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1. Introduction

This paper has two themes less disparate than they seem at �rst reading:
Extending classical descriptive set theoretic results that impose bounds

on suitably de�ned functions from !! into !1:
Extending and clarifying some early results on Scott ranks of countable

structures sketched in [11]1.
Let F be a function, possibly partial, from !! into !1: A typical classical

bounding theorem says the range of F is bounded by a countable ordinal
if the graph of F has a suitable de�nition. For example, the graph of F
is boldface �11; in this formulation the graph of F is viewed as a subset of
!!�!1 by requiring each value of F to be a well ordering of !: The e¤ective
version of the theorem says that the bound is an ordinal below !p1, the least
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Many thanks to Julia Knight for her patience and encouragement.
1[11] was a hasty writeup of a talk given at the 1971 meeting of the International

Congress of Logic, Methodology and Philosophy of Science. Some details absent from [11]
but needed here are presented below..
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ordinal not recursive in p, the real parameter in the boldface �11 de�nition
of F:
One way to reach the e¤ective bound is to reduce the classical result to

a special case: there is a Turing reducibility procedure feg such that for all
X 2 !!; fegX;p is a well ordering of ! whose ordinal height is F (X): Thus

F (X) < !X;p1 (1.1)

for all X 2 !!; and then a recursion-theoretic trick "averages out" the X in
(1.1) leaving an ordinal below !p1 to bound the range of F:
A model theoretic approach to e¤ective bounds is the path taken in this

paper. A sketch may help to clarify later sections. A(p) is the least �1
admissible set with p as a member. Z is a �A(p)1 de�nable set of sentences
of L!1;! coded by elements of A(p) such that every model M of Z has the
following properties.

(1) The ordinals recursive in p form a proper initial segment of the or-
dinals in the sense of M:

(2) There is an X0 2M such that for all  < !p1; F (X0) > .
(3) p 2M and M is a �1 admissible structure.

Assume the range of F is not bounded by an ordinal below !p1. Then
each A(p)-�nite subset of Z (i.e. each subset of Z that is a member of A(p))
is consistent, and so Z has a model by Barwise compactness. With the
addition of "e¤ective" type omitting, as in Grilliot[2] or Keisler[4], Z has
a model M that omits !p1; but has non-standard ordinals greater than all
standard ordinals less than !p1: Then

!p;X01 � !p1; (1.2)

otherwise !p1 is recursive in hp;X0i and so !
p
1 2 M: But then !

p;X0
1 = !p1

and F (X0) � !
p;X0
1 by property (2) of Z, which contradicts (1.1).

The search for a bounding theorem that extends the classical result seems
hopeless at �rst. An extension has to talk about an F that allows F (X) �
!X;p1 ; but !X;p1 ; as a function of X, is unbounded. Model theory comes to
the rescue. Every countable structure A has a Scott rank[12], sr(A), an
ordinal that can be as high as !A1 + 1 (see section 2 for elaboration).
Let T be a countable theory. A reasonable starting assumption on T is

8A[A j= T �! sr(A) � !A1 ]: (1.3)

An ingenious example (MA) devised by Makkai[7] shows that (1.3) is not
enough. Examination of (MA) and its illuminative extensions in Knight
& Young[5] leads to two further assumptions on T . The �rst, e¤ective k-
splitting, is technical and perhaps peripheral and is discussed further in
sections 9 and 10. The second, weakly scattered, is central. The theory TM
associated with (MA) satis�es (1.3) and has properties similar to e¤ective
k-splitting. In addition for every �1 admissible countable �; TM has a model
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A such that
!A1 = � = sr(A): (1.4)

Corollary 9.2 says: if T is weakly scattered, satis�es (1.3), and has e¤ective k-
splitting, then there is a countable bound on the Scott ranks of the countable
models of T ; the e¤ective version provides a bound less than the �rst �2
admissible ordinal relative to T in contrast to the classical case (1.1) where
the e¤ective bound on the range of F is less than !p1, the �rst �1 admissible
ordinal relative to p:
The notion of weakly scattered is inspired by Morley�s concept of scat-

tered. Let L be a countable �rst order language, L0 a countable fragment of
L!1;! and T � L0 a theory (i.e. a set of sentences) with a model. For (a) and
(b) below, let L0 be any countable fragment of L!1;! extending L0, and T 0
any �nitarily consistent, !-complete theory contained in L0 and extending
T: (The notions of �nitary consistency and !-completeness for fragments
are reviewed at the beginning of Section 4.) T is said to be scattered i¤
(a) and (b) hold.
(a) For all n > 0 and all T 0; SnT 0; the set of all n-types over T 0; is

countable.
(b) For all L0; the set fT 0 j T 0 � L0gis countable.

The above de�nition of scattered is equivalent to the one in Morley�s ground
breaking [9]. T is said to be weakly scattered i¤ (a) holds. By [9] a
scattered theory can have at most !1 many countable models. In contrast
a weakly scattered theory can have 2! many countable models.
Robin Knight[6] has devised an extraordinary counterexample to Vaught�s

conjecture (VC), a scattered �rst order theory with !1 many countable mod-
els. VC has a precise formulation in section 5.
In [11] the following bounding result was established: if T is scattered

and satis�es (1.3), then T has only countably many countable models; fur-
thermore every countable model of T has a countable copy in L(�; T ) for
some � < �T2 ; the least � such that L(�; T ) is �2 admissible. Hence Vaught�s
conjecture holds for T if T satis�es (1.3). The proofs given in [11] were some-
what sketchy, so missing details needed in later sections of this paper are
given in sections 3 through 5. In the light of Robin Knight�s counterexample,
results for scattered theories yield information about models of counterex-
amples to VC. Theorem 4.9(vii) says: if Vaught�s conjecture fails for T , then
T has a model of cardinality !1 not elementarily equivalent in the sense of
L!1;! to any countable model (Harnik & Makkai[3]). Theorem 5.3 describes
an !1-sequence of atomic and saturated models that every counterexample
must possess. Section 5 includes a related absoluteness result implicit in

Morley[9]: VC(T ), Vaught�s Conjecture for T; is a �
L(!

L(T )
1 ;T )

1 predicate of
T , hence �12.
Steel[13], as reported in [7], used an assumption stronger than (1.3) to

prove VC(T ): In Section 2 an arbitrary countable structure A is associated
with a theory TA

!A1
contained in a countable fragment of L!1;! canonically
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generated from A: By an argument of Nadel[10], A is a homogeneous model
of TA

!A1
: Steel�s assumption, is equivalent to: for every A a model of T , TA

!A1
is

!-categorical. Assumption (1.3) is equivalent to: for everyA a model of T;A
is an atomic model of TA

!A1
: Sacks & Young (circa 1999) produced a structure

A such that A is an atomic model of TA
!A1
, but TA

!A1
is not !-categorical. (In

addition !A1 = !
CK
1 and TA

!A1
is a �1 subset of L(!CK1 ).)

Sections 7 through 9 are devoted to bounding for weakly scattered theo-
ries.

2. Scott Analysis and Rank

This section revisits [11] as promised in section 1. Scott[12] showed an
arbitrary countable structure A with underlying �rst order language L can
be characterized up to isomorphism by a single sentence of L!1;!: In essence
there is a countable fragment LA of L!1;! such that A is the atomic model
of TA, the complete theory of A in LA: Nadel[10] pointed the way to a
canonical choice for LA:
L(!A1 ;A) is Gödel�s L relativised to A as an element2, and chopped o¤ at

!A1 ; the least  such that L(;A) is �1 admissible. Let
LA
!A1 ;!

= L!1;! \ L(!A1 ;A): (2.1)

Nadel[10] showed:

A is a homogeneous model of its complete theory TA
!A1 ;!

in LA
!A1 ;!

: (2.2)

It follows that A is the atomic model of its complete theory in
L!1;! \ L(!A1 + 1;A); (2.3)

since the types over TA
!A1 ;!

realized inA are �rst order de�nable over L(!A1 ;A)
and so become atoms of the complete theory of A contained in (2.3).
A �1 recursion de�nes a canonical choice for LA and yields the de�nition

of Scott rank for A:
LA0 = L:
LA� = [fLA� j � < �g for limit �.
TA� = complete theory of A in LA� :
LA�+1 = least fragment L+ of L!1;! such that L+ � LA� ; and for each

n > 0; if p(�!x ) is a non-principal n-type of TA� realized in A, then the
conjunction

^fF(�!x ) j F(�!x ) 2 p(�!x )g
is a member of L+:
Note that if A is isomorphic to B, then LA� = LB� and TA� = TB� for all

�: For some � < !1, all the n� types of TA� realized in A are principal. To
see this, �x  and suppose some non-principal type p+1 of TA+1 is realized

2Strictly speaking, the relativisation is to the transitive closure of A:
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in A: Let p be the restriction of p+1 to TA : Since p+1 is non-principal,
there is a formula G(�!x ) of LA+1 such that both

9�!x [p(�!x ) ^ G(�!x )] and 9�!x [p(�!x ) ^ :G(�!x )]

belong to TA+1:Then there are n� tuples
�!
b and �!c of A such that

A j= [p(
�!
b ) ^ G(�!b )], and A j= [p(�!c ) ^ :G(�!c )]:

Thus a distinction between
�!
b and �!c is made by a formula of LA+1 but

not by any formula of LA . Since A is countable, only countably many
distinctions can be made.
Let dA be the the least � < !1 such that every distinction ever made is

made by a formula of LA� : Then

A is the atomic model of TAdA+1: (2.4)

The Scott Rank of A is de�ned by
sr(A) =least �[A is the atomic model of TA� ]: (2.5)

If A is isomorphic to B; then sr(A) = sr(B): Nadel�s proof of (2.2)(pg. 273
of [10]), sketched below, also shows

A is a homogeneous model of TA
!A1
: (2.6)

Hence dA � !A1 , and so
sr(A) � !A1 + 1: (2.7)

LA� and TA� ; as functions of � < !A1 ; are �
L(!A1 ;A)
1 ; i.e. their graphs are

�1 de�nable subsets of L(!A1 ;A): Since the formulas of LA!A1 and TA
!A1

are

"enumerated" in increasing order of complexity,

LA
!A1
and TA

!A1
are �L(!

A
1 ;A)

1 : (2.8)

To prove (2.6), let p(�!x ) be an n� type; and q(�!x ; y) an (n+1)� type; of
TA
!A1
; and �!a ; �!b n� tuples of A: Suppose p(�!x ) � q(�!x ; y) and

A j= [p(�!a ) ^ p(�!b ) ^ 9yq(�!a ; y)]: (2.9)

For homogeneity, a d 2 A is required so that A j= q(�!b ; d): Suppose no such
d exists. Let q�(x; y) be the restriction of q(x; y) to LA� :

fq�(x; y) j � < !A1 g is �
L(!A1 ;A)
1 : (2.10)

For each d 2 A; there is a � < !A1 such that A j= :q�(
�!
b ; d): Since � can be

de�ned as a �L(!
A
1 ;A)

1 function of d, the �1 admissibility of L(!A1 ;A) implies
there is a �1 < !A1 such that A j= 8y:q�1(

�!
b ; y): But then

A j= 8y:q(�!a ; y): (2.11)
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A typical use of Scott rank in conjunction with Barwise compactness and
Grilliot type omitting is as follows.

Proposition 2.1. Suppose L(�; T ) is countable and �1 admissible. If for
each � < �, T has a model of Scott rank � �, then T has a countable model
of T such that:

sr(A) � !T;A1 = �: (2.12)

Note that the A of (2.12) must have Scott rank either � or �+1 by (2.7).
Forcing the outcome to be � + 1 is a problem addressed in this paper but
far from resolved.

3. Small �ZF0 Sets

The following is one of many variations (e.g. Makkai[8]) on a theme
initiated by Barwise[1], an extension of a recursion theoretic fact needed for
the enumeration of models of both scattered and weakly scattered theories.
The variation below was mentioned and used in [11]. The recursion theoretic
fact is: if a set S of reals is �11 and has cardinality less that 2

!, then there
exists a hyperarithmetic real H such that every member of S is Turing
reducible to H; in addition an index for H can be computed uniformly from
an index for S: The latter uniformity is key to establishing the �1 character
of the enumeration of models in sections 4 and 8. Let D(x; y) be a �ZF0
lightface formula, and A a countable �1 admissible set. Suppose p; b 2 A:
De�ne

Sp;b = fx j x � b ^D(x; p)g (3.1)

Theorem 3.1. If Sp;b =2 A, then the cardinality of Sp;b is 2!:

Proof. Let the language L consist of: 2; bounded quanti�ers 8x 2 y and
9x 2 y; an individual constant e for each e 2 A; and a special individual
constant c di¤erent from all the e�s. Z is the following �A1 set of sentences
of L:

(1) the atomic diagram of A: d2 e$ d 2 e; d=2 e$ d =2 e for d; e 2 A:
(2) c� b; D(c,p); and c6= e for all e 2 A:
Suppose Z is not consistent in the sense of L!1;!: Then there is a z0 2 A

such that z0 � Z and z0 is not consistent. z0 consists of some A0 2 A such
that A0 is a subset of the atomic diagram of A; and

c � b; D(c; p); and fc 6= e j e 2 fg (3.2)

for some f 2 A: Since z0 is inconsistent, there is a deduction E 2 A of
[c � b ^D(c; p)] �! c 2 f (3.3)

from A0: But then Sp;b � f and so Sp;b 2 A:
Suppose Z is consistent. Then a Henkin style construction in ! many

stages yields a model of Z, hence an actual c 2 (Sp;b � A): At stage j; a
sentence � of L is considered, and �j is either � or :� so long as Z [ f�i j
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i � jg is consistent. If �j is an in�nite disjunction (e.g. �j begins with
"9x 2 e"), then some component of �j is added immediately.
The construction can be varied so 2! many c�s are produced. Let t be

a one-one map of ! onto fg j g 2 bg: After �j is chosen, and before �j+1
is chosen, create a split as follows. Choose an n so that (t(n) 2 c) and
(t(n) =2 c) are each consistent with Z [ f�i j i � jg: Then the construction
takes 2! di¤erent paths, and di¤erent paths produce di¤erent c�s. Such splits
always exist. Otherwise there is a j such that Z [ f�i j i � jg is consistent
and for each n there is a deduction Dn 2 A from Z [ f�i j i � jg of either
(t(n) 2 c) or (t(n) =2 c): The �1 admissibility of A puts all the Dn�s in some
D 2 A. D decides which elements of b belong to c: Hence there is an e 2 A
such that (c = e) is deducible from Z [ f�i j i � jg, a contradiction. �
Corollary 3.2. Sp;b is countable ! Sp;b 2 A:

Theorem 3.3. There exists a lightface �ZF1 formula F(u; v; w) such
that for any countable �1 admissible set A and any p; b; s 2 A :

Sp;b is countable �! A j= 9wF(p; b; w) (3.4)

(8s 2 A) f[A j= F(p; b; s)] �! s = Sp;bg: (3.5)

Proof. The existence of F is implicit in the proof of Theorem 3.1. Z is
inconsistent i¤ Sp;b is countable i¤ Sp;b 2 A: The statement

A j= F(p; b; s) (3.6)

says: (i) there exist A0 2 A and E such that A0 � atomic diagram of A;
and E is a deduction of (3.3) from A0; and (ii)

s = fx j x 2 f ^ x � b ^D(x; p)g: (3.7)

�

4. Enumeration of Models for Scattered Theories

Let L0 be a countable fragment of L!1;! for some countable �rst order
language L; and T � L0 a theory with a model. Throughout this section T
is scattered as de�ned in Section 1. For convenience assume T mentions all
formulas of L0; thus L0 and L are recoverable from T .
Review of !-completeness and �nitary consistency for fragments.
Let L0 be a countable fragment of L!1;!; and T 0 � L0 a set of sentences.

T 0 is !- complete in L0 i¤ (1) and (2) hold.
(1) For every sentence F 2 L0; either F 2 T 0 or (:F) 2 T 0:
(2) For any sentence (_iFi) 2 T 0; there is an i such that Fi 2 T 0.
T 0 is �nitarily consistent i¤ no contradiction can be derived from T 0

using only the �nitary rules of L!1;!: The in�nitary step being avoided is
deriving an in�nite conjunction by deriving each of its components. T 0 is
!-consistent i¤ for any sentence (_iFi) 2 L0; if T 0 [ f_iFig is �nitarily
consistent, then there is an i such that T 0 [ fFig is �nitarily consistent.
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Proposition 4.1. If T 0 is �nitarily consistent and !-complete, then T 0 has
a model.

Proof. Note that T 0 is !-consistent. The model is constructed by extending
T 0 to a �nitarily consistent and !- complete set of sentences that includes
Henkin axioms. At each stage of the construction, the set of sentences up to
that point is !-consistent. �
Proposition 4.2. Suppose for all � �  < �; T� is �nitarily consistent and
!-complete in the fragment L�, T� � T, and L� � L : Then [fT� j � < �g
is �nitarily consistent and !-complete in the fragment [fL� j � < �g.

End of Review.
Morley[9] showed that the scatteredness of T implies the countable models

of T can be arranged in a hierarchy of height at most !1 based on Scott
rank with at most countably many models on each level. The current section
revisits [11] and presents a �1 enumeration of the countable models of T with
a recursion-theoretic eye on some constructive details. The enumeration is a
continuous tree T R(T ) with at most !1 levels, and at most countably many
nodes on each level. Each node is a theory T 0 �nitarily consistent and !-
complete in a fragment LT 0 with T � T 0 and L0 � LT 0 . Each T 0 has an
atomic model, and the class of all such models is the class of all countable
models of T:
The enumeration of T R(T ) is as follows.
Level 0. T 0 is a node i¤ T 0 is a �nitarily consistent and !-complete

extension of T in the fragment L0 (= LT 0):
Level � (limit). T

0
is a node i¤ there is a sequence T� (� < �) such

that: T� is on level �; T� � T (� <  < �); and T
0
= [fT� j � < �g:

LT 0 = [fLT� j � < �g:
Level � + 1: Suppose S is a node on level �; i.e. a �nitarily consistent

theory !-complete in its fragment LS : If S is !-categorical, then S has
no successors on level � + 1: Otherwise S has a non-principal n-type p(�!x ).
Let L0S be the least fragment of L!1;! extending LS and containing the
conjunction

^fF(�!x ) j F(�!x ) 2 p(�!x )g (4.1)

for every non-principal n-type p(�!x ) of S for all n > 0. T 0 is a successor of
S on level � + 1 if T 0 is a �nitarily consistent and !-complete extension of
S in the fragment L0S (= LT 0):

Proposition 4.3. If � < !1; then T R(T ) has only countably many nodes
on level �:

Proof. By induction on �: Level 0 is countable by clause (b) of the de�nition
of scattered. Suppose S is on level �: Assume LS is countable. The set of
all non-principal n-types of S is countable by clause (a) of the de�nition of
scattered, hence L0S is countable. The set of all successors of S on level �+1
is countable by clause (b) of the de�nition of scattered.
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Let T 0 be any node on the countable limit level �: Let L� be the least
fragment extending all the LS�s for all theories S on all levels below �:
By induction L� is countable. Let T 00 be any �nitarily consistent and !-
complete extension of T 0 in L�: The set of all T 00�s is countable, so the set
of all T 0�s is countable. �

Let T R(T ) � � be the restriction of T R(T ) to the levels below �:

Proposition 4.4. (i) If � < � < !1 and L(�; T ) is �1 admissible, then

(T R(T ) � �) 2 L(�; T ):
(ii) There exists a lightface �ZF1 formula G(u; v; w) such that for all scattered
T; all countable �1 admissible L(�; T ); and all b 2 L(�; T ) :

(T R(T ) � �) = b() L(�; T ) j= G(T; �; b):

Proof. By a �L(�;T )1 recursion that relies on theorem 3.3.
Suppose

(T R(T ) � (� + 1)) 2 L(�; T ); (4.2)

and theory S is on level �: The set of non-principal types of S is the unique
s 2 L(�; T ) that satis�es the �1 F of theorem 3.3 with p and b both equal
to S: The statement "q is a non-principal type of S" is lightface �ZF0 and
corresponds to the formula D(x; y) of (3.1). The fragment L0S was de�ned
just before equation (4.1). The set of successors of S on level �+1 is obtained
from theorem 3.3 with parameters hp; bi equal to hS;L0Si: �

Let A be a countable model of T (a scattered theory as above). The Scott
analysis of A di¤ers little from its tree analysis:
T (0;A) = theory of A in L0, and LT (0;A) = L0:
T (�;A) = [fT (�;A) j � < �g:
LT (�;A) = [fLT (�;A) j � < �g:
LT (�+1;A) = L

0
T (�;A) (de�ned similarly to L

0
S on level � + 1 of T R(T )

above).
T (� + 1;A) = theory of A in LT (�+1;A):

Recall from section 2 the de�nition of dA, the distinction rank of A; and the
argument that the Scott rank of A is either dA or dA +1: Clearly there is a
� < !1 such that for all n; any distinction made between n-tuples of A by a
formula of LT (!1;A) is made by a formula of LT (�;A): The tree rank of A, is
de�ned by

tr(A) = least �[A is the atomic model of T (�;A)]: (4.3)

Proposition 4.5. tr(A) � sr(A):

Proof. LA� was de�ned just after equation 2.3. By induction on �; LA� �
LT (�;A): Thus TAsr(A) � T (sr(A);A): A is an atomic, hence homogeneous

model of TAsr(A), and so A is an atomic model of T (sr(A);A). �
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Proposition 4.6. Suppose A j= T and L(�;< T;A >) is �1 admissible.
Then

tr(A) < � �! sr(A) < �:
Proof. Suppose not. Then D; the set of all distinctions between n-tuples
(all n > 0) of A made by formulas of LT (tr(A);A); belongs to L(�;< T;A >)
by proposition 4.4. And there is an unbounded �L(�;hT;Ai)1 map of D into
�, a violation of the �1 admissibility of L(�;< T;A >). The map carries
each distinction d 2 D to the least � such that d is made by some formula
of LA� : �
T can be scattered up to a point. T R(T ) is said to be scattered below

� if the notion of scattered enumeration succeeds for T on all levels below �:
To be more precise, T R(T ) has only countably many nodes (perhaps none)
on each level below �.

Proposition 4.7. Suppose � < !1, L(�; T ) is �1 admissible, T is scattered
below (� + 1), and T has a model of Scott rank � � for all � < �: Then
there exists a theory T� on level � of T R(T ) such that T� is �L(�;T )1 :

Proof. By proposition 4.6 T R(T ) has nodes on all levels below �, if an
A can be found that satis�es the hypotheses of proposition 4.6 and also
sr(A) � �: To �nd A through Barwise compactness, consider the following
set Z of sentences.
(Z1) Introduce a constant e to name each e 2 L(�; T ). Add the atomic

diagram (in the sense of L!1;!) of L(�; T ) to Z. For each � < �,
8x[x 2 �  ! _fx =  j  < �g] (4.4)

is a typical member of (Z1). Any model of (Z1) is an end extension of
L(�; T ).
(Z2) Introduce a new constant d, and add sentences saying d is an ordinal

greater than � for each � < �.
(Z3) Add A j= T and sr(A) > � for each � < �.
(Z4) Add the axioms for �1 admissibility.
Let M be a model of Z that omits � but extends L(�; T ) as in [2] or[4].

L(�;< T;A >) is �1 admissible, otherwise � 2M . (Z3) insures sr(A) � �.
Let T

0
denote an arbitrary node below level �: Call T

0
unbounded if T

0
has

extensions to theories on arbitrarily high levels below �: T can be regarded
as an unbounded node.
Suppose T

0
is an unbounded node below level � for some � < �; then T

0

has an unbounded extension on level �. Otherwise the �1 admissibility of
L(�; T ) implies T

0
is bounded.

There exists a �0 < � and an unbounded node T�0 on level �0 such for
all � 2 (�; �); T�0 has a unique unbounded extension on level �: Otherwise
a tree U of unbounded nodes can be constructed such that U is isomorphic
to the binary branching tree 2<!, and the branches of U de�ne a continuum
of nodes on some level �0 � � of T R(T ) � (�+ 1):
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The set Sub of unbounded nodes above T�0 form an expanding sequence

whose union is the desired T�. To see Sub is �
L(�;T )
1 , let N be the set of all

nodes on level  extending T�0 for each  2 (�0; �). N , as a function of ;
is �L(�;T )1 by proposition 4.4. (N � Sub) 2 L(�; T ) since N \ Sub has just
one element. There is a �L(�;T )1 function that takes each node e 2 (N�Sub)
to a bound on the levels occupied by extensions of e: But then there is a
strict upper bound b < � on the levels occupied by extensions of members
of (N � Sub). b singles out the unique member of N \ Sub: �

Proposition 4.8. Suppose � � !1, L(�; T ) is �2 admissible, T is scattered
below �, and T has models of arbitrarily high Scott rank less than �: Then
there exists a theory T� on level � of T R(T ) such that T� is �L(�;T )1 :

Proof. Similar to that of proposition 4.7. The only di¤erence is in the han-
dling of U : Then and now U can be de�ned by a �L(�;T )2 recursion of length

!, since the set of unbounded nodes is �L(�;T )1 : But now the �2 admissibility
of L(�; T ) implies U 2 L(�; T ); and so the branches of U de�ne a continuum
of nodes on some level �0 < � of T R(T ): �

Two L-structures are said to be L!1;!�equivalent if they satisfy the
same sentences of L!1;!. (Recall: if A is countable and L!1;!�equivalent to
B; then A is L1;!�equivalent to B.)

Theorem 4.9. Suppose Vaught�s conjecture fails for T . Then there exist
T�, A� and L� (� � !1) such that:
(i) If � < !1, then T� is an !-complete theory in the countable fragment L�.
(ii If � �  � !1, then T� � T, A� � A and L� � L.
(iii) If �(limit)� !1, then T� = [fT� j � < �g and A� = [fA� j � < �g:
(iv) T!1 is �

L(!1;T )
1 de�nable.

(v) If � � !1, then A� is an atomic model of T�.
(vi) If � < !1, then A�+1 realizes a non-principal type of T�:
(vii) (Harnik & Makkai[3]) The cardinality of A!1 is !1, and A!1 is not
L!1;!-equivalent to any countable model.

Proof. A uncountable model A!1 of T is constructed so that it is not L!1;!-
equivalent to any countable model. By proposition 4.8, there is a theory T!1
on level !1 of T R(!1) such that T!1 is�

L(!1;T )
1 . Thus T!1 = [fT j  < !1g,

and ( � �) ! (T � T�). p; the parameter used in the �L(�;T )1 de�nition
of T!1 , belongs to L(�0; T ) for some �0 < !1:De�ne

K = f� j �0 < � < !1 ^ L(�; T ) 41 L(!1; T )g.

(X 41 Y means X is a �ZF1 substructure of Y .) Let f� j � < !1g be an
increasing enumeration of K: Then L(�; T ) is �1 admissible, and so

T� = T!1 \ L(�; T )
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by proposition 4.4(i). Also T� is �
L(� ;T )
1 de�nable via the same �1 de�ni-

tion that works for T!1 , since p 2 L(�; T ) 41 L(!1; T ).
Structures A� (� � !1) and inclusion maps i�;� : A� �! A� (� < �)

are de�ned by recursion on �. i�;� will be elementary with respect to the
language L� ; i.e. any sentence of L� with parameters in A� and true in
A� will also be true in A�.
Stage 0. A0 is the countable atomic model of T0 .
Stage �+1. Assume A� is the countable atomic model of T� . Extend A�

to A�+1, the countable atomic model of T�+1 ; so that the inclusion map,
i�;�+1 is L� -elementary.
Stage � (limit � !1). Let

A� = [fA� j � < �g

For all � < �
0
< �; assume the inclusion map i

�;�
0 is L� -elementary. Then

for each � < �: A� is an L� -elementary extension of A�, and so is a model
of T� . Thus A� is a model of T�.
To see A� is an atomic model of T�; let �!a be an n-tuple of A�. For

some � < �, �!a is an n-tuple of A�. �!a realizes some atom F(�!x ) of T� .
F(�!x ) is an atom of T�, because L(�; T ) 41 L(�; T ). �!a realizes F(�!x ) in
A�, since i�;� is L�-elementary.
If A!1 were L!1;!-equivalent to some countable model, then it would be

an atomic model of T� for some � < !1. But A�+1, hence A!1 ; realizes a
non-principal type of T� . �

5. Absoluteness of Vaught�s Conjecture

Let V C(T ) be the predicate: Vaught�s conjecture holds for T . Morley�s
work [9] implies that V C(T ) is absolute. The enumeration tree, T R(T ); of
section 4 is applied below to make the statement of V C(T ) more precise
and to see in some detail how T can satisfy Vaught�s conjecture. Suppose
an attempt is made to develop T R(T ) and the attempt fails to produce a
tree with only countably many nodes on each level and !1 many non-empty
levels Then there must be a countable � such that one of the following
holds.

(1) � = 0 and T has uncountably many �nitarily consistent, !-complete
extensions in L0.

(2) � = � + 1; some theory S is on level �; and for some n; the set of
n-types of S is uncountable.

(3) � = � + 1 some theory S is on level �; for all n the set of n-types
of S is countable, and the set of all �nitarily consistent, !-complete
extensions of S in L0S is uncountable. L

0
S is de�ned just before 4.1.

(4) � = � and the set of nodes on level � is uncountable.
(5) Level � is empty.

De�ne the Vaught Rank of T; vr(T ); to be the least countable � that
satis�es one of 1-5 above. (If there is no such �; let vr(T ) be !1.)
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De�ne the predicate V C(T ) by vr(T ) < !1:
Suppose vr(T ) = � < !1. If � = 0; then T has 2! �nitarily consistent, !-

complete extensions in L0 by theorem 3.1, hence 2! many countable models.
The same holds in cases 3 and 4. If 5 holds, then T has only countably many
countable models, and each one is the atomic model of a theory on some
level of T R(T ) below level �: Suppose case 2 holds. Then for some n, there
are 2! n-types of S by theorem 3.1, hence 2! many countable models of T:
Recall that

!
L(T )
1 = least [L(T ) j= ( is uncountable)]: (5.1)

Proposition 5.1. The predicate, Vaught�s Conjecture holds for T; is

�
L(!

L(T )
1 ;T )

1 , hence �12:

Proof. By proposition 4.4, T R(T ) � L(!1; T ) and is �L(!1;T )1 : V C(T ) says:
at some level  < !1, either (a) T R(T ) ends or (b) "blows up", i.e. a perfect
kernel of theories or types is manifest. Let �0 be the least � >  such that
L(�; T ) is �1 admissible.
Suppose (a) holds. Then Levy-Shoen�eld absoluteness implies �0 <

!
L(T )
1 ; and there is a L!1;! sentence K 2 L(�0; T ) that expresses the fact
that every model of T is an atomic model of some theory on some level at
or below  of T R(T ):
Suppose (b) holds. Theorem 3.1 implies the existence of a perfect ker-

nel of theories or types. A coding of some such perfect kernel by a real is
constructible from any counting of �0. The proof of 3.1 relies on the consis-
tency of a certain set Z of axioms. Z is �L(�0;T )1 ; and the consistency of Z

is �L(�0;T )1 . Hence Levy-Shoen�eld absoluteness implies �0 < !
L(T )
1 ; and so

a code for the perfect kernel belongs to L(!L(T )1 ; T ): �
Proposition 5.2. Suppose T is a counterexample to Vaught�s conjecture.
Then there is a theory T!1 on level !1 of T R(T ) such that T!1 is �

L(!1;T )
1 :

For all countable �: T�, the restriction of T!1 to level �, has an atomic
model whose Scott rank is �.

Proof. By proposition 4.8. �
Suppose L(�; T ) is �1 admissible, A is a countable model of T , and

!A1 = �. According to (2.6), A is a homogenous model of TA� . A is said to
be �-saturated if every n-type (n � 1) of TA� is realized in A:
Theorem 5.3. Suppose T is a counterexample to Vaught�s conjecture. Then
there is a �L(!1;T )1 theory T!1 on level !1 of T R(T ) and a closed unbounded
set C � !1 such that 8� 2 C: T�, the restriction of T!1 to level �, has an
atomic model A� of Scott rank � and an �-saturated model B� of Scott rank
�+ 1:
The atomic models form an expanding chain and each inclusion A� � A
(� < ) is elementary with respect to the language of T�.
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Proof. Proposition 4.8 provides T!1 : Let p 2 L(!1; T ) be the parameter
needed for the �L(!1;T )1 de�nition of T!1 . For any �; let �

+ be the least
� > � such that L(�; T ) is �1 admissible.
For x 2 L(T ), let H1(x) be the �1 hull of x in L(T ): Recall that

x � H1(x) 41 L(T )
and that x and H1(x) have the same cardinality in L(T ).
An expanding sequence of countable �1 hulls, H� (� < !1), is de�ned by

recursion on �.
H0 is H1(ftc(p); !1; tc(T )g). (tc is transitive closure.) Note: !+1 ; ! 2 H0;

if d < e < !1 and e 2 H0; then d 2 H0. Let c0 be the lub of the countable
ordinals in H0: Let L(�0; T ) be the transitive collapse of H

0: Then

c0 = !
L(�0;T )
1 and L(c+0 ; T ) � L(�0; T ). (5.2)

Stage � + 1. Assume H� is countable in V . Then H� \ !1 is a proper
initial segment of !1: Let c� be the least countable ordinal not in H�. H�+1

is H1(H� [ fc�g).
Stage � (limit). H� is [fH� j � < �g .
C = fc� j � < !1g is a closed unbounded set.
Let L(��; T ) be the transitive collapse of H

�. Then

c� = !
L(�� ;T )
1 and L(c+� ; T ) � L(��; T ). (5.3)

Let Tc� be the restriction of T!1 to level c� of T R(T ). Tc� is �
L(c� ;T )
1

via parameter p. N , the set of non-principal types of Tc� , is non-empty
and countable in V . Tc� 2 L(c+� ; T ); and so N 2 L(c

+
� ; T ) by theorem 3.1.

Hence the structure L[c�; T ;Tc� ; N ] (i.e. L(c�; T ) with x 2 Tc� and x 2 N
as additional atomic predicates) is �1 admissible because no subset of c� in
L(��; T ) can de�ne a counting of !

L(�� ;T )
1 . Now the construction of M in

the proof of theorem 6.1 can be imitated to produce a model B of Tc� such
that B realizes all the types in N and !B1 = c�:
The atomic A��s are supplied by Theorem 4.9. �

6. Bounds on Scattered Theories

Once again L is a countable �rst order language, L0 is a countable frag-
ment of L!1;!, and T � L0 has a model. L and L0 are e¤ectively recoverable
from T0. T is scattered below � as was de�ned just before proposition 4.7.

Theorem 6.1. Suppose � < !1; L(�; T ) is �2 admissible, T is scattered
below �, and for each � < �, T has a model of Scott rank > �. Then T has
a model A such that !A1 = � and sr(A) = �+ 1.

Proof. By proposition 4.8 T R(A) has a theory T� on level � such that T�
is ��1 . T� is [fT� j � < �g; where T� is a node on level �. Let Z be the
following set of sentences.
(Z1) The atomic diagram of L(�; T ) in the sense of L!1;!:
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(Z2) Add (d > �) for all � < �: d is a constant not occurring in (Z1):
(Z3) Let Td be a theory on level d of T R(T ). Add A is the countable

atomic model of Td and F 2 Td for each sentence F 2T�.
(Z4) Add (b(�!x ) is an atom of Td) for each b(

�!x ) that is an atom of T�,
i.e. b(�!x ) generates a principal type of T�.
(Z5) Add the axioms of �1 admissibility.

Z is �L(�;T )2 , since the set of atoms of T� is �
L(�;T )
1 .

Suppose � < �, L(�; T ) is �1 admissible, and Z� is Z \ L(�; T ). To
check the consistency of Z� , augment L(�; T ) by adding a generic counting
of L(�; T ) to L(�; T ) that preserves the �2 admissibility of L(�; T ). Z� can
be modeled by the augmented L(�; T ). By proposition 4.4, T� � L(�; T ).
Interpret d as �: Interpret A as the atomic model of T� . Such an A belongs
to the augmented L(�; T ) because there T� is countable. If b(

�!x ) is an atom
of T� and belongs to L(�; T ), then b(

�!x ) is an atom of T� .
Z has a model M that is a proper end extension of L(�; T ) but omits �.

!A1 � �, otherwise � is recursive in A, and then � 2 M . A j= T� for all
� < �, hence sr(A) � � by proposition 4.5, and so !A1 = � by (2.6).
Suppose sr(A) = �: Then � 2 M as follows. A is the atomic model of

T�. The rank of an atom b(�!x ) of T� is the least � < � such that b(�!x )
is an atom of T�. Let f be the function that carries each

�!a 2 A to the
rank of an atom of T� that generates the principal type realized by

�!a in
A: Thanks to (Z4) f is de�nable from Td, and so f 2 M: Then lub(range
f) = � 2M . �

Corollary 6.2. ([11]) Suppose for every countable model A of T; the Scott
rank of A is less than or equal to !A1 . Then Vaught�s conjecture holds for T:

Proof. Suppose V C(T ) fails. Then T is scattered below !1, and T R(T )
has nodes on every countable level. Choose an � < !1 such that L(�; T )
is �2 admissible. Then T has a countable model A such that !A1 = � and
sr(A) = �+ 1: �

A more e¤ective version of corollary 6.2 is as follows. De�ne

�T2 = least � [L(�; T ) is �2 admissible]. (6.1)

vr(T ), the Vaught rank of T , was de�ned at the beginning of section 6.

Corollary 6.3. Suppose T does not have a countable model A such that

!A1 = �
T
2 and sr(A) = �T2 + 1: (6.2)

Then vr(T ) < �T2 .

Proof. If vr(T ) > �T2 , then T is scattered below �T2 and T R(T ) has nodes
on every level below �T2 ; �

As a warm-up to the main bounding results of the paper (section 8), the
above is recast as an e¤ective bounding theorem.
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Corollary 6.4. Suppose T is scattered and

sr(A) � !A1 for every countable A j= T: (6.3)

Then 9� < �T2 such that

sr(A) < � for every A j= T: (6.4)

SA(T ) says: for every countable model A of T; the theory TA
!A1

is !-

categorical. Steel [13], as reported in Makkai[7], showed that V C(T ) follows
from SA(T ): Theorem 6.5 is an e¤ective version of Steel�s result.
L(�; T ) is said to be recursively Mahlo if L(�; T ) is �1 admissible

and every �L(�;T )1 closed unbounded subset of � has a member � such that
L(�; T ) is �1 admissible. De�ne

rm(T ) = least  [L(; T ) is recursively Mahlo]: (6.5)

Note that rm(T ) < �T2 .

Theorem 6.5. Suppose T is scattered and

TA
!A1
is ! � categorical for every countable A j= T . (6.6)

Then 9� < rm(T ) such that

sr(A) < � for every countable A j= T . (6.7)

Proof. Suppose there is no such �. Let � be rm(T ). Then proposition 4.7
supplies a �L(�;T )1 theory T� on level � of T R(T ): T� = [fT� j � < �g; and
T� ; as a function of �; is �

L(�;T )
1 :

There is a �L(�;T )1 function f0 such that T� � L(f0(�); T ) for all � < �:
Iteration of f0 leads to a �

L(�;T )
1 closed unbounded set

C0 = f j T � L(; T )g: (6.8)

A similar argument produces a �L(�;T )1 closed unbounded set C1 such that

8 2 C1[(T� \ L(; T )) is �L(;T )1 ]: (6.9)

Then there is a �L(�;T )1 closed unbounded set K such that

8 2 K[T � L(; T ) and T is �L(;T )1 ]: (6.10)

Hence for some 0 2 K, L(0; T ) is �1 admissible. Consequently T0 has a
model B such that !B1 = 0: But then TB!B1 , hence T0 , is !-categorical, and
so has no extension to a node on level �: �
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7. Iterated Classical Bounding

In this section classical bounding (reviewed in section 1) is translated into
the language of �1 admissible sets and revised to allow for iterated use in
�1 recursive de�nitions in section 8.
Let B(x) be a �ZF0 formula with parameter p0. B(x) is �-bounded i¤ :

8c[B(c) () L[�; p0; c] j= B(c)]. (7.1)

L[�; p0; c] is the result of iterating �rst order de�nability with y 2 c as an
additional atomic predicate through the ordinals less than � starting with
the transitive closure (tc) of fp0g. Assume B(x) is �-bounded. De�ne

c� = c \ L[�; p0; c] (7.2)

Then B(c) () B(c�). For all z let Az be the least �1 admissible set with
z as a member; thus

Az = L(!
z
1; tc(fzg)): (7.3)

Let F(u; v) be a �ZF1 formula with parameter p1, and let p be fp0; p1g.
Suppose for all c: if B(c), then there exists a unique � 2 Afp;�;c�g such that

Afp;�;c�g j= F(c� ; �); (7.4)

designate � by �p;�;c.

Theorem 7.1. (i) There exists a �p;� 2 Afp;�g such that for all c:

B(c) =) �p;�;c � �p;�. (7.5)

(ii) �p;� can be construed as a partial function of p and � whose restriction
to any �1 admissible A has a �A1 de�nition uniformly in A, i.e. one �1
formula works for all A.

Proof. Z is the following �
Afp;�g
1 set of sentences. Let � = !fp;�g1 .

(Z1) Introduce constants c and c�, and put c�= c \ L[�; p0; c] and B(c�)
in Z.
(Z2) Add constants that name the elements of (7.6) and sentences of L!1;!

that de�ne each element in terms of elements of lower de�nability rank.

L(�; tc(fp; �; c�g)) (7.6)

(Z3) Let F(u; v) be 9wG(u; v; w) for some �ZF0 formula G(u; v; w): Add
:G(c�; �; r) for all � < � and every r that names an element of (7.6).
(Z4) Add axioms for �1 admissibility.
Suppose Z is consistent. Assume for a moment that

Z is countable. (7.7)

As in the proof of proposition 4.7, Z has a model M that is a proper end
extension of (7.6) but omits �: Then (7.6) is �1 admissible, and so

Afp;�;c�g = L(�; tc(fp; �; c�g)): (7.8)
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But then Afp;�;c�g j= :F(c� ; �) for all � < �; a contradiction since �p;�;c� 2
Afp;�;c�g:
Thus Z is inconsistent.
To remove assumption (7.7), generically extend the universe V to V 0 so

that Z is countable in V 0. Then Z is inconsistent in V 0, hence in V by the
absoluteness of provability in the sense of L1;!.
Since Z is �

Afp;�g
1 , there must be a inconsistent W � Z such that W 2

Afp;�g. W consists of:
(W1) (Z1) and (Z4).
(W2) Some A0 2 Afp;�g such that A0 � set of sentences of (Z2).
(W3) For some �1 < �, :G(c�; �; r) for all � < �1 and every r of (Z2) that

names an element of L(�1; tc(fp; �; c�g)).
Then there is a deduction D 2 Afp;�g from (W1) & (W2) of

_fF(c�; �) j � < �1g. (7.9)

Let �0 be the least � such that there is such a D 2 L(�; tc(fp; �g)); let �fp;�g
be the least �1 associated with any such D 2 L(�0; tc(fp; �g)). Then

�p;�;c � �p;�. (7.10)

for any c such that B(c) holds. The �ZF1 formula H that de�nes �p;� as a
partial function of p; � uniformly owes its existence to the e¤ective nature
of deducibility in L!1;!. H singles out a deduction in Afp;�g that establishes
the value of �p;�. H can be formulated to succeed in every �1 admissible
A, because p; � 2 A implies Afp;�g is a �A1 de�nable (uniformly) subclass of
A. �

8. Enumeration of Models under Weak Scattering

Let L0 be a countable fragment of L!1;! for some countable �rst order
language L; and T � L0 a theory with a model. Assume T is weakly
scattered as de�ned in section 1. For convenience assume T mentions all
formulas of L0; thus L0 and L are recoverable from T . Since T need not be
scattered, there is no hope of enumerating theories in L(!1; T ) whose atomic
models are exactly the countable models of T: But some useful vestiges of
the constructive features of scattering carry over to weak scattering, and
L(!1; T ) manages to say a great deal about the countable models of T .
First consider RH(T ), the raw hierarchy for the countable models of T .

On level 0 of RH(T ), put every T0 such that T � T0 and T0 is a �nitarily
consistent, !-complete theory of L0. (If needed, see the beginning of section
4 for a review.)
Suppose T� is on level � of RH(T ). De�ne

� � 1 if � is a successor
�� = (8.1)

� if � is not a successor.
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L0(T0�) is de�ned to be L0. Assume T� extends a unique T�� on level ��
and L�(T��) is countable. If all n-types (n � 1) of T� are principal, then
L�+1(T�) is unde�ned and T� has no extensions on level �+1. Otherwise let
L�+1(T�) be the least fragment of L!1;! extending L�(T��) and having as a
member the conjunction

^fF(�!x ) j F(�!x ) 2 p(�!x )g (8.2)

for every non-principal n-type p(�!x ) of T� (n � 1). Since T is weakly scat-
tered, L�+1(T�) is countable.
On level �+1 of RH(T ) put every T�+1 that extends T� and is a �nitarily

consistent, !-complete theory of L�+1(T�).
Put T� on level � if there is a sequence T�(� < �) such that: T� is on level

�; T� � T if � � ; and T� = [fT� j � < �g.
L�(T�) is [fL�(T��) j � < �g.
It is straightforward to verify that A is a countable model of T i¤ A is

the atomic model of T� for some countable �. De�ne the raw tree rank of
A by

rtr(A) = (least �)[A is the atomic model of some T�]. (8.3)

Propositions 4.5 and 4.6 hold when tr is rtr: Thus

rtr(A) � sr(A), (8.4)

and if L(�; hT;Ai) is �1 admissible, then

rtr(A) < � �! sr(A) < �: (8.5)

What matters more is what can be expressed inside L(�; T ) when � � !1
and L(�; T ) is �1 admissible. Let A� be the set of all T��s on level � of
RH(T ). A� will be de�ned by a �-bounded �ZF0 formula (7.1), and its
de�nition as such, denoted by pA�q, will belong to L(�; T ) when � < �.
The fragment L�(T��) will be constructible from T�� via an ordinal �� < �
for all T�� 2 A��. pA�q and �� will be de�ned by a simultaneous �

L(�;T )
1

recursion uniformly in �, i.e. the same �1 formula will work for all � � !1
such that L(�; T ) is �1 admissible.
Consider an arbitrary T� on level � of RH(T ). There exists a natural

recovery process that can be applied to T� to recover the unique sequence
T ( < �) such that

T is on level ;

1 � 2 �! T1 � T2 ; and (8.6)

T� = [fT j  < �g for all limit � � �:

The recovery proceeds as follows. T0 is T� \ L0. If  is a successor, then

T = T� \ L(T�). (8.7)

If  is a limit, then T = [fT� j � < �g.
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The recovery process can be used to decide whether or not an arbitrary
set c is a theory on level � of RH(T ). The answer is yes i¤ c passes the
following tests at all levels  � �.
Level 0. c0 = c \ L0. c0 is an extension of T and a �nitarily consistent,

!-complete theory of L0.
Level  + 1 � �. L+1(c) is the least fragment extending L(c�) and

having as a member the conjunction

^fF(�!x ) j F(�!x ) 2 p(�!x )g (8.8)

for every non-principal n-type p(�!x ) of c�. c+1 = c \ L+1(c). c+1
extends c and is a �nitarily consistent, !-complete theory of L+1(c).
Level � (limit) � �. c� = [fc j  < �g: L�(c�) = [fL(c�) j  < �g.
In short c is a theory on level � ofRH(T ) i¤ c satis�es the recovery process

on all levels  � � and c = c�. It will follow below that A� is �-bounded
�ZF0 de�nable (7.1), where � is large enough to de�ne the recovery process.

An e¤ective version of the recovery process is woven into the �L(�;T )1
recursive de�nitions of �� and pA�q for 0 < � < �. L�(T��) is constructible
from T�� via the ordinal �� for all T�� 2 A��, and pA�q is a �-bounded
�ZF0 de�nition of A�. pA�q speci�es the value of �; and the �ZF0 formula.
Stage 0. L0(T0�) is L0. A0 is the set of all �nitarily consistent, !-complete

theories of L0 extending T: Since L0 is recoverable from T; A0 is ��bounded
�ZF0 de�nable with � = 0 and parameter T .
Stage � + 1. Assume the recursion has produced sequences

f� j  � �g, fpAq j  � �g 2 L(�; T ) (8.9)

such that pAq is a �-bounded �ZF0 de�nition of A , and L(T�) ( � �)
is �rst order de�nable over

L[� ;L0;T�]: (8.10)

(The de�nition of (8.10) follows (7.1).) Consider an arbitrary T� 2 A�
(� > 0). Use the recovery process to construct the unique T�� 2 A�� such
that

T�� � T� � L�(T��): (8.11)

The recovery is e¤ective thanks to the sequence � ( � �). Now L�+1(T�)
can be de�ned as above (8.2) but with an e¤ective twist. Let ST� be the
set of all n-types (n > 1) of T�. Since T is weakly scattered, corollary 3.2
implies

ST� 2 L(!T�1 ; T�), (8.12)

the least �1 admissible set with T� as a member. Let

T� = (least )[ST� 2 L(; T�)]: (8.13)

By theorem 3.3, T� , as a function of T�, is uniformly �1; the same �
ZF
1

formula singles out T� in L(!
T�
1 ; T�) for every T� 2 A� and for all �: By
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theorem 7.1(i), there is a � such that

(8T� 2 A�)[T� � � < �]: (8.14)

Hence ST� 2 L(�; T�) for all T� 2 A�. Theorem 7.1(ii) implies �, as a
function of �, has a uniform �1 de�nition utilizing the parameters occurring
in pA�q and the uniform �1 de�nition of T� . Any n-type p(

�!x ) 2 ST� for
any T� 2 A� is constructible from T� via some ordinal less than �.
A set P� of �rst order de�nitions can be assembled at level � of L(�; T )

as follows. Let

fpT�j j j 2 J�g (8.15)

be the set of all �rst order de�nitions over L(; T ) for all  < � with
parameter T�. For each T� 2 A�; pj(T�) is the set de�ned by pj(T�) when
the parameter T� is assigned the value T�. (8.15) has a natural wellordering
W� de�nable at level �, since each p

T�
j is speci�ed by its level  < � and

its Gödel number e < ! as a formula of ZF. d�(T�), the default type for
T�, is de�ned by its action on T� 2 A�:

j(T�) = (least j in sense of W�)[pj(T�) is an n-type of T�]; (8.16)

d�(T�) = pj(T�)(T�): (8.17)

The formula pT�j is a slight variant of pj(T�) and is de�ned by its action
on T� 2 A�.

pj(T�) if pj(T�) is an n-type of T�;

pT�j =

d�(T�); the default type, otherwise.

Let P� = fpT�j j j 2 J�g. Then

(1) For all T� 2 A� and p(�!x ) 2 ST�; there is a j 2 J� such that pT�j
de�nes p(�!x ) at level � of L(�; T ), and

(2) pT�j 2 ST� for all T� 2 A� and all j 2 J�:

It can happen for some T� 2 A� and j; k 2 J� that j 6= k but pT�j = pT�k :

Such repetitions are the price paid to have P� 2 L(� + 1; T ).
The ordinal ��+1 < � is chosen just large enough to develop the sequence

� ( � �) needed for the recovery of T�� from T� (� > 0), and the ordinal �
needed to assemble P�. L�+1(T�) is �rst order de�nable over L[��+1;L0;T�];
its de�nition begins with L�(T��), adds the conjunction of all formulas in
pT�j for each pT�j 2 P�; and closes under the �nitary operations that generate
a fragment of L!1;!.
To complete stage � + 1, construe A�+1 to be the set of all x such that

the e¤ective version of the recovery process applied to x reports that x is a
theory on level � + 1 of RH(T ). The e¤ective version uses the sequence �
(0 <  � � + 1) to de�ne L(T�) from T� for all T� 2 A�: Thus A�+1
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is �-bounded �ZF0 de�nable with � equal to ��+1, and pA�+1q 2 L(�; T ).
The parameter speci�ed by pA�+1q is T .
Stage � (limit). Assume for 0 <  < � that L(T�) is constructible

from T� via � for all T� 2 A�. Use the e¤ective version of the recovery
process to de�ne A� as a �-bounded �ZF0 class. For T 2 A�, e¤ectively
recover the unique sequence T ( < �) such that T� is [fT j  < �g, and
then de�ne L�(T�) to be [fL(T�) j 0 <  < �g.
Makkai[8] showed: if T is a counterexample to Vaught�s conjecture, then

T has a model of cardinality !1 that is L1;! equivalent to a countable model.
The following are variants of his results.
Suppose A is a countable �1 admissible set and T 2 A. Assume T � L0,

L0 is a countable fragment of L!1;!, and L is a countable �rst order language.
Also assume every symbol of L is mentioned in T so that L is recoverable
from T . Let L0 denote an arbitrary fragment of L!1;! that extends L, and
T 0 an arbitrary �nitarily consistent, !-complete theory contained in L0 and
extending T . Call T weakly scattered in A i¤ ST 0 2 A for all T 0 2 A.
According to Theorem 3.3,

Theorem 8.1. Suppose A is a countable model of T , T is weakly scattered
in L(!T;A1 ; hT;Ai), and

sr(A) � !T;A1 .
Then A is L1;! equivalent to a model of T of cardinality !1.

Proof. Let � =!T;A1 : Thus !A1 = �, since !A1 + 1 � sr(A). Let TA� (� �
sr(A)) be the Scott analysis of A as de�ned in section 2. By Theorem 3.3
STA� 2 L(�; hT;Ai) (and so TA� has a countable atomic model) for all �

such that � + 1 < sr(A). Z is a �L(�;hT;Ai)1 set of sentences as follows:
(Z1) the atomic diagram (in the sense of L!1;!) of L(�; hT;Ai).
(Z2) d is a countable ordinal and d � � (all � < !T;A1 ).
(Z3) 8y[y < d! TAy has a countable atomic model]:
(Z3). axioms of �1 admissibility.

Z is consistent since it can be modeled by V (the real world). Every
model of Z is an end extension of L(�; hT;Ai). Let M be a model of Z that
omits �. Thus M has non-standard ordinals greater than every ordinal less
than �. sr(A) � � in V and � =2 M , so sr(A) �  for some non-standard
 2 M .
Now work inside M . Let TA� (� � ) be the Scott analysis of A up to

level . Choose a non-standard � < . TA� has a countable atomic model
A�. There is a map

i� : A� ! A (8.18)

that is elementary with respect to all formulas of LA� (de�ned in section 2).
Note that ib is not onto, since A� is not isomorphic to A in M:
But A� is isomorphic to A in V . !

A�
1 � � since � =2 M . sr(A�) � � for

all � < �; hence sr(A�) � �, and so !
A�
1 � �. Thus both A� and A are
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homogeneous models of TA� by (2.6). To see they realize the same types of
TA� ; choose p� 2 STA� and �rst suppose A� j= p�(b). In M , A� j= p�(b) for
some type p� of TA� , and A j= p(i�(b)) for some type p of TA .

p� � p� � p (8.19)

since i� is LA� elementary. Hence A j= p�(i�(b)). It follows that

i� is L!1;! elementary, (8.20)

since the types of TA� realized in A� are atoms of L!1;!.
Now suppose A j= p�(a). In M; a realizes p in A, a type of TA . Choose

a non-standard � < �. Let p� be the restriction of p to LA� , and p� the
restriction to LA� . Then p� � p� � p� � p . So

Aj= 9xp�(x): (8.21)

But then 9xp�(x) 2 T�+1 � T�; so p�, hence p�, is realized in A� .
Thanks to the above there exist structures B0 and B1, both isomorphic to

A, such that B0 $ B1 and the inclusion map i is L!1;! elementary. A strictly
expanding L!1;! elementary chain B� (� � !1) is de�ned by iterating i.
For � < !1, assume B� is isomorphic to A. Then enlarge B� to B�+1,

another copy of A.
For limit � � !1; let B� be the union of the B��s (� < �):
B!1 is an L!1;! elementary extension of B0; hence L!1;!- equivalent to A,

consequently L1;!-equivalent to A: �

Corollary 8.2. Suppose T is weakly scattered. If for each � < !T1 , T has a
model of Scott rank � �; then T has a countable model A such that

sr(A) � !T;A1 = !T1 ;

and every such A is L1;! equivalent to a model of T of cardinality !1.

9. Bounds on Weakly Scattered Theories

Once again let L0 be a countable fragment of L!1;! for some countable
�rst order language L; and T � L0 a weakly scattered theory with a model.
Assume L(�; T ) is �1 admissible. B� is a �

L(�;T )
1 set of sentences designed

so that every model of B� constitutes a node on level � of RH(T ); the raw
hierarchy for T . The axioms of B� are:
T � T0 and T0 is a �nitarily consistent, !-complete theory of L0.
T� has a non-principal n-type for some n (all � < �).
T� � T�+1 and T�+1 is a �nitarily consistent, !-complete theory of L�+1(T�)

(all � < �).
T� = [fT� j � < �g and L�(T�) = [fL�(T�� j � < �g (all limit � < �).

B� is �
L(�;T )
1 because section 8 shows how to construct L�(T��) from T��

via the ordinal �� de�ned by a �
L(�;T )
1 recursion on � < �.
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P� and J� were de�ned below (8.14). De�ne p is on level � by

p = pT�j for some j 2 J�: (9.1)

A split at level � is a sentence of the form: p is on level �, and there
exist r and r0 on level � + 1 such that r 6= r0 and both r and r0 extend p.
The sentence in abbreviated form is < p; r; r0 >. A split is a sentence of
L!1;! \ L(�; T ), because P�, P�+1 2 L(�; T ). < p; r; r0 > is a k�split if p
has arity k. Let K denote a set of k-splits. K is unbounded i¤

8� < �(9� > �)[K has a k-split on level �]. (9.2)

K has the predecessor property i¤ there is a partial function f(p; ) such
that: if  < � and < p; r; r0 >2 K and asserts p splits at level � , then f(p; )
is de�ned and belongs to J , and

B� ` [< p; r; r0 >�! (p
T
f(p;) is extended by p)]. (9.3)

If such an f exists, then there is one that is �L(�;T )1 de�nable, since the

�
L(�;T )
1 de�nability of B� implies the deduction claimed by (9.3) can be

found in L(�; T ).
The e¤ective k-splitting hypothesis holds for T at � i¤ there exists

an unbounded �L(�;T )1 set K of k-splits such that K has the predecessor
property and B�[K is consistent (in the sense of L!1;! restricted to L(�; T ))
if B� is. Consider Makkai�s example [7] (also [5]) mentioned in section
1. It can be formulated as a fragment L0 and a theory TM � L0, both
arithmetically de�nable, with the following properties:
(1) TM is not weakly scattered.
(2) Every countable model A of TM has Scott rank at most !A1 .
(3) For every countable �1 admissible L(�), TM has a countable model

A such that !A1 = � = sr(A).
Despite (1) it is possible to develop a crude hierarchy for TM with a

super�cial resemblance to the raw hierarchy RH(T ) of section 8. For � < !1
put theory T

0 � TM on level � if there exists a countable model A of TM
such that sr(A) = � and T 0

= TAsr(A) (as de�ned in section 2). Since TM is
not weakly scattered, it is not possible to give a bounded description of all
types associated with all theories on level �; as was done with P� in section 8.
Nonetheless some of the types on level � have properties that lend credence
to the e¤ective k-splitting hypothesis. The model A of (3) above is a tree
with ! many levels and in�nite paths. Some nodes of A have foundation
rank (fr) < 1. Foundation rank !� +m corresponds to atoms of TA

!A1
of

rank �. Associated with level � of CH(TM ), the crude hierarchy for TM , are
types of the form

x is on level � of A and fr(x) � !� +m (9.4)

that split on level � + 1 of CH(T ). On level  < � (9.4) has a predecessor
similar to 9.4 with � replaced by .
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Theorem 9.1. Suppose T is weakly scattered, L(�; T ) is countable and �2
admissible, and for each � < �, T has a model of Scott rank at least �. If
for some k, the e¤ective k-splitting hypothesis holds for T at �; then T has
a countable model A such that

!A1 = � and sr(A) = �+ 1.

Proof. By Barwise compactness, T has a model A such that L(�;< T ,A >
) is �1 admissible and sr(A) � �. Then rtr(A) � � by (8.5) and so
B� is consistent. Let K be an unbounded �L(�;T )1 set of k-splits with a

�
L(�;T )
1 predecessor function f(; p). A model of B� [ K is constructed so
that T� has a non-principal type q� and the structure

L[�; T ;T�; q�] (9.5)

is �1 admissible with respect to �1 formulas that include T� and q� as
atomic predicates. Then, as in the type omitting proof of theorem 6.1, T
has a model A1 realizing q� and such that !A11 = �. The universe of (9.5)
is the result of iterating �rst order de�nability through the ordinals less
than � starting with T and with T�; q� as additional atomic predicates.
The construction of (9.5) is Henkinesque and gradually decides all sentences
of rank less than � in a standard language L�;T 2 �L(�;T )1 that names all
elements of (9.5) and is able to express how each one is de�ned from those of
lower de�nability rank. L�;T does not have symbols T� or q� but does have
symbols T� and q� for all � < �: There is one twist. The �1 admissibility of
(9.5) is not obtained by an e¤ective type omitting argument that omits � as
in the proof of theorem 6.1, but by direct manipulation of ranked sentences
of L�;T . The twist avoids Henkin constants.
Let Sn be the set of sentences chosen by the end of stage n. Sn will

be �L(�;T )2 de�nable. S0 requires some preparation. Consider p
T
j for some

j 2 J . pTj is said to be K-unbounded if the set of all � such that

9 < p; r; r0 > [< p; r; r0 >2 K; p is on level �; f(p; ) = p
T
j ] (9.6)

is unbounded in �. Thus B� [K implies pTj has unboundedly many exten-

sions that split in K: K-unboundedness is a �L(�;T )2 property. K-bounded
means: not K-unbounded.

Claim: For all  there is a K-unbounded type on level . (9.7)

Suppose not. Then for each j 2 J , there is a least �j such that for all
� � �j , (9.6) is false. �j , as a function of j; is �

L(�;T )
2 , hence bounded by

some �1 < �. But then K is bounded by �1. U � K is said to be bounded
if

9� < �(8� > �)[U does not have a k-split on level �].

De�nition of S0. Start with B�[K. Add: sentences of L�;T that express
how each element of (9.5) is de�ned from elements of lower rank; q� is a type



BOUNDS 26

on level � (� < �); q� is extended by q (� <  < �); q� 6= p (� < � and p
is K-bounded). Note that "q� is a type on level �" is a ranked sentence, in
particular a disjunction, by the remarks following (8.14).
S0 is �

L(�;T )
2 de�nable since K-boundedness is �L(�;T )2 : To check the con-

sistency of S0, let M be a model of B� [K that speci�es the structure of
L(�; T ;T�) but says nothing about q for any  < �. Fix � < �. Suppose
 < � ; then M can be interpreted as a model of those sentences in S0 that
mention q only for  < � . Choose a K-unbounded p� on level � with the
aid of 9.7. De�ne

U� = fs j 9t; t0[< s; t; t0 >2 K] and f(s; �) = p�g; (9.8)

U r = fs j s 2 U� ^ f(s; ) = rg ( < �). (9.9)

Fix  < �: There must be a K-unbounded r on level : Suppose not.
Then U r is bounded for every r on level . But

U� = [fU r j r is on level g: (9.10)

Hence U� is bounded by the �2 admissibility argument used to prove (9.7),
and so p� is K-bounded.
For each  < �; choose a K-unbounded r on level . To see that for each

 < �;
B� [K ` r is extended by p� , (9.11)

let s 2 U r . Then s 2 U� . Assume B� [ K: Then s extends f(s; �) = p�
and s extends f(s; ) = r . Hence p� extends r .
It follows from (9.11) that

B� [K ` r1 is extended by r2 (9.12)

when 1 < 2 < � . Now M , as promised above, can be interpreted as a
model of that part of S0 that mentions q only for  < � by setting the
interpretation of q in M equal to that of r :

De�nition of Sn+1. Assume Sn is consistent and �
L(�;T )
2 . There are two

cases.
Case a. Suppose F = _fFi j i 2 Ig is a ranked sentence such that

Sn[fF} is consistent. Sn+1 is Sn[fFi0g for some i0 2 I such that Sn[fFi0g
is consistent.
Case b. The purpose of this case is to establish �0 bounding, hence

�1 replacement, for (9.5). Let D(x; y) be a �ZF0 formula with constants
naming elements of (9.5). Fix � < �, and regard D(x; y) as possibly de�ning
a many-valued function d(x) from � into � that is �0 in the sense of (9.5)
For each � < �, de�ne

H� = f:D(�; ) j  < �g: (9.13)

Subcase b1: Suppose there is a � < � such that Sn [H� is consistent. Let
�0 be such a �; and put Sn+1 equal to Sn[H�0 . Then d(�0) will be unde�ned.
Subcase b2: Suppose b1 fails. Then for each � < �:

Sn ` _fD(�; ) j  < �g; (9.14)
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so by Barwise compactness there is a c(�) < � such that

Sn ` _fD(�; ) j  < c(�)g: (9.15)

c(�) can be de�ned via deductions from Sn as a �
L(�;T )
2 function of �. Let c

be supfc(�) j � < �g. Then c < � and d(�) (� < �) will be bounded by c.
De�ne S = [fSn j n < !g. By case a; S speci�es (9.5). q� is a non-

principal type of T�, because for every � < �, S0 and (9.7) compel q� to be
K-unbounded and consequently to split. (An instance of case a results in
the choice of a K-unbounded p such that (q� = p) belongs to S.) By case b;
(9.5) is �1 admissible. It follows, as in the proof of theorem 6.1, that T has a
model A1 that realizes q� and such that !A11 = �: Hence sr(A) = �+1. �
Corollary 9.2. (bounding) Suppose T is weakly scattered and for some k
satis�es the e¤ective k-splitting hypothesis at �. If L(�; T ) is �2 admissible
and

(8 countable A)
�
A j=T �! sr(A) � !A1

�
, (9.16)

then
(9� < �)(8A) [A j=T �! sr(A) < �] . (9.17)

10. Further Results and Open Questions

Weakening the assumption of e¤ective k-splitting in section 9 is under
study. At this writing it appears likely that the predecessor (9.3) property
can be dropped from the assumption: all that is needed is an unbounded
�
L(�;T )
1 set of k-splits consistent with B�; then the existence of a predecessor

function can be proved. There is a price to pay: the type structure pT�j
(� < �) of a weakly scattered theory T has to be treated with greater
delicacy. A further weakening, less likely but more than plausible, is to
rule out the existence of RN-models of T . A is an RN-model of T i¤ (i)
sr(A) = !A1 , (ii) TA!A1 is !-categorical, and (iii) for each n there is a � < !

A
1

such that each principal n-type of TA
!A1
of arity n is generated by a formula

of rank less than �. (TA
!A1
is de�ned in section 2.) Makkai[7] produces an A

that satis�es (i) and (ii) but not (iii).
It appears that iterated forcing has a role to play above and also in the

construction of an �-saturated model of T when T is weakly scattered and
has countable models of unbounded Scott rank. But that is another story.
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