proof of theorem 6.1, but by direct manipulation of ranked sentences of $\mathcal{L}_{\alpha,T}$. The twist avoids Henkin constants.

Let S_n be the set of sentences chosen by the end of stage n. S_n will be $\Sigma_2^{L(\alpha,T)}$ $\frac{L(\alpha,T)}{2}$ definable. S₀ requires some preparation. Consider $p_j^{1_{\gamma}}$ for some $j \in \mathcal{J}_{\gamma}$. $p_j^{\perp_{\gamma}}$ is said to be K-**unbounded** if the set of all δ such that

$$
\exists \langle p, r, r' \rangle \, \left[\langle p, r, r' \rangle \in K, p \text{ is on level } \delta, f(p, \gamma) = p_j^{\mathcal{T}_{\gamma}} \right] \tag{9.6}
$$

is unbounded in α . Thus $B_{\alpha} \cup K$ implies $p_j^{1_{\gamma}}$ has unboundedly many extensions that split in K. K-unboundedness is a $\Pi_2^{L(\alpha,T)}$ $\frac{L(\alpha, I)}{2}$ property. K-bounded means: not K-unbounded.

Claim: For all γ there is a K-unbounded type on level γ . (9.7)

Suppose not. Then for each $j \in \mathcal{J}_{\gamma}$, there is a least β_j such that for all $\delta \geq \beta_j$ (9.6) is false. β_j as a function of j, is $\Sigma_2^{L(\alpha,T)}$ $\frac{L(\alpha,1)}{2}$, hence bounded by some $\beta_{\infty} < \alpha$. But then K is bounded by β_{∞} . $U \subseteq K$ is said to be bounded if

 $\exists \beta < \alpha (\forall \delta > \beta)[U]$ does not have a k-split on level δ .

Definition of S_0 . Start with $B_\alpha \cup K$. Add: sentences of $\mathcal{L}_{\alpha,T}$ that express how each element of (9.5) is defined from elements of lower rank; q_{β} is a type

on level β ($\beta < \alpha$); q_{β} is extended by q_{γ} ($\beta < \gamma < \alpha$); $q_{\beta} \neq p$ ($\beta < \alpha$ and p is K-bounded). Note that " q_β is a type on level β " is a ranked sentence, in particular a disjunction, by the remarks following (8.14).

 S_0 is $\Sigma_2^{L(\alpha,T)}$ $\frac{L(\alpha,T)}{2}$ definable since K-boundedness is $\Sigma_2^{L(\alpha,T)}$ $\frac{L(\alpha,1)}{2}$. To check the consistency of S_0 , let M be a model of $B_\alpha \cup K$ that specifies the structure of $L(\alpha, T; T_{\alpha})$ but says nothing about q_{γ} for any $\gamma < \alpha$. Fix $\tau < \alpha$. Suppose $\gamma < \tau$; then M can be interpreted as a model of those sentences in S_0 that mention q_{γ} only for $\gamma < \tau$. Choose a K-unbounded p_{τ} on level τ with the aid of 9.7. DeÖne

$$
U_{\tau} = \{ s \mid \exists t, t' \in s, t, t' > \in K \} \text{ and } f(s, \tau) = p_{\tau} \}, \tag{9.8}
$$

$$
U_{\gamma}^{r} = \{ s \mid s \in U_{\tau} \wedge f(s, \gamma) = r \} (\gamma < \tau). \tag{9.9}
$$

Fix $\gamma < \tau$. There must be a K-unbounded r on level γ . Suppose not. Then U_{γ}^{r} is bounded for every r on level γ . But

$$
U_{\tau} = \cup \{ U_{\gamma}^{r} \mid r \text{ is on level } \gamma \}. \tag{9.10}
$$

Hence U_{τ} is bounded by the Σ_2 admissibility argument used to prove (9.7), and so p_{τ} is K-bounded.

For each $\gamma < \tau$, choose a K-unbounded r_{γ} on level γ . To see that for each $\gamma < \tau$,

$$
B_{\alpha} \cup K \vdash r_{\gamma} \text{ is extended by } p_{\tau}, \tag{9.11}
$$

let $s \in U_{\gamma}^{r_{\gamma}}$. Then $s \in U_{\tau}$. Assume $B_{\alpha} \cup K$. Then s extends $f(s, \tau) = p_{\tau}$ and s extends $f(s, \gamma) = r_{\gamma}$. Hence p_{τ} extends r_{γ} .

It follows from (9.11) that

$$
B_{\alpha} \cup K \vdash r_{\gamma_1} \text{ is extended by } r_{\gamma_2} \tag{9.12}
$$

when $\gamma_1 < \gamma_2 < \tau$. Now M, as promised above, can be interpreted as a model of that part of S_0 that mentions q_γ only for $\gamma < \tau$ by setting the interpretation of q_{γ} in M equal to that of r_{γ} .

Definition of S_{n+1} . Assume S_n is consistent and $\Sigma_2^{L(\alpha,T)}$ $2^{L(\alpha,1)}$. There are two cases.

Case a. Suppose $\mathcal{F} = \vee \{\mathcal{F}_i \mid i \in I\}$ is a ranked sentence such that $S_n \cup \{F\}$ is consistent. S_{n+1} is $S_n \cup \{F_{i'}\}$ for some $i' \in I$ such that $S_n \cup \{F_{i'}\}$ is consistent.

Case b. The purpose of this case is to establish Δ_0 bounding, hence Σ_1 replacement, for (9.5). Let $\mathcal{D}(x, y)$ be a Δ_0^{ZF} formula with constants naming elements of (9.5). Fix $\rho < \alpha$, and regard $\mathcal{D}(x, y)$ as possibly defining a many-valued function $d(x)$ from ρ into α that is Δ_0 in the sense of (9.5) For each $\delta < \rho$, define

$$
H_{\delta} = \{ \neg D(\delta, \gamma) \mid \gamma < \alpha \}. \tag{9.13}
$$

Subcase b1. Suppose there is a $\delta < \rho$ such that $S_n \cup H_\delta$ is consistent. Let δ' be such a δ , and put S_{n+1} equal to $S_n \cup H_{\delta'}$. Then $d(\delta')$ will be undefined. Subcase b2. Suppose b1 fails. Then for each $\delta < \rho$:

$$
S_n \vdash \vee \{ D(\delta, \gamma) \mid \gamma < \alpha \};\tag{9.14}
$$

so by Barwise compactness there is a $c(\delta) < \alpha$ such that

$$
S_n \vdash \vee \{ D(\delta, \gamma) \mid \gamma < c(\delta) \}. \tag{9.15}
$$

 $c(\delta)$ can be defined via deductions from S_n as a $\Sigma_2^{L(\alpha,T)}$ $_2^{L(\alpha,1)}$ function of δ . Let c be $\sup\{c(\delta) \mid \delta < \rho\}$. Then $c < \alpha$ and $d(\delta)$ $(\delta < \rho)$ will be bounded by c.

Define $S = \bigcup \{S_n \mid n < \omega\}$. By case a, S specifies (9.5). q_α is a nonprincipal type of T_{α} , because for every $\beta < \alpha$, S_0 and (9.7) compel q_{β} to be K-unbounded and consequently to split. (An instance of case a results in the choice of a K-unbounded p such that $(q_{\beta} = p)$ belongs to S.) By case b, (9.5) is Σ_1 admissible. It follows, as in the proof of theorem 6.1, that T has a model \mathcal{A}_1 that realizes q_α and such that $\omega_1^{\mathcal{A}_1} = \alpha$. Hence $sr(\mathcal{A}) = \alpha + 1$. \Box

Corollary 9.2. (bounding) Suppose T is weakly scattered and for some k satisfies the effective k-splitting hypothesis at α . If $L(\alpha,T)$ is Σ_2 admissible and

$$
(\forall \ countable \mathcal{A}) \left[\mathcal{A} \middle| T \longrightarrow sr(\mathcal{A}) \leq \omega_1^{\mathcal{A}} \right],\tag{9.16}
$$

then

$$
(\exists \beta < \alpha)(\forall \mathcal{A}) \left[\mathcal{A} \models T \longrightarrow sr(\mathcal{A}) < \beta\right].\tag{9.17}
$$

10. Further Results and Open Questions

Weakening the assumption of effective k -splitting in section 9 is under study. At this writing it appears likely that the predecessor (9.3) property can be dropped from the assumption: all that is needed is an unbounded $\Delta_1^{L(\alpha,T)}$ $\frac{L(\alpha, I)}{1}$ set of k-splits consistent with B_{α} ; then the existence of a predecessor function can be proved. There is a price to pay: the type structure $p_j^{I_{\delta}}$ $(\delta \langle \alpha \rangle)$ of a weakly scattered theory T has to be treated with greater delicacy. A further weakening, less likely but more than plausible, is to rule out the existence of RN-models of T. A is an **RN-model** of T iff (i) $sr(\mathcal{A}) = \omega_1^{\mathcal{A}},$ (ii) $T_{\omega_1^{\mathcal{A}}}^{\mathcal{A}}$ is ω -categorical, and (iii) for each n there is a $\beta < \omega_1^{\mathcal{A}}$ such that each principal *n*-type of $T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ of arity *n* is generated by a formula of rank less than β . $(T^{\mathcal{A}}_{\omega_1^{\mathcal{A}}}$ is defined in section 2.) Makkai^[7] produces an \mathcal{A} that satisfies (i) and (ii) but not (iii).

It appears that iterated forcing has a role to play above and also in the construction of an α -saturated model of T when T is weakly scattered and has countable models of unbounded Scott rank. But that is another story.

REFERENCES

- [1] Barwise, J. Admissible sets and structures. An approach to definability theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin-New York, 1975. xiii+394 pp.
- [2] Grilliot, Thomas J. Omitting types: applications to recursion theory. J. Symbolic Logic 37 (1972), 81-89.
- [3] Harnik, V. & Makkai, M. A tree argument in infinitary model theory. Proc. Amer. Math. Soc. 67 (1977), no. 2, 309-314.

- [4] Keisler, H. Jerome. Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers. Studies in Logic and the Foundations of Mathematics, vol. 62, North-Holland, Amsterdam, 1971, v+208 pp.
- [5] Knight, J. F. & Young, J. M. Computable structures of rank ω_1^{CK} . preprint (2004), 14 pp.
- [6] Knight, Robin. The Vaught conjecture: a counterexample. preprints (2002-04).
- [7] Makkai, M. An example concerning Scott heights. J. Symbolic Logic 46 (1981), no. 2, 301-318.
- [8] Makkai, M. An admissible generalization of a theorem on countable Σ_1^1 sets of reals with applications. Ann. Math. Logic 11 (1977), no.1, 1-30.
- [9] Morley, Michael. The number of countable models. J. Symbolic Logic 35 (1970), 14-18.
- [10] Nadel, Mark. Scott sentences and admissible sets. Ann. math. Logic 7 (1974), 267-294.
- [11] Sacks, Gerald E. On the number of countable models. Southeast Asian conference on logic (Singapore, 1981) 185-195, Studies in Logic and the Foundations of Mathematics, vol. 111, North-Holland, Amsterdam, 1983.
- [12] Scott, Dana. Logic with denumerably long formulas and finite strings of quantifiers. 1965 Theory of Models (Proc. 1963 Internat. Sympos. Berkeley) pp. 329-341 North-Holland, Amsterdam.
- [13] Steel, John R. On Vaught's conjecture. Cabal Seminar 76-77 (Proc. CalTech-UCLA Logic Sem. 1976-77), pp. 193-208, Lectures Notes in Math., 689, Springer, Berlin, 1978.

Harvard University, Massachusetts Institute of Technology $E\text{-}mail\ address: sacks@math.harvard.edu, sacks@math.mit.edu$