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MATHEMATICAL DESCRIPTION OF LINEAR
DYNAMICAL SYSTEMS*

R. E. KALMAN
Abstract. There are two different ways of describing dynamical systems: (i) by

means of state w.riables and (if) by input/output relations. The first method may be
regarded as an axiomatization of Newton’s laws of mechanics and is taken to be the
basic definition of a system.

It is then shown (in the linear case) that the input/output relations determine
only one prt of a system, that which is completely observable and completely con-
trollable. Using the theory of controllability and observability, methods are given
for calculating irreducible realizations of a given impulse-response matrix. In par-
ticular, an explicit procedure is given to determine the minimal number of state
varibles necessary to realize a given transfer-function matrix. Difficulties arising
from the use of reducible realizations are discussed briefly.

1. Introduction and summary. Recent developments in optimM control
system theory are bsed on vector differential equations as models of
physical systems. In the older literature on control theory, however, the
same systems are modeled by ransfer functions (i.e., by the Laplace trans-
forms of the differential equations relating the inputs to the outputs). Two
differet languages have arisen, both of which purport to talk about the
same problem. In the new approach, we talk about state variables, tran-
sition equations, etc., and make constant use of abstract linear algebra.
In the old approach, the key words are frequency response, pole-zero pat-
terns, etc., and the main mathematical tool is complex function theory.

Is there really a difference between the new and the old? Precisely what
are the relations between (linear) vector differential equations and transfer-
functions? In the literature, this question is surrounded by confusion [1].
This is bad. Communication between research workers and engineers is
impeded. Important results of the "old theory" are not yet fully integrated
into the new theory.

In the writer’s view--which will be argued t length in this paperthe
diiIiculty is due to insufficient appreciation of the concept of a dynamical
system. Control theory is supposed to deal with physical systems, and not
merely with mathematical objects such as a differential equation or a trans-
fer function. We must therefore pay careful attention to the relationship
between physical systems and their representation via differential equations,
transfer functions, etc.
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LINEAR DYNAMICAL SYSTEMS 153

To clear up these issues, we need first of all a precise, abstract definition
of a (physical) dynamical system. (See sections 2-3.) The axioms which
provide this definition are generalizations of the Newtonian world-view of
causality. They have been used for many years in the mathematical litera-
ture of dynamical systems. Just as Newtonian mechanics evolved from
differential equations, these axioms seek to abstract those properties of
differential equations which agree with the "facts" oi’ classical physics. It is
hardly surprising that under special assumptions (finite-dimensional state
space, continuous time) the axioms turn out to be equivalent to a system of
ordinary differential equations. To void mthemtical diificulties, we shll
restrict our attention to linear differential equations.

In section 4 we formulate the central problem of the pper:
Given an (experimentally observed) impulse response matrix, how can we

identify the linear dynamical system which generated it?
We propose to call any such system a realization of the given impulse re-

sponse. It is an irreducible realization if the dimension of its state space is
minimal.

Section 5 is a discussion of the "canonical structure theorem" [2, 14]
which describes abstractly the coupling between the external variables
(input and output) and the internal variables (state) of any linear dynami-
cal system. As a immediate consequence of this theorem, we find that a
linear dynamical system is an irreducible realization of an impulse-response
matrix if and only if the system is completely controllable and completely ob-
servable. This important result provides a link between the present pper and
earlier investigations in the theory of controllability and observability
[3-5].

Explicit criteria for complete controllability and complete observability
are reviewed in a convenient form in section 6.

Section 7 provides a constructive computational technique for deter-
mining the canonical structure of a constant linear dynamical system..

In section 8 we present, probably for the first time, complete and rigor-
ous theory of how to define the state variables of a multi-input/multi-output
constant linear dynamical system described by its transfer-function matrix.
Since we are interested only in irreducible realizations, there is a certain
unique, well-defined number n of state variables which must be used. We
give a simple proof of a recent theorem of Gilbert [5] concerning the value
of n. We give canonical forms for irreducible realizations in simple cases.
We give constructive procedure (with examples) for finding an irreducible
realization in the general case.
Many errors have been committed in the literature of system theory by

carelessly regarding transfer functions and systems as equivalent concepts.
A list of these has been collected in section 9.
The field of research outlined in this paper is still wide open, except
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perhaps in the case of constant linear systems. Very little is known about
irreducible realizations of nonconstant linear systems. It is not clear what
dditional properties--besides complete controllability and complete ob-
servability--are required to identify the stability type of a system from its
impulse response. Nothing is known about nonlinear problems in this con-
text.

Finally, the writer would like to acknowledge his indebtedness to Profes-
sot E. G. Gilbert, University of Michigan, whose work [5] predates this and
whose results were instrumental in establishing the canonical structure
theorem.

2. Axiomatic definition of a dynamical system. Macroscopic physical phe-
nomena are commonly described in terms of cause-and-effect relationships.
This is the "Principle of Causality". The idea involved here is at least as
old as Newtonian mechanics. According to the latter, the motion of a
system of particles is fully determined for all future time by the present
positions and momenta of the particles and by the present and future forces
acting on the system. How the particles actually attained their present
positions and momenta is immaterial. Future forces can have no effect on
what happens at present.

In modern terminology, we say that the numbers which specify the
instantaneous position and momentum of each particle represent the state
of the system. The state is to be regarded always as an abstract quantity.
Intuitively speakig, the state is the minimM amount of information about
the past history of the system which suffices to predict the effect of the past
upon the future. Further, we say that the forces acting on the particles are
the inputs of the system. Any variable in the system which ca be directly
observed is an output.
The preceding notions can be used to give a precise mathematical

definition of a dynamical system [6]. For the present purposes it will be con-
venient to state this definition in somewhat more general fashion [14].
DFNTON 1. A dynamical system is a mathematical structure defined

by the following axioms"
(D) There is given a state space and a set of values of time 0 at

which the behavior of the system is defined; is a topological
space and 0 is an ordered topological space which is a subset of
the real numbers.

(D) There is given a topological space t of function,s of time de-
fined o (R), which are the admissible inputs to the system.

(D) For any initial time to in O, any initial state x0 in 2;, and any
input u in tl defined for __> to, the future states of the system
are determined by the transition function " X 0 X 0 X 2; -- Z,
which is written as ,(t; to, x0) . This functio is defined
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LINEAR DYNAMICAL SYSTEMS ]55

only for => to. Moreover, any to _-< tl _-< t in O, any x0 in ;, and
any fixed u in 2 defined over [to, tl] 91 (R), the following relations
hold"

(D-i)
(D-ii)

(D-iii)

9u(t0;t0,x0) x0,

u(t2 ;0, X0) u(t.- ;ti,u(tl ;to, X0)).

In addition, the system must be nonanticipatory, i.e.,
v andu von[t0,t] Owehave

if u,

,,(t; to, x,,) ,,,(t; to, xo).

(D4) Every output of the system is a function :0 X 2 -- reals.
(Ds) The functions and are continuous, with respect to the

topologies defined for 2, 0, and t and the induced product topolo-
gies.

In this paper we will study only a very special subclass of dynamical
systems: those which are real, finite-dimensional, continuous-time, and
linear.

"Real, finite-dimensional" means that 2 R" n-dimensional real
linear space. "Continuous-time" means that 0 R set of real numbers.
"Linear" means that is linear on 2 X 2; and f is linear on Z.
By requiring and b to be sufficiently "smooth" functions, we can deduce

from the axioms a set of equations which characterize every real, finite-
dimensional, continuous-time, and linear dynamical system. The proof of
this fact is outside the scope of the present paper [14]. Here we shall simply
assume that every such system is governed by the equations

dx(2.1)
dt

F(t)x + G(t)u(t),

(2.2) y(t) H(t)x(t),

defined on the whole real line - < , where x, u, and y are n, m,
and p-vectors* respectively, and the matrices F(t), G(t), and H(t) are
continuous functions of the time t.
We call (2.1-2) the dynamical equations of the system.
It is instructive to check whether the axioms are satisfied. (D) is obvi-

ously true; we hve R, O R. The state of the system is the vector x.
To satisfy (D.), we must specify the class of all inputs, that is, a subclass
of all vector functions u(t) (u.(t),..., u,(t)). To define t, we shall
assume that these functions are piecewise continuous; this is suiiciently

Vectors will be denoted by small Roman letters, matrices by Roman cpitls.
The components of vector x are xi components of a mtrix A re ai On the other
hand, x1, x, are vectors, nd F.4, FB are matrices. A’ is the transpose of A.
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156 R.E. KALMAN

general for most applications. We have exactly p observations on the system
(the components of the vector y) and by (2.2) they are functions of t, x.
Hence (D) is satisfied. To check (D3), we recall that the general solution
of (2.1.) is given by

(2.:) (t; to, zo) =- z, (t, to)zo + (t, )()u() c,

where (t, r) is the transition matrix of the free differential equation de-
fined by F (t) [4, 7] I’. Since (2.3) is valid for any >= to (in fact, also for
< to), is well defined. Property (D3-i) is obvious. (D.ii) follows from the

composition property [4, 7] of the transition matrix:

(2.4) (t, ) (t, )(, ),

which holds for every set of real numbers t, ’, o-. Indeed, (2.4) is simply
the linear version of (D-ii). (D-iii) is obvious from formula (2.3). The
continuity axiom (D) is satisfied by hypothesis.

Evidently e given by (2.3) is linear on the cartesian product of 2; with
the linear space of vector-valued piecewise continuous functions.
We call a linear dynamical system (2.1-2) constant, periodic, or analytic

whenever F, G, and H are constant, periodic, or analytic in t.
It is often convenient to have a special name for the couple

(t, x) 0 X 2. Giving a fixed value of (t, x) is equivalent to specifying
at some time (t) the state (x) of the system. We shall call (t, x) a phase
and 0 X 2 the phase space. (Recall the popular phrase" "phases" of the
Moon.)
To justify our claim----implicit in the above discussion--that equations

(2.1-2) are a good model of physical reality, we wish to point out that
these equations can be concretely simulated by a simple physical system"
a general-purpose analog computer. Indeed, the numbers (or functions)
constituting F, G, and H may be regarded as specifying the "wiring dia-
gram" of the analog computer which simulates the system (2.1-2) (see, for
instance, [8]).

3. lquivalent dynamical systems. The state vector x must always be re-
garded as an abstract quantity. By definition, it cannot be directly meas-
ured. On the other hand, the inputs and outputs of the system (2.1-2) have
concrete physical meaning. Bearing this in mind, equations (2.1-2) admit
two interpretations"

() They express relations involving the abstract linear transformations
F(t), G(t), nd H(t).

(b) At any fixed time, we take an arbitrary but fixed coSrdinate system

I.e., q, is a solution of d/dt F(t), subject to the initial condition (7, 7)
I unit matrix for all 7.
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LINEAR DYNAMICAL SYSTEMS 157

in the (abstract) vector space 2. Then the symbol x (x, x) is
interpreted as the numerical n-tuple consisting of the coSrdiuates of the
abstract state vector which is also denoted by x. F, G, and H are interpreted
as the matrix representations of the abstract linear transformations de-
noted by the same letters under (a).
To describe the behavior of a dynamical system in concrete terms, the

second point of iew must be used. Then we must also ask ourselves the
question" To what extent does the description of a dynamical system de-
pend on the urbitrary choice of the coordinate system in the state space?
(No such arbitrariness occurs in the definition of the numerical vectors u,
y since the input and output variables u nd y. are concrete physical quanti-
ties.) This question gives rise to the next definition.

DEFINITION 2. Two linear dynamical systems (2.1-2), with state vectors
x, , are algebraically equivalent whenever their numerical phase vectors are
related for all as

(3.1) (t, ) (t, T(t)x),

where T(t) is a n X n matrix, nonsingular for all and continuously differ-
entiable in t. In other words, there is a 1-1 differentiable correspondece
between the phase spaces 0 2; and 0 ,.
Remark: We could generalize this definition of equivalence to (, 2)
(-(t), T(t)x) where is un increasing function of t. But this involves

distortion of the time scale which is not permitted in Newtonian physics.
Algebraic equivalence implies the following relations between the de-

fining matrices of the two systems"

(t, -) T(t)(t, -)T-(-),
(t) .(t)T-(t) - T(t)F(t)T-(t),

(3.2)
(t) T(t)G(t),

IZI(t) H(t)T-(t).
In general, lgebmic equivalence does not preserve the stability proper-

ties of a dynamical system [7, 9, 10]. For this it is necessry and sufficient
to have topological equivalence" algebraic equivalence plus the condition

(3.3) liT(t) --< c and l]T-(t) =< c,

where c and c are fixed constants, and is the euclidean norm*.
A nonconstnt system may be algebraically and even topologically

equivalent to constant system. The latter case is called by Markus [11]

Let O, 2, and E have the usual topologies induced by the euclidean norm. Then
the product topologies induced on O X 2: and O X are equivalent if and only if
(3.3) holds.
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]58 R.E. KALMAN

"kinematic similarity". Moreover, two constant systems may be alge-
braically and topologically equivalent without T(t) being a constant. To
bypass these complications, we propose
DEFINITION 3. Two constant linear dynamical systems are strictly equia-

lent whenever their numerical phase vectors are related for all as (t, 2)
(t, Tx), where T is a nonsingular constant matrix.
Evidently strict equivalence implies topological equivalence.

4. The impulse-response matrix and its realization by a linear dynamical
system.

Sections 2-3 were concerned with mathematics, that is, abstract matters.
If we now take the point of view of physics, then a dynamical system must
be "defined" in terms of quantities which can be directly observed. For
linear dynamical systems, this is usually done in the following way.
We consider a system which is at rest at time t0 i.e., one whose input and

outputs have been identically zero for all =< to. We apply at each input
in turn a very sharp and narrow pulse. Ideally, we would take
(t 0), where is the Dirac delta function, t. is the Kronecker

symbol, and 1 __<= i, j =< m. We then observe the effect of each vector input
u((t) on the outputs, which are denoted by u(t; j). The matrix S(t, to)

[si.(t, t0)] [y(t; j)] so obtained is called the impulse-response matrix of
the system. Since the system was at rest prior to to, we must define
S(t, to) =- 0 for < t0. We also assume, of course, that S is continuous in
tandt0fort >
With these conventions, the output of a linear system originally at rest is

related to its input by the well-known convolution integral"

(4.1) y(t) S(t, v)u(-) dr.

In much of the literature of system theory [12] (and also at times in
physics) formula (4.1) is the basic definition of a system. The Fourier
transform of S is often called "the system function" [13, p. 92].

Unfortunately, this definition does not explain how to treat systems
which are not "initially at rest". Herme we may ask, "To what extent, if
any, are we justified in equating the physical definition (4.1) of a system
with the mathematical one provided by (2.1-2)?"

Suppose that the system in question is actually (2.1-2). Then (2.3) shows
that

S(t, -) H(t)(t, r)G(r), t=> r,
(4.2)

=0, t<r.
The right-hand side of the first equation (4.2) is defined lso for ; then the

left-hand side my be regarded s the "bckwrd impulse response", whose physical
interpreta,tion is left to the reder.

D
ow

nl
oa

de
d 

11
/1

1/
13

 to
 1

52
.3

.1
59

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



LINEAR I)YNAMICAL SYSTEMS 159

Thus it is trivial to calculate the impulse-response matrix of a given
linear dynamical system. The converse question, however, is non trivial and
interesting. Whez and how does the impulse-response matrix determine the
dynamical equations of the system?

This problem is commonly called the identification of the system from its
impulse-response matrix.
Having been given an impulse-response matrix, suppose that we succeed

in finding matrices F, G, and H such that (4.2) holds. We have then identi-
fied a physical system that may have been the one which actually generated
the observed impulse-response matrix. We shall therefore call (2.12) a
realization of S(t, r). This terminology is justified because the axioms given
in section 2 are patterned after highly successful models of classical
macroscopic physics; in fact, the system defined by (2.1-2) can be con-
cretely realized, actually built, using standard analog-computer techniques
in existence today. In short, proceeding from the impulse-response matrix
to the dynamical equations we get closer to "physical reality". But we are
also left with a problem" Which one of the (possibly very many) realiza-
tions of S(t, r) is the actual system that we are dealing with?

It is conceivable that certain aspects of a dynamical system cannot
ever be identified from knowledge of its impulse response, as our knowledge
of the physical world gained from experimental observation must always be
regarded as incomplete. Still, it seems sensible to ask how much of the
physical world can be determined from a given amount of experimental
data.
The first clear problem statement in this complex of ideas and the first

results appear to be due to the writer [2, 14].
First of all we note
TIEOEM 1. An impulse-response matrix S(t, r) is realizable by a finite-

dimensional dynamical system (2.1--2) if and only if there exist continuous
matrices P(t) and Q(t) such that

(4.3) S(t, r) P(t)Q(r) for all t, r.

Proof. Necessity follows by writing the right-hand side of (4.2) as
H(t)q(t, 0)(0, v)G(r), with the aid of (2.4). Sufficiency is equally obvi-
ous. We set E(t) O, G(t) Q(t), and tt(t) P(t). Then (t, r) I
and the desired result follows by (4.2).
A realization (2.1-2) of S(t, -) is reducible if over some interval of time

there is a proper (i.e., lower-dimensional) subsystem of (2.1-2) which also
realizes S(t, r).As will be seen later, a realization of S (particularly the one
given in the previous paragraph) is often reducible.
An impulse-response matrix S is stationary whenever S(t, r)
S(t q- o5 r q- r) for all real numbers t, r, and a. S is periodic whenever
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].60 R.E. KALMAN

the preceding relation holds for all t, r, and some . An iinpulse-response
matrix is analytic whenever S is analytic in and r; if (4.3) holds, then P
and Q must be analytic in t.
The main result, whose proof will be discussed later, is the following [14]:
THEOREM 2. Hypothesis: The impulse-response matrix S satisfies (4.3)

and is either periodic (and continuous) or analytic.
Conclusions: (i) There exist irreducible realizations of S, all of which have

the same constant dimension n and are algebraically equivalent. (if) If S is
periodic [analytic] so are its irreducible realizations.

Topological equivalence cannot be claimed in general. It may happen
that S has one realization which is asymptotically stable and another
which is asymptotically unstable [15]. Hence it may be impossible to identify
the stability of a dynamical system from its impulse response! This surpris-
ing conclusion raises many interesting problems which are as yet unexplored
[15]. If S is not periodic or analytic, it may happen that the dimension n(t)
of an irreducible realization is constant only over finite time intervals.

In the stationary case, Theorem 2 can be improved [14].
THEOREM 3. Every stationary impulse-response matrix S(t, r) W(t r)

satisfying (4.3) has constant irreducible realizations. All such realizations are

strictly equivalent.
In view of this theorem, we may talk indifferently about a stationary

impulse-response matrix or the dynamical system which generates it--as
has long been the practice in system, theory on intuitive grounds. But note
that we must require the realization to be irreducible. For nonconstant
systems, such a conclusion is at present not justified. The requirement of
irreducibility in Theorem 3 is essential; disregarding it can lead--and has
led--to serious errors in modeling dynamical systems. (See section 9.)

In many practical cases, it is not the weighting-function matrix W(t r)
(see Theorem 3) which is given, but its Laplace transform, the transfer-
function matrix Z(s) [W(t) ]. Then condition (4.3) has an interesting
equivalent form, which is often used as a "working hypothesis" in en-
gineering texts-
THEOREM 4. A weighting-function matrix W(t r) satisfies (4.3) if and

only if its elements are linear combinations of terms of the type te (i O,
1, n 1, j 1, n). Hence every element of the transfer-function
matrix is a ratio of polynomials in s such that the degree of the denominator
polynomial always exceeds the degree of the numerator polynomial.

This result is provedd in [14]. I implies that the realization of an impulse-
response matrix is equivalent to expressing the elements of F, G, and H
as functions of the coefficients of the numerator nd denominator poly-
nomials of elements of Z(s). (See section 8.)

In the remainder of the paper, we wish to investigate two main problems
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LINEAR l)YNAMICAL SYSTEMS 161

arising in the theory sketched above"
(i) Explicit criteria for reducibility.
(ii) Construction of irreducible realizations.
Remark. Elementary expositions of system theory often contain the state-

ment that the operator d/dt (--s) is a "system." Is a it system in the
same sense as that word is used here? The answer is no. To define such a
system rigorously in accordance with the axioms introduced in section 2,
one must proceed as follows. The output of the system, which by definitio
is the derivative of the input, is given by

(3.4) y(t) du(t)
dt

(t, x(t)),

so that at any fixed t, u(t) must be a point function of (t, x(t) ). Therefore
the state space 2; must include the space 2 of functions on which the opera-
tor d/dt is defined. It is simplest to let 2 2. Then 2 is usually infinite
dimensional because 2 is. Thus we define the state x x(t) as the function
u(r), defined for all =< t. The mapping (t; to, xt0) assigns to the function
x0 defined for -<_ to the function xt, which is equal to Xto on =< to and equal
to uont0 r =< t.

In this paper, the finite dimensionality of 2; is used in an essential way,
which rules out consideration of the "system" d/dt in all but trivial cases.

5. Canonical structure of linear dynamical systems. The concept of ir-
reducibility can be understood most readily with the help of the writer’s
"canonical structure theorem" for linear dynamical systems [2, 14].

Before presenting and illustrating this central result, it is necessary to
recall some definitions and facts concerning the controllability and. observ-
ability of linear dynamical systems.

DEFINITION 4. A linear dynamicnl system (2.1-2) is completely control-
lable at time to if it is not algebrtically equivalent, for all >= to, to a
system of the type

(a) dx/dt F(t)x - Fr(t)x + G(t)u(t)
(5.1) (b) dx:/dt F (t) x

(c) y(t) Hi(t)x(t) .- He(t)x(t).
(In (5.1), x and x: are vectors of n and n n n components respec-
tively.)

In other words, it is not possible to find a coSrdinate system iu which the
state variables x are separated into two groups, x (x, x) and
x (Xnl+I,’’’, Xn), such that the second group is not affected either
by the first group or by the inputs to the system. If one could find such a

D
ow

nl
oa

de
d 

11
/1

1/
13

 to
 1

52
.3

.1
59

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



162 . E. KALMAN

FIGURE 1.

coSrdinate system, we would have the state of affairs depicted schematically
in Fig. 1.

Clearly, controllability is a system property which is completely inde-
pendent of the way in which the outputs of the system are formed. It is a
property of the couple F(t), G (t) }.
The "dul" of controllability is observbility, which depends only on

the outputs but not on the inputs.
DEFINITION 5. A linear dynamical system (2.1-2) is completely observable

at time to if it is not algebraically equivalent, for all <= to, to any system
of the type

dxl/dg Fll(g)x1(g) --(5.2) (b) dx2/dt F2(t)x(t) + F2(t)x + G(t)u(t)

(c) y(t) Hl(t)xl(t).

(Again, x is an nl-vector and x is an (n nl)-vector.)
In other words, it is not possible to find a coSrdinate system in which

the state variables xi are separated into two groups, such that the second
group does not affect either the first group or the outputs of the system. If
such a coSrdinate system could be found, we would have the state of affairs
depicted in Fig. 2.
The above definitions show that controllability und observbility are

preserved under algebraic equivalence. These properties are coSrdinte-
free, i.e., independent of the particular choice of basis in the state space.
The equivalence of the present definitions with other more abstract
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LINEAR DYNAMICAL SYSTEMS 163

FIGURE 2.

definitions of controllability may be found in [4]. As to observability,
we note that the duality relations

(5.3)
(b)

(c)

(d)

t-- to to-- ,
F(t- to) v= F’(to- t’),
G(t- to) :* H’(to- t’),

H(t- to) - G’(to- t’),

transform the system (5.2) into (5.1). Itence all theorems on controllability
can be "dualized" to yield analogous results on observability.

It can be shown that in applying definitions 4-5 to constant systems it is
immaterial whether we require algebraic or strict equivalence [14]. IIence--
as one would of course expect--for constaut systems the notions of com-
plete controllability and complete observability do not depend on the
choice of to.
EXAMPLE 1. A simple, well-known, and interesting case of a physical

system which is neither completely controllable nor completely observable
is the so-called constant-resistance network shown in Fig. 3.

Let Xl be the magnetic flux in the inductor and x2 the electric charge on
the capacitor in Fig. 3, while ul(t) is a voltage source (zero short-circuit
resistance) and yl(t) is the current into the network. The inductor and
capacitor in the network may be time-varying, but we assume--this is the
constant-resistance condition--that L (t) and C(t) are related by:

L(t)/C(t) R= 1 (L(t), c(t) > o).

D
ow

nl
oa

de
d 

11
/1

1/
13

 to
 1

52
.3

.1
59

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



164 n.E. KALMAN

x/ L (l) x2 C (t)

-IGURE 3.

The differential equations of the network are

dx/dt -[1/L(t)]x + ul(t),

dx,2/dt -[1/C(t)]x,2 + u(t),

y(t) [1/L(t)]xt [1/C(t)]x2 + u.(t).

If we let

x + x /2,

32-- (Xl-

the dynamical equations become

d2l/dt --[1/L(t)]2 + ul(t),

(5.4) d2/dt [1/L(t)],,

y(t) 2[1/L(t)]22 + u(t).*
Here the state variable 2 is controllable but not observable, while 2: is

observable but not controllable.
For obvious reasons, the subsystem (b) of (5.1) may be regarded as

(completely) uncontrollable, while subsystem (b) of (5.2) is (completely)
unobservable. In view of linearity, it is intuitively clear that it must be
possible to arrange the components of the state vectorreferred to a

Note that this equation does not correspond to (2.2) but to y(t) H(t)x(t)
+ J(t)u(t). This is minor point. In fact, Axiom (D ) may be generalized to’ "(D)"
Every output is a function of t, x(t), and u(t)." This entails only minor modifications
as far as the results and arguments of the present paper are concerned.
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LINEAR DYNAMICAL SYSTEMS 165

suitable (possibly time-varying) co6rdinate system into four mutally ex-
clusive parts, as follows:

Part (A): Completely controllable but unobservable.
Part (B): Completely controllable and completely observable.
Part (C): Uncontrollable and unobservable.
Part (D) Uncontrollable but completely observable.
The precise statement of this idea is [2, 14]:
THEOREM 5 (Canonical Structure Theorem,). Consider afixed linear dynami-

cal system (2.1-2).
(i) At every fixed instant of time, there is a co6rdinate system in the state

space relative to which the components of the state vector can be decomposed
into four mutually exlusive parts

X (XA, XB, X c, xD),
which correspond to the scheme outlined above.

(ii) This decomposition can be achieved in many ways, but the number
of state variables nt(t), nz(t) in each part is the same for any such
decomposition.

(iii) Relative to such a choice of co6rdinates, the system matrices have the
canonical form

F(t)

F(t) 0

0

G’ t)G( t) | 0

L 0
and

FA(t) FAc (t) F’(t)
F(t) 0

0 Fee(t) FC)(t)
0 0 F))(t)

H(t) [0 H’(t) 0 HD(t)].
In view of this theorem, we shall talk, somewhat loosely, about "Parts

(A), (D) of the system." Thus the system (5.4) consists of Parts
(A) and (D).
The canonical form of F, G, and H can be easily remembered by reference

to the causal diagram shown on Fig. 4.
It is intuitively clear (and can be easily proved) that algebraically

equivalent systems have the same canonical structure.
Unfortunately, the coSrdinate system necessary to display the canonical

form of F, G, and H will not be continuous in time unless n(t), n,(t)
are constants. If these dimension numbers vary, we cannot call the various
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166 R.E. KALMAN

FIGURE 4.

parts of the canonical structure "subsystems." For constant systems this
diiIiculty does not arise. More generally, we have"
THEOREM 6. For a periodic or analytic linear dynamical system (2.1-2)

the dinension numbers nA n, are constants, and the canonical decom-
position is continuous with respect to t.
An illustration of the canonical structure theorem is provided by
EXAMPLE 2. Consider the constant system defined by

-3 -3 0 1
26 36 -3 -25
30 39 -2 -27
30 43 -3 -32

3 3
-2 -1
0 0
0 1

H [-5 -8 1 5].

We introduce new co6rdinates by letting 2 Tx,
where

2 3 0 -2

T 1 1 0 1
--2 --3 0 3
--6 --9 1 6

and
0 3 1 0
1 -2 0 0
3 0 0 1
1 0 1 0

With respect to these new coSrdintes the system matrices assume the
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LINEAR DYNAMICAL SYSTEMS 167

canonical form"

and

17 TFT-I=

= TG=

2 4 1 --1
0 -1 0 1
0 0 -3 -2
0 0 0 1

0 1

tt HT--- [0 1 0 1].

On the other hand, if we define the new co6rdinates by

3

T= 1
-5
-6

0

T_i__ 1
3
1

then the system matrices become

2

fi= 0
0
0

1
1
0
0

and

4 0 --3
1 0 --1

--7.5 O.5 6
9 1 6

3 1 --0.5
--3 0 0
--3 0 1
--1 1 --0.5

1
--1
0
0

2
1
0
0

1 0
0 1
--3 0
0 1

fl [o ] o ]].

The numerical values of these two canonical forms are different, yet
Theorem 5 is verified in both cases. In the second case the connections from
Part (D) to Parts (A) and (C) are missing. This is not a contradiction since
Theorem 5 does not require that all the indicated casual connections in
Fig. 4 be actually present.
The transfer-function matrix of the system is easily found from the

canonical representation. The co6rdinate transformations affect only the
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168 n.E. KALMAN

internal (state) variables, but not the external (input and output) variables;
consequently the impulse response matrix is invariant under such trans-
formations. We get by inspection:

s+l s-t-1

It would be rather laborious to determine these transfer functions
directly from the signal-flow graph [16] corresponding to F, G, and H.
EXAMPLE 3. A far less trivial illustration of the canonical decomposition

theorem is provided by the following dynamical system, which occurs in
the solution of a problem in the theory of statistical filtering [17]. Let A be
an arbitrary positive function of and define

t/4A
F ta/2A

t2/2A
t4/4A]

G |ta/2A|,
L?/eAJ

lo]0 1
0 0

H= [0 1 0].

We introduce new state variables

where
2(t) ’(t)x(t),

Then

0 0
T(t) 2 -t

0 1

rte/2 1/2
T-’(t) [ o

0

t/2]

t4/4A_ ta/4A_ t’/4A

l(t) T(t)F(t)T-’(t)- 5/’(t)T-l(t) 0 0 1

o o o

d(t) T(t)G(t)

t/2A
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LINEAR DYNAMICAL SYSTEMS 169

H(t) H(t)T-l(t) It 1,01 11.
Hence the system consists of Parts (B D), with n, nc n, 1.

It is interesting that the canonical decomposition is of constant dimension,
even though the system may be neither periodic nor analytic.
The preceding examples illustrate special cases of a noteworthy general

relationship which exists between the canonical structure of a dynamical
system and irreducible realizations of an impulse-response matrix. The
main facts here are the following:
THEOREM 7. (i) The impulse-response matrix of a linear dynamical system

(2.1-2) depends solely on Part (B) or the system and is given explicitly by

(5.5) S(t, r) H’(t)"(t, r)G’(r),
where ’" is the transition matrix corresponding to

(ii) Any two completely controllable and completely observable realizations
of S are algebraically equivalent.

(iii) A realization of S is irreducible if and only if at all times it consists
of Part (B) alone; thus every irreducible realization of S is completely con-
trollable and completely observable.

Proof. The first statement can be read off by inspection from Fig. 4.
The second statement is proved in [14]. The necessity of the third statement
follows from Theorem 5, while the sufficiency is implied by (ii).

It is clear that Theorem 2 is a consequence of Theorems 5-7.
We can now answer the question posed in section 4 in a definite way:
THEOREM 8 (Main Result). Knowledge of the impulse-response matrix

S(t, r) identies the completely controllable and completely observable part, and
this part alone, of the dynamical system which generated it. This part ("B"
in Theorem 5) is itself a dynamical system and has the smallest dimension
among all realizations of S. Moreover, this part is identified by S uniquely up
to algebraic equivalence.

Using different words, we may say that an impulse-response matrix is

.faithful representation of a dynamical system (2.1-2) if and only if the latter
is completely controllable and completely observable.

Remarlc. It is very interesting to compare this result with Theorem 4 of
E. F. Moore, in one of the early papers on finite automata [26]:
"The class of all machines which are indistinguishable from a given strongly

connected machine S by any single experiment has a unique (up to isomorphism)
member with a minimal number of states. This unique machine, called the re-
duced form of S, is strongly connected and has the property that any two of its
states are distinguishable."

"Indistinguishable machines" in Moore’s terminology correspond in ours
to alternate realizations of the same input/output relation. "Strongly con-
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1.70 a.E. KALMAN

neeted" in his terminology means completely controllable in ours. "In-
distinguishable states" in our terminology corresponds to states whose
difference, not zero, is an unobservable state in the sense of [3].

Evidently the two theorems are concerned with the same abstract facts,
each being stated in a different mathematical framework.

6. Explicit criteria for complete controllability and observability. The
canonical structure theorem is so far merely an abstract result, since we
have not yet given a constructive procedure for obtaining the co6rdinate
transformation which exhibits the system matrices in canonieM form. We
shall do this in section 7. The meth()d rests on the possibility of finding
explicit criteria for complete controllability and complete observability.
The following lemmas, proved in [4], play a central role:
LEMMA ]. na(t0) -t- n,(to) rank W(to, tl) j’or I1 > lo ,sufficiently large,

where

(6.1) W(t,), h.) *or

(6.2) dW/dto F(to)W + WF’(to) G(to)G’(to), W(t) O.

LEMMA 2. n(t0) -- nD (t0) rank M(to, t_.) for t_ < to suciently
small, where

fro H(6.3) M(to t-l) ’(, t0) (r)H(r)(r, to) dr

or

(6.4) -dM/dto F’(to)M -- MF(to) H’(to)H(to), M(t_.) O.

For constant systems, the preceding lemmas can be considerably im-

proved [4]:
LEMMA 3. For a constant system,

(6.5) n -t- n rank [G, FG, F-G].

LMM 4. For a constant system,

(6.6) nc -t- n, rank [H’, F’H’,..., (F’)-IH’].

EXAMPLE 4. For F and G defined in Example 2, the matrix (6.5) is

3 3 3 3 o 3 3

(6.7)
--2 --1 6 8 2 6 14 22
0 o 12 18 12 24: 36
0 1 4 6 4 8 12 20
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LINEAR DYNAMICAL SYSTEMS 171

The rank of this matrix is 2, which checks with the fact that n 1 and
n. 1 in Example 2.
The determination of the rank of (6.7), while eleinentary, is laborious.

For practical purposes it might be better to compute W; for instance, by
solving the differential equation (6.2).

In the constant case, there is another criterion of complete controllability
which is particularly useful in theoretical investigations. The most general
form )f this theorem (which may be found in [14]) is complicated; we state
here a simplified version which is adequate for the present purposes:
LEMMA 5. Hypothesis: The matrix F is similar to a diagonal matrix. In

other words, there is a nonsingular coordinate transformation Tx with
the property that in the new coordinate system F has the form

? TFT- I I

where I is a q >< q. unit matrix,

i--=1

0

}r Iq,

and the matrix G has the form
0(’) q rows

5= TG=

L (r)J q rOWS.

Conclusion" The system is completely controllable and only if
(6.8) rank () q, rank ((r) q"

We leave it to the reader to dualize this result to complete observability.
EXAMPLE 5. Consider the special case q q 1 of Lemma 5.

The eigenvalues of F are then distinct. If condition (6.8) is satisfied, every
element of the one-column matrix is nonzero; by a trivial transformation,
all of these elements can be made equal to 1, without affecting . Thus we
can choose a coordinate system in which F, G have the representation:

(6.9) 17 (X hi i j), d

0 X
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1.72 R.E. KALMAN

This is the canonical form of Lur’e [18]. It is closely related to the partial-
fraction expansion of transfer functions. To illustrate this, consider the
1 1 transfer-function matrix"

s+2

This transfer function is realized by the system"

(6.10) F

(6.11) G

0 010 --3 0
0 0 --4

[11
(6.12) H [-- --]

s+3 s+4"

which is in the canonical form of Lur’e.
By Lemma 5, (6.10-11) is completely controllable; by the dual of Lemma

5, (6.1.0-12) is completely observable.
We can double-check these facts by means of Lemmas 3-4. For (6.9)

the matrix (6.5) is

(6.13)

where the he are the diagonal elements (= eigenvalues) of F in (6.9).
But the determinant of (6.13) is the well-known Vandermonde deter-
minant. The latter is nonzero if and only if all the Xi are distinct, which is
what we have assumed.

7. Computation of the canonical structure. We show now how to deter-
mine explicitly the change of coSrdinates which reduces F, G, H to the
canonical form. We consider only the constant case of (2.1-2). The com-
putations are elementary; it is not necessary to diagonalize the matrix F
or even to determine its eigenvalues.
The procedure is as follows:
(a) We compute the controllability matrix W W(0, 1)* given by

* It can be shown [4, Theoren 10] that in the constant case one may choose any
> to in Lemna 1.

D
ow

nl
oa

de
d 

11
/1

1/
13

 to
 1

52
.3

.1
59

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



LINEAR DYNAMICAL SYSTEMS 173

(6.1);for instance, by solving the differential equation (6.2). Then we find
a nonsingular matrix T such that

mtrices of pproprite size. Clemqy n n.4 -t- n is the number of con-
trollble state vribles.
The matrix T defines the change of coSrdintes

(7.2) x T;

in terms of the new coSrdinates, the system matric are

(7.3) T-FT, ( T-1G, I HT, E.

(7.4) 2 ,F 0 /?J’
() and tt Ill I?].

This decomposition is trivial (and therefore omitted) if n n, i.e., when
the system is completely controllable.

(b) Next we consider the two subsystems defined by

1, (., and ;
(7.5)

I?, 0, and B.
We compute the observability matrices (0, 1) and (0, 1
given by (6.3) for both of these subsystems. Then we determine two non-
singular matrices 1, 02 such that

(7.6) (1)’]101 ---1--- 0]InB

0](7.7) 02),/0.22 /?2
I,,,

These results define another change of coSrdinates

0

One or the other of these trmsformtions is superfluous if n n or

nd n hi.,

After the coSrdinate changes (7.2) and (7.8), we obtain the following
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174 n.E. KALMAN

matrices

(7.9)

B FBB
-IF,?

xa 0

FAc FAd

0 Fda

/. llV [0 H" 0 Ha],

Clearly, n, is the number of state variables which are both controllable
and observable. But, in general, na nD and nc > n(.

(c) It remains to transform the element /7"" into 0, if this is not already
the case. (If /7"c 0, then nc nc, na n, and (7.9) has the desired
canonical structure.)
We consider the subsystem

(7..0) *
FBB

0
d t*

The corresponding observability matrix given by (6.3) is

21*(0, 1) * (Q nonnegative definite.)

The upper lefg elemeng of * is I, in view of (7.9); all we know aboug he
oher elements is their symmetry properties.) Lein.g

we find that

?*)’YI*?* *
InB

0

where R Q A’A is a symmetric, nonnegative-definite matrix.

D
ow

nl
oa

de
d 

11
/1

1/
13

 to
 1

52
.3

.1
59

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



LINEAR DYNAMICAL SYSTEMS 175

Now let if** be a nonsingular matrix such that

(?**),**?**

where n rank R. Let - *lY**. Since * and lY** are upper triangular
relative to the partitioning in (7.10), so is , which will take /Y* into the
upper triangular form

Fee

where nc n ne. But these transformations decompose /* into a
completely observable and an unobservable part. Hence Fee Fee O.
Moreover,

*=[H" 0]= IN" 0 H1
THEOREM 9. The explicit transformation which talces the constant matrices

F, G, and H into the canonical form required by Theorem (5-iii) is given by
X --’-) ?--1_--1--1X. We partition

F.C= [FAC
and partition

Then we define n) n + n and find
i,,’= [F- F],

F"= [Fee F’],

F(:" [Fc F],

Fdd

Hv= [H

8. Construction of irreducible realizations.
Now we give an expliei procedure for the construction of an irreducible

realization of a weighging-funetion matrix W( r). In view of Theorem 7,
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part (iii), we can do this in two stages:
(i) We construct a realization of W, then
(II-A) we prove, using Lemmas 1-5, that the resultant system is com-

pletely controllable and completely observable, hence irreducible; or
(II-B) we carry out explicitly the canonical decomposition and remove

all parts other than (B).
Instead of the weighting-function matrix W, it is usually more con-

venient to deal with its Laplace transform Z.
Let us consider the problem with Method A in order of increasing diffi-

culty.
Case 1. m p 1. This is equivalent to the problem of simulating a

single transfer function on an analog computer. There are several well-
known solutions. They may be found in textbooks on classical servo-
mechanism theory or analog computation.
Without loss of generality (see Theorem 4) we may consider transfer

functions of the form

(8,1) ZlI(8) a, s A- A- al N(s)
s" + b, s"- + + b D(s)

where the am,’", a, b,..., bl are real nmnbers. Of course, at least
one of the a+ must be different from zero. We assume also that the numerator
N(s) and denominator D(s) of zn(s) have no common roots.

There are two basic realizations of (8.1). See Figs. 5-6, where the stand-
ard signal-flow-graph notation [1.6] is used. In either case, one verifies al-
most by inspection that the transfer functions relating y to u are indeed
given by Zn.

In Fig. 5, the system matrices are

(s.2) F

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
bl b2 b: b- b

(8.3)

0
0

(8.4) H [a ax a,_ a,].
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LINEAR DYNAMICAL SYSTEMS 177

Ul Xn

bl

FIGURE 5.

In Fig. 6, the systen matrices arc

(s.5) F

0 0 0 0 --bll1 0 0 0 --b2

0.. 1.. 0.. 0.. --b.. j,0 0 0 1 --b,

(8.6) G

and

I1]

(8.7) H t0 0 0 ].

It is very easy to check by means of (6.5) and (6.6) that the system
(8.2, 3) is completely controllable and (8.5, 7) is completely observable.
However, if we attempt to check the controllability of (8.5, 6) by means

of (6.5) we get a matrix whose elements are complicated products of the
coefficients of N(s) and D(s). To prove that the determinant of this matrix
does not vanish, we have only one fact at our disposal" the assumption that
N(s) and D(s) have no common roots. Guided by this observation, we find
that the following is true"
LEMMA 7. Suppose F has the form (8.5) and G has the form (8.6). Then (i)

we have the relation

(s.s) K(F, G) [G FG I,"-GJ N(F),
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178 n.E. KALMAN

-b

and (ii) the polynomials N(s) and D(s) have no root in common if and only if
det K(F, G) O.
The main fact to be proved is (ii), for then the complete controllability

of (8.5, 6) follows by Lemma 3. A straightforward way of establishing (ii)
is to transform the standard Euler-Sylvester determinantal criterion
[19, p. 84] for the nonexistence of common roots of N(s) and D(s) (the
so-called resolvent of N(s) and D(s)) into the form (8.8). This can be
easily done, but the details arc not very transparent. Therefore we prefer
to give another

Proof. Let el, i 1, n, be the set of n-vectors in which the j-th
component of ei is a.. Since F is given by (8.5), we see that e+l Fe,
1 =< n 1, and K(F, el) Iv1, e2, en] I. Hence K(F, e)
K(F, F-’el) F-IK(F, el) -F when I =< i _-< n. Then (8.8) follows
by linearity.

Let [A], i 1, n denote the eigenvalues (not necessarily distinct)
of a square matrix A. Then

get K(F, G) II II
i1 i=l

where the second equality follows from (8.8) by a well-known identity in
matrix theory. Thus det K(F, G) 0 if and only if N(Xi[F]) 0 for some
i; that is, when an eigenvalue of F is a root of N(X). Since the eigenvalues
of F are roots of D(h), this proves (ii).*

It is interesting that (8.8) provides a new representation for the re-

solvent, which is preferable in some respects to the Euler-Sylvester deter-
minant. The latter is a 2n X 2n determinant, whereas det K(F, G) is n X n.
The complete observability of (8.2, 4) is proved similarly.
The systems given by (8.2-4) and (8.5-7) are duals of one another in

The present proof of Lemma 6 was suggested by Drs. John C. Stuelpnagel and
W. M. Wonham of RIAS.
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LINEAR DYNAMICAL SYSTEMS 179

the sense defined by (5.3). Fig. 6 is a reflection of Fig. 5 about the vertical
axis, with all arrows reversed.
A third type of realization in common use is obtained from the partial-

fraction expansion of z11(s) (see Example 5). Note, however, that this
requires factorization of the denominator of zl.(s), whereas the preceding
realizations can be written down by inspection, using only the coefficients
of z.(s).
These considerations may be summarized as the following result, which

is a highly useful fact in control theory"
THEOREM 10. Consider a linear constant dynamical system with m p 1,

which is completely controllable and completely observable. Then one may
always choose a basis in the state space so that F, G, H have the form (8.2-4) or

(with respect to a different basis) (8.5-7).
Proof. Let (8.1) be the transfer-function matrix of the given dynamical

system. By Theorem 8, the given system is an irreducible realization of
(8.1). So are the systems specified by (8.2-4) and (8.5-7). By Theorem
(7-ii), all three systems are algebraically equivalent and by constancy
(Theorem 3) they are even strictly equivalent.
Extensions of this theorem may be found in [14]. For an interesting

application to the construction of Lyapunov functions, see [25].
The procedure described here may be generalized to the non-constant

case. Assuming the factorization (4.3) of S(t, r) is known (with
m p 1), Batkov [20] shows how to determine the coefficients of the
differential equation

(8.9)
dny/dtn - bn -1

y/a + - b(t)y

an(t)dn-lul/dt-1 -- + al(t)u.

Laning and Battin [21, p. 191-2] show how one converts (8.9) into a sys-
tem of first-order differential equations (2.1) with variable coefficients.
We shall leave to the reader the proof of the irreducibility of the realization
so obtained.

Case 2-a. m 1, p > 1. We have a single-input/multi-output system.
We can realize Z(s), without factoring the denominators of its transfer
functions, by the following generalization of the procedure given by Fig. 5
and (8.2-4).

First, we find the smallest common denominator of the elements of Z(s).
(This can be done, of course, without factorization.) Z(s) assumes the form

z(s)

Then the following dynamical system provides an irreducible realization
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]_80 R.E. KALMAN

of Z(s): F and G are as in (8.2-3), while H given by (8.4) is generalized to

-all aln1
Lapl

Complete controllability is trivial; complete observability is established
by a straightforward generalization of Lemma 6.

In this case we form p linear functions of the state, rather than merely
one s in Fig. 5.

Case 2-b. m > 1, p 1. We can realize this multi-input/single-output
system nalogously to Cse 2- by generMizing the procedure given by
Fig. 6 nd (8.5-8.7). Let us write the elements of Z(s) in terms of their
smallest common denominator"

n--I
aimanl S + a.. a s + +z(s)

s + b,s’- + + b s + i,, s,- . b"
Then the desired irreducible realization consists of F ad H as defined
by (8.5-6), while

G__

[..anl

This case is the dual of Case 2-a.
Even in Case 2, it is impractical to give a general formula which ex-

presses the coefficients of F, G, and H in terms of the coeificients of the
transfer functions in Z(s) if the denominators are not all the same. When
we pass to the general case, determination of F, G, and H often requires
extensive numerical computation.

Case 3. m, p arbitrary. Here Method (A) is very complicated if any
transfer function in Z(s) has multiple poles [1.4]. In most practical applica-
tions, however, such complications are of no interest,. Ruling them out,
E. G. Gilbert gave an elegant and relatively simple solution [5].

Let sl, Sq be distinct complex numbers corresponding to the poles
of all the elements of Z(s). Assume that all poles are simple. Then

R(]) lira (s s)Z(s), .1, ..., q

is the k-th residue matrix of Z(s). If se =Sk, then R(se) (s), where the
bar denotes ghe eomplex eonjugage. In erms of ghe residue magriees, ghe

weighting-funegion magrix W() corresponding go Z(s) has ghe explieig form

w(t) -[z()] ().

We have then"
THEOREM ]1. (Gilbert). Hypotheses: No element of the transfer-function
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LINEAR DYNAMICAL SYSTEMS 18|.

matrix Z(s) has multiple poles. Z(s) has a total of q distinct poles 81. s
with corresponding residue matrices R (1), R q

Conclusions: The dimension of irreducible realizations of Z s is
q

(8.11) n r where r rank R(]).
k=l

(ii) Write

(8.12) R(k) H(k)G(lc), lc 1,..., q,

where H(lc) is a p X r matrix and G(]c) is an r X m ’matrix, both of ranlc rl
Then Z s has the irreducible realization

81 Irk 0

(8.13) F

0 sq Irq

IG(I)1((s.,) L(;:’q)
and

(8.15) H IN(l) H(q)].

(It r X r unit matrix),

Proof. This is one of the main results in [5]. With the aid of machinery
developed here, we can give a shorter (though more abstract) demonstra-
tion. The factorization (8.1.2) is well known in linear algebra. We give in the
Appendix various explicit formulae (which are easily machine-computable)
for G(lc) and H(/c). Applying Lemma 5 shows that the dynamical system
defined by (8.13--15) is completely cotrollable and completely observable.
Hence it is irreducible, which implies formula (8.11). By elementary changes
of variables, (8.13-15) can be transformed into matrices which have only
real elements.
A serious disadvantage of Method (A), as expressed by Theorem 11,

is that the denominators of the transfer functions in Z(s) must be factored
in order to determine the poles. This is not easily done numerically. More-
over, the residue matrices R(/c) corresponding to complex poles are com-
plex, which makes the factorization (8.11) more complicated (see
Appendix).
Now we turn to Method (B). This method does not require computation

of eigenvalues, and it is not bothered by multiple poles. This is a decided
advantage itx numerical calculations. On the other had, the method is not
convenient for simple illustrative examples. Nor is it possible to display the
elements of F, G, and H as simple functions of the coefficients in z(s).
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182 n. ]03. KALMAN

An easy way of realizing Z(s) (without guaranteeing irreducibility) is
the following. Let ci be the number of distinct poles (counting each pole
with its maximum multiplicity) in the i-th row of Z(s), and let i be the
number of poles in the i-th column. Then the maximum number no of
state variables required to realize Z(s) by repeatedly using the scheme
given under Case 2-a or 2-b is

no= min o, i
As before, we can determine the a and Bi without factoring the transfer
functions of Z(s). There is in general no simple way in this method to de-
termine the dimension n N n0 of irreducible realizations without performing
the computations outlined in Section 7.
The two methods are best compared via an example. This example must

be of fairly high order, since we wish to provide accurate numerical checks.
EXAMPLE 6. Consider the transfer-function matrix

3(s+3)(s+5) 6(s+l) 2s+7 2s+5
(s+l)(sW2)(s+4) (sW2)(s+4) (sW3)(s+4) (sW2)(s+3)

2 1 2(s--5) 8(s+2)
Z(s)=

(s+3)(s+5) (s+3) (sW1)(s+2)(s+3) (sW1)(sW3)(s+5)

2(s+7s+18) 2s 1 2(Ss+27s+34)
(s+l)(s+3)(s+5) (s+l)(s+3) s+3) (s+l)(s+3)(s+5)

Applying Method (A) first, we find that the residue matrices are:

R(1) 0 4 1 r 3.
1 0 3

R(2) 0 0 --6 0 r 2.
0 0 0 0

R(a) 1 1 2 2 ra 2.- - 1 1

-0.g 9 1 0
R(4) 0 0 0 0 r 1.

0 0 0 0

R() -1 0 0 r= 1.
2 0 0

Thus 9.
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LINEAR DYNAMICAL SYSTEMS 1.83

Employing the procedure given in the Appendix, we find the following
factors for matrices R(I) (the products are accurate up to four places beyond
the decimal point)"

8.0000 0.0000 0.0000]
H() |o.oooo . o.oooo|,

L3.0000 0.7276 3.0774_]

[1.0000
a 1 |0.0000

ko.oooo
,.ooo o.oooo

H(2) 0.0000 .0000
0.0000 O.O000_J

0.0000 0.0000 0.0000J0.0000 0.9701 0.2425
0.3249 -0.2294 0.9175

G(2) 1-0"8182 -0.5455 0.0000 0.18181.0.0000 0.0000 -1.0000 0.0000

1.3416 0.4472 ]H(3) 3.1305 --0.4472
0.0000 4.4721

0.2236 0.6708 0.6708]G(3)
-0.6708 -0.6708 0.2236 0.22363;

F9.06927
H(4) |o.ooool, a(4) [--0.0,551. 0.9924 0.1103 0.0000];

LO.OOOOj

0.0000
g(a) -a.a a(,) [o.a. o.oooo o.oooo o.7].

6.3246

Using these numerical results, we find that the dynamical equations of the
irreducible realization are given by

1
0
0
0

F= 0
0
0
0
0

0 0 0 0 0 0 0 0-]
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0 /
0 0 0 0 0 0 4 O|
0 0 0 0 0 0 0 5
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184 R.E. KALMAN

[-8.oooo o.oooo -I. =/o.oooo o.oooo
3.0000 0.0000 6.3246 _J

1.0000
0.0000
0.0000
--0.8182
0.0000
0.2236
--0.6708
--0.0551.
0.3162

0.0000 0.0000
4.1231 0.0000
0.7276 3.0774

0.0000 0.0000
0.0000 0.9701
0.3249 --0.2294
--0.5455 0.0000
0.0000 1.0000
0.2236 0.6708
0.6708
0.9924 0.1103
0.0000 0.0000

5.5000 0.0000 1.3416
0.0000 6.0000 3.1305
0.0000 0.0000 0.0000

0.0000
0.2425
0.9175
0.1818
0.0000
0.6708
0.2236
0.0000
0.9487

0.4472
-o.4472
4.4721_

Now we apply Method (It). Virst of all we note that al a 4, aa 3,
while # 5, .., a 4 (see p. 181). Hence it is best to choose for the
preliminary realization three structures of the type discussed under Case
2-b. This will require no p(a + a + a) 11 dimensions.

Next, we find the least common denominator of the rows of Z(s). See
Fig. 7.

2(s s 2)

9s 25s 15

F(n3IE 7.

The desired realization of Z(s) can be read off by inspection from Fig.
7, using (8.5) and (8.6)"

0 0 0
0 0

0 0
0 0 1.

-24

0 0
-35
-10

0 0 0 -30
1 0 0 -61

0 0
0 1 0 -41.
0 0 -11

0 0 --15
0 0 1 0 --23

0 1 --9
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LINEAR DYNAMICAL SYSTEMS 185

135 18 14 20
117 42 25 33
33 3.0 13 15
3 6 2 2

4 10 50 32
6 17 20 32
2 8 2 8
0 1 0 0

36 0 5 68
14 --10 6 54
2 --2 1 10

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

H= 0 0 0 0 0 0 1 0 0 0

By virtue of its construction, this system is completely observable but
we cannot tell by inspection whether or not it is completely controllable.
(From the results obtained above with Method (A), we know that the sys-
tem is not completely controllable since 11 no > n 9.) Therefore the
canonical decomposition may contain Parts (B) and (D).
To see what the dimensions of these parts are, we compute numerically

the decomposition of the system into completely controllable and uncon-
trollable parts according to the method described in Section 8. These cul-
culations involve only the matrices F and G, but the resulting transforma-
tions must be applied also to the matrix H.

-0. 331,6 0.1182 0.01[[) -0.0299 0.0097 -0.0001 -0.0663 -0.0113 0.0000 0.0000 0.83]9

0.2455 -0.2029 -0.0119 0.0268 -0. 0101 0.0000 O.07 O. 0120 O.O001

-0.8333 -0. 890 -O.102J 1.0p59 -0.2290 -0.0009 -0.9998 0.027 -0.0120

-0.2943 O. 2032 O. 0361 O. 0022 -0.0610 -0.0044 O. 1773 -0.0969 O. 0194

-0.8896 0.8321 0.188 O. 4999 -0. 4287 -0.0279 1.1199 0.0024 O. 0089

0.2477 i. <)97 2.0439 -0. 5777 -0.9689 -0.4969 -0.4046 O. 97 0.0199

-o, z98 o.o49 o.ooo9 -o.o32+/- o.059 0.0016 -o. 292 -o.o92 -o.oo+/-o

i.694 -o.o29o o.1114 1.649 -o.4239 -0.0196 0.4o97 -o.o48o -o.oo4o

-o.2787 -0.6894 2.46o4. 2.46o4 -1.98o -o.28Ol o.8992 o.8863 -0.2649

o. 0oo0 o. 7189

2.9469

i. 6479 0.8726

i. 1882 2.9962

-462.2221 -73.0068

o. oooo o. 4698

-29.877 -2.19i

-7].0.9771 -32.0706

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0."’,"2 0.0003

O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0401 O. 299

i0

]i’lGURE 8.
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186 R.E. KALMAN

G

i. 2011 -0.7886 -0.3459 -0. 320

i. 6822 O. 6039 O. 394 O. 474

-1.7962 0.8640 2.387 -1.7927

-0.1683 -0.2420 2.2981 O. 40-)

-0.0665 0.9596 1.4137 2.7344

1.0412 ]-.2734 m.800 -2.9

-0.1117 -0. 46 -0.0977 i..3 -2.8589 .9 -0.

-2.876 -1.7637 0.9281 -2.5137

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

x i0

-0.2928

0599
--I0.4076 0.0160 -0.053 0.0141 0.0000 -0.0981 -0.0167 -0.0001 0.0000 i. 0000

0.0023 -0.0116 -0.0169 0.0373 0.0022 -O.08i) -0.0033 -0.0007 1.0000 0.0000

0.2173 0.0161 0.0394 -0.0603 -0.0039 0.6736 0.0178 0.0024 0.0000 0.000_

FGUE 9.

The final results may be seen in Figs. 8-9, which give the matrices F, G,
and/. Elements in the lower left-hand corner of # should be exactly zero.
In fact, they are zero to at least the number of digits indicated in Fig. 8.
To check the accuracy of these two irreducible realizations of the transfer

function matrix on p. 181, we have computed the corresponding weighting-
function matrices W(1) (t) and W(2) (t). The equality W(1) (t) W(2) (t)
was found to be correct to at least four significant digits.

9. Other applications to system theory. The literature of system theory
contains many instances of errors, incomplete or misleading solutions of
problems, etc., which can be traced to a lack of understanding of the issues
discussed in this paper. This section presents some cases of this known to the
writer; other examples may be found in the pper of Gilbert [5].
Analog computers. According to Theorem 8, a linear dynamical system

(2.1-2) is a "faithful" realization of an impulse-response matrix if and only
if it is irreducible. Suppose the dynamical equations (2.1-2) are programmed
on an analog computer. (See [8].) Then it is clear from Theorem 8 that the
computer will simulate the impulse-response matrix correctly if and only if a
minimal number of integrators are used. Otherwise the system programmed
on the analog computer will have, besides Part (B), t least one of the
Parts (A), (C), or (D). Since the impulse-response matrix determines
Part (B), and that alone, the nature of the redundant parts will depend not
on the impulse-response matrix but on the particular method used to ob-
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LINEAR DYNAMICAL SYSTEMS 1_87

rain the dynamical equations. It should be borne in mind that the canonical
decomposition is an abstract thing; usually it is not possible to identify the
redundant integrators without a change of variables.
The writer is not aware of any book or paper on analog computation

where this is explicitly pointed out. But the facts of life seem to be well
known (intuitively) to practitioners of the analog art.
That redundancy in the number of integrators used can cause positive

harm is quite clear from the canonical structure theorem.
EXAMPLE 7. Let the simulated system consist of Parts (A) and (B) and

suppose that Part (A) is unstable. Because of noise in the computer, Part (A)
will be subject to perturbations; they will be magnified more and more,
because of the instability. As long as assumptions of linearity hold exactly,
the unstable (A) component of the state vector will not be noticed, but
soon the computer will cease to function because its linear range will be
exceeded.
Lr’e canonical form. In his book on the Lur’e problem, Letov implies

[18; equation (2.4) and (2.23)] that every vector system

(9.1) dx/dt Fx + g. ( scalar)

can be reduced o the canonical form

(9.2) dxi/dt Xx Jr- r, i 1, n

whenever the eigenvalues X of F are distinct. Since (9.2) is completely
controllable, this assertion, if true, would imply that (9.1) is also com-
pletely controllable, which is false. In fact, the system defined by

is obviously not equivalent to

whenever X g.

In examining the derivation originally given by Lur’e for his canonical
form [27; Chapter 1, 2-3], it is clear that the last step before equation (3.5)
is valid if and only if det [H(X)] - 0 (in the notation of Lur’e [27].) It is
easy to show that this condition is equivalent to complete controllability,
whenever the eigenvalues of F are distinct.. Unfortunately, the condition
det [H(X)] 0 was not emphasized explicitly by Lur’e [28] in the original
publications.
We may thus conclude that when F has distinct eigenvalues and there is a
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188 R.E. KALMAN

single control variable, the Lur’e-Letov canonical form exists if and only if the
pair IF, g is completely controllable.

It is interesting to note that (9.3) can be transformed into (9.4) when
}, ; in other words, when the eigenvalues are not distinct the Lur’e
canonical form may exist even if the system is not completely controllable.

Cancellations in the transfer-function. When a mathematical model is de-
rived from physical principles, the equations of the system are in or near
the form (2.1-2). Regrettably, it has become widespread practice in system
engineering to dispense with differential equations and to replace them
by transfer functions Z(s). Later, Z(s) must be converted back into the
form (2.1-2) for purposes of analog computation. In the process of algebraic
manipulations, some transfer functions may have (exactly or very nearly)
common factors in the numerator and denominator, which are then can-
celed. This is an indication that a part of the dynamics of the system is not
represented by the transfer function.
Such cancellations are the basic idea of some elementary design methods

in control theory. These methods do not bring the system under better
control but merely "decouple" some of the undesirable dynamics. But then
the closed-loop transfer function is no longer a faithful representation of the
(closed-loop) dynamics. Stability difficulties may arise. Similar criticisms
may be leveled against the large, but superficial, literature on "noninteract-
ing" control system design.
EXAMPLE 8. Consider the system defined by the matrices

(.%) F= , 0 a= H=[-2 . 0].
--2 0 2 0.5

The transfer function relating y to ul is the sum of two terms"

y(s) x(s) x:(,)
(.)

-: +
2 s

(,.() +s-2s’- 5s-- 6 s-- 2s- 5s-- 6

(s- 2) 1
(s -t- 1)(s 2)(s -t- 3) (s + )(s + 3)"

Thus, by cancellation, the transfer function is reduced from the third to
the second order. The system has an unstable "natural mode" (correspond-
ing to sa 2) about which the transfer functions gives no information.

-Using (6.5) we see that the system (9.5) is completely controllable.
By Theorem 5, the system cannot be completely observable: n 2 from
(9.6) and Case 1, section 8. The canonical structure consists of Parts (A)
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LINEAR DYNAMICAL SYSTEMS 189

and (B). In canonical co6rdinates the system matrices can be taken as

-1 0 0 1
0 -3 0 4 [0.5 -0.5 0].
0 0 2

We can easily calculate the change of coSrdinates

4---- Tx

by the method of partial fractions discussed in [8]. First we find T-1, then T.
The results are

--9 4 T --1 2
3 L o 6 -1 4 2

Loss oj" controllability and observability due to sampling. Consider a single-
input/single-output constant linear system. Suppose the output is observed
only at the instants kT (It integer, T > 0), and that the input is
constant over the intervals kT =< (It q- 1 )T. This situation is commonly
called "sampling"; it arises when a digital computer is used in control or
data processing. T is the sampling period. We can regard such a setup as a
discrete-time dynamical system. We define here 0 (Axiom (D1)) as the
set of integers and replace (2.1) by a difference equation. All theorems carry
over to this situation with small modifications.
The analysis of discrete-time systems by conventional techniques requires

the computation of the so-called z-transform of Z(s) [22]. The analysis
using z-transforms then proceeds in close analogy with analysis based
on Laplace transforms.
A constant linear system which is completely controllable and completely

observable will retain these properties even after the introduction of sam-
pling if and only if [4!

(9.7) Res Rest. implies Im (s s) qr/T

where i, j 1, n and q positive integer.
If this condition is violated (the sampling process "resonates" with the

system dynamics) then cancellations will take place in the z-transform.
The z-transform will then no longer afford a faithful representation of the
system, so that if (9.7) is violated, results based on formal manipulation of
z-transforms may be invalid.

This point is not at all clear in the literature. True, Barker [23] has drawn
attention to a related phenomenon and called it "hidden oscillation."
The textbooks, however, dismiss the problem without providing real insight
[22, 5-3; 24, 2.13].
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190 . . KALMN

A practical difficulty arises from the fact that near the "resonance"
point given by (9.7) it is hard to identify the dynamical equations ac-
curately from the z-transform. Small numerical errors in the computation.
of the z-transform may have a large effect on the parameters of the dynami-
cal equations.
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APPENDIX
Factorization of rectangular matrices. Given an arbitrary, rel, p X m

matrix R of rank q <= rain (m, p). We wish to find a p X q mtrix H nd
a q X m mtrix G, both of rank q, such that R HG. The existence of
H and G follows lmost immediately from the definition of rank. We de-
scribe below constructive procedure for determining H and G numerically
from numerical values of R.

Let p =< m. Form the p X p matrix S RR’.
As is well known, there exists nonsingulr matrix T such that

(A-l) TRR’T’ TST’ E,

where precisely q diagonal elements of E re 1, 11 other elements re 0.
T cn be clculated by steps similar to the gussin elimination procedure.
Compute the generalized iaverse R (in the sense of Penrose [4]) of R.

R is n m X p mtrix.
Using the properties of R ([4]) we obtain

(A-2) R RRR RR’R’ SR’ T-]T-I’R’ (T-E) (T-1E)’R’.
Now T-1E is a matrix which contains precisely p q zero columns. De-
leting these columns, we obtain p X q matrix (T-I’) H. Similarly,
deleting p q zero rows from (T-1E)’R’ (RT-1E) we obtain a m X q
matrix G’ (RT-E). Evidently R HG. Since the ranks of H nd G
are obviously less than or equal to q, both ranks must be exactly q for other-
wise rank R q, contrary to hypothesis.

Alternately, let T, U be nonsingular matrices such that

TRU E;
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1.92 . E. KALMAN

fhen

(A-3) R

is the desired decomposition. However, the computation of (A-3) may
require more steps than that of (A-2).

Suppose now that R is complex. Then S R/’ RR* A + iB is
complex hermitian; it corresponds to the 2n )< 2n nonnegative matrix

(A-4) =I-BA AB1
whereA A’ and B -B’.Infaet, ifz z + iy, the hermitian form
z*RR*z (which is real-valued) is equal to the quadratic form

As is well known, there exists a nonsingular complez matrix T such that
TST* E. If 7’ (7 -5- iV, i-t, follows further tha

U A B U’ 0

Hence the determination of the complex n X n matrix has been reduced
to the determination of a real 2p X 2p matrix. Similar remarks apply to
the calculation of R. Thus the problem of factoring complex p m matriees
can be embedded in the problem of factoring real 2p X 2m matrices.
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