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$ 1. I?XTRODlJUTION 

Let f(n) denote the least integer so that in the interval (n, f(n)] there 
are distinct integers al, . . . . a, with ilar for i= 1, . . . . n. Thus, for example, 
f( 10) = 24 as can be easily seen by letting 

a=ll, @=22, as=21, a4=16, as=15, @=12, a,=14:, 
a8=24, a9=18, ars=20. 

(The fact that f( 10) > 24 follows from the observation that there are only 
9 composites in the interval [ll, 241.) 

More generally, if m is any positive integer, let f(n, m) denote the least 
integer so that in (nz, m+f(n, m)] there are distinct integers al, . . ., an 
with iI&1 for i= 1, . . . . n. Thus f(n)=n++(n, n). Let L(n) denote the least 
common multiple of 1, . .., n. Then it is clear that f(n, m) depends only 
on the residue class of m modulo L(n). 

We shall be concerned with the following problems: 

1. Find estimates or an asymptotic formula for f(n). 
2. For each n, estimate the maximal value of f(n, m). 
3. For each n, estimate the average value of f(n, m). 

On Problem 1 we show that, perhaps unexpeotedly, as n -+ 00, 
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f(n)/n -+ 00 (Theorem 1). We also show f(n) < n(log n)l/s (Theorem 3) 
and that this result is nearly best possible (Theorem 2). 

On Problem 2 we show that maxm f(n, m) < 9’2 (Theorem 4). We 
cannot show max, f(n, m) >f(n, n) so Theorem 2 gives our best lower 
bound for m&x,,, f(n, m). 

On Problem 3 we show that there is a positive constant u such that 

’ n(log nY< I m-l F f(n, m) gnl+O(l) 

for large n (Theorems 6 and 6). 
The methods we use for the lower bound theorems on f(n) involve 

results on the function y(z, y), the number of integers not exceeding z 
composed only of the primes not exceeding y. In particular we shall be 
concerned with estimates for ~(x, y) for “very small” y, that is, y <log z. 

All of our upper bound results for f(n) and f(n, nz) rely on a theorem 
of Konig [7] and Hall [5]. We proceed now to introduce the terms needed 
to state the theorem. If G is a bipartite graph between the disjoint sets 
I, J (that is, the vertex set of G is I u J and the edge set is contained 
in I x J) and if U C I, then the span of U is the set of points of J connected 
to some point of U by an edge. One can similarly define the span of a 
set I’ C J. If a E I u J, the valence of a is Ispan {a}I. To say that G 
contains a matching of I into J means that the edge set of G (which is 
a relation from I to J) contains a l- 1 correspondence of I with a subset 
of J. 

THEOREM (K~NIG, HALL). Let G be a bipartite graph on the disjoint 
finite sets I and J. Suppose G does not contain a matching from I into J. 
Then both 
(i) there is a u E I and a v E J with valence u < valence v; 

(ii) there is a UC I with IUl> Ispan Uj. 
The Kijnig-Hall theorem is sometimes referred to as the “marriage 
theorem”. 

Our lower bound result for the average value of f(n, m) relies on the 
recent work of Tenenbaum [12] for the density of the integers which 
contain a divisor between n/2 and n. 

We take this opportunity to thank Harold Diamond for several inter- 
esting discussions concerning the contents of this paper. 

$ 2. LOWER BOUNDS FOR f(n) 

For each y, let y(y) denote the set of positive integers not divisible 
by any prime exceeding y. Let y(x, y) denote the number of members 
of y(y) which do not exceed 2. 

LEMMA 1. Let n be a natural number and let k, y be positive quantities 
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such that 1 ck<y and 

(1) Y(% Y) -Y@lY, Y) >YW, Y) -Yh Y)* 

Then f(n) > nk . 

PROOF. Assume f(n) < nk. Let I = (nk/y, n] n y(y), J = (n, nk] n y(y). 
Let i=II], j=IJI, I=(al, . . . . at}. Then (1) implies i>j. The assumption 
f(n) gnk implies there are distinct integers bi, . . ., br E (n, nk] with ar]br for 
l<l<i. Note that bl/at<nk/al<y. Thus since aa E y(y), we have bl my. 
That is, bi, . . . . br are all in J. Hence i< j, a contradiction. q 

THEOREM 1. lim,, /(7&)/n = co. 

PROOF. Let k> 1 be arbitrary, but fixed. Let y =@, It is known (Spe&t 
[ll]) that 

yk, y) = s@g 4 n(y) + cz(log C?+(y)-1 + o( (log z)n(Y)-l) 

where 

Q=kdY)!* II logp)-l, ca=(cln(y)/2)p~v logp, 
D<Y 

and p runs through primes. Thus 

yh yl)-I@/@, y)=s(log 4 n(y) + ce(log n)n(+l- cl(log(n/k2))“(v) 
- ca(log(n/kz))n(+l+ o(log n)n@)-1 
= 2qn(y)log k(log n)n(y)-1 +o(log n)n(V)-1, 

and similarly 

y(nk, y) - y(n, y) = cin(y)log k(log n)n@)-1 + o(log n)=(v)-1. 

We thus have for all large n that (1) holds. Hence Lemma 1 implies 
f(n) > nk for all large n. Since k is arbitrary we have our theorem. 0 

The above argument depends on a sharp error term for y(s, y) available 
for bounded y. The existence of such a sharp formula for y(z, y) (in the 
case y=3) was first discovered by Ramanujan (cf. Pillai [8] and Hardy 
[S]). To improve Theorem 1 to the actual exhibition of an explicit function 
which tends to infinity with n and which is a lower bound for f(n)/n, the 
above method would need a sharp formula for y(z, y) for y + co slowly 
but explicitly. Note that the asymptotic formulas given by Ennola [2] 
do not have a sharp enough error term for this purpose. Possibly sharp 
enough formulas for y(x, y) could be obtained, but we do not make this 
effort here. Instead, we find a different method to attack the problem 
of lower bounds for f(n). In our next theorem, we use an asymptotic 
formula for log y(z, y) given by de Bruijn [l] to obtain a substantial 
improvement on Theorem 1. The reason we can make do with a non-sharp 
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approximation of I&, y) in the proof of Theorem 2, while in Theorem 1 
we need a sharp error term is the observation that knowledge about f(m) 
gives one knowledge of f(n) for all n >m. For example, the fact that 
f( 10) =24, as seen in our opening example, can be shown to imply that 
f( 100) > 240. We thus are able to get a good lower bound for all f(n) by 
first finding a good lower bound for some f(n). The method exploits the 
geometry of the graph of log y(z, y) for fixed y (cf. Pomerance [9]). 

THEOREM 2. For n> 3, f(n) a (2/@+o(l))n Vlog n/loglog n. 

LEE 2. For every E> 0 there is an Q(E) such that for all s>zs(e), 
there is an integer m E [z, x’+‘] with 

(2) f(m) > (1 - 8)(2/ve)m I/log m/loglog m. 

Before we prove the lemma, we show how Theorem 2 follows from it. 
Let E> 0 be arbitrary and let n be a positive integer. Let z= (en)“(‘+“. 
Thus if n is sufficiently large, the lemma implies there is an integer 
m E [z, z’+‘] for which (2) holds. Let k= [n/m]. In the interval (n, f(n)] 
there are distinct integers bi, . . . . b, such that iklbr for i = 1, . . . . m. Let 
(5==bt/k. Then al, . .., am are distinct integers larger than m for which iI& 
for i=l , . . ., m. Thus max a+ > f(m), so that 

f(n) 2 lzt;t br 2 Y(m) > ( 1 - 4 WV4 h I/log m/h& m 

> ( 1 - c)2( 2/ve) (n - m) flog Iz/loglog n 

> (1 - e)3(2/ve) n flog n/loglog n 

for all sufficiently large n. We thus have Theorem 2. 

PROOF OF LEE&% 2. For each y > em, let 

g&4 =gW -log y(ew, Y) for w E W.l)y log y/, Y log ~1. 
By de Bruijn [l], 

(3) g(w)= (log(l+ b) .& +log(l+~).~].(l+o(~)) 

=(~+o~)).~+(log~)+o~)).~).(l+o(~)) 

=j&*(,@+1+0(~)).(1+0(&)) 

=&-log@ +1+0(1qy) 

uniformly for all y> e10, w E [(O.l) y log y, y log y]. 
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NOW let b(w) = h(w) be the function whose graph is the upper boundary 
of the convex hull of the graph of g(w). Then 

(4) h(w) = &(logC) +1+0(e)) 

uniformly for y > el”, w E [(O. 1) y log y, y log y]. Indeed, 

g(w) <h(w) < y 
1% Y 

where c is the absolute constant implicit in (3). Since g(w) is a step function, 
we have h(w) piecewise linear. Thus h’(w) exists everywhere but for a 
finite set of points which we shall call vertex &nts. A vertex point w 
satisfies g(w)= h(w). Also ew is an integer if the vertex point w is not an 
endpoint of the interval. 

We now show that if w is not a vertex point, then 

(5) E(w) = Gi&(‘+“(1Eg) 
uniformly. Indeed for each 6 > 0 and w such that w is not a vertex point 
and 

(O.l)ylogy<(l-d)w, (1+8)w<ylogy, 

we have (since A is concave down) 

(h((l+6)w)-h(w))/bw<h’(w)<(h(w)-h((l-8)w))/&o. 

Hence by (4), 

w+o (e)) <h’(w) 

Y -- 
WhTY ( 

1 +o(d)+o 

< dwlogy 

(2:;)) y 

( 
log w-log ((l-d)w)+o fgy)) , 

<a,(w) < &g+o(&+o (e)). 

Thus choosing 8 = I/loglog y/log y, we have (5). 
Let 0~ E < 4 be arbitrary. Let b be a constant to be chosen later with 

0.1 c b < 4. Then for all sufficiently large y, depending on the choice of E, 
we have by (5) that 

h’(bylogy)>W((l+s)bylogy) 

if neither argument is a vertex point. Thus there is a vertex point WV = W 
satisfying 

bylogy<W<(I+&)bylogy. 
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Let my=m=ew, an integer. Let a be a positive constant to be chosen 
later, and let 

A = ($)log y + log a, B= (#)log y-log a, 
~1=g(~)-g(~-4, Az=g(W+B)-g(W), 

h=y(m, y)-y@/eA, y), d2=yWeB, Y)-Y@, y). 

Note that if y is sufficiently large, then (0.1) y log y < W - A and W + B < 
<Y 1% Y* 

We shall show that for sufficiently large y and for suitable fixed uhoices 
of b, a, we have &>SZ. 

Note that 

(6) Bl=y(m, y)(l--e+l ), 82=y@,y)(ed2--1). 

If h;(W) denotes the right hand derivative at W, we have by (6) 

(7) d.<B.A;(W)=$$ (1 +o(jq$q) 

Also for large y, m-e*> 2m, so that there is a power of 2 in the interval 
(m,m.eq. Thus &>O, so that (6) implies &>O. 

Assume di> 1. Since (6), (7) imply ck=y)(m, y).o(l/log y), we would 
thus have by (6) that & > 6 2. Thus we may assume dl< 1. With this 
assumption we have 

&>y(m,y)(Al-&At), gz<y(m,y)(d2+ad~+o(da)). 

We thus have 

(8) gl-82>y(m,Y)(dl-~d~-dz-~d~+o(dX)) 

=y(m,y)((dl-d2)-df-d2(dl-d2)-~(d~-d2)2+O(d~)). 

Since W is a vertex point, we have dr/8 >Az/B, so that 

(9) 

The assumption Al < 1 implies AI-AZ < 1 -AZ, so that (7), (8), (9) give 

b- 62 s y(m, y)& 

= y(m y)b - 

t 
410ga 1 
logy +O log2y ( > - - 3&-y (1+0 (Egg) (1+&g)) 

= yu(m, Y) $jj ( 4loga 2b -‘+o(j/~)). 
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We now choose a =el’*b( 1 + .5/2), so that for all sufficiently large y we 
have & > 82. 

Since eA+B = y, the inequality 81~ 82 implies by Lemma 1 that 

f(m) > m - eB =mnzl/y/a. 

Now m==eJ+‘, 80 that 

(10) bylogy<logm<(l+8)bylogy. 

Thus for large y, log y < loglog m, so that 

1 log m -. 
” b(l +e) loglog m’ 

Hence 

m 
li 

log m 

= eli*b (1 + 42) l/b I/s loglog m 

Thus choosing b = &, we have (2). 
For each 2, let y be such that log z= 1 y log y. We have seen that 

for all sufficiently large x there is an integer m for which both (2) and 
(10) hold. But (10) implies x<m<x’:‘+*. 0 

8 3. UPPER BOUNDS FOR f(lz) 

THEOREM 3. For n>2, f(n)<(2+o(l))nflG. 

PROOF. Let E> 0 be arbitrary, but fixed. For i E (n/11=, %I, let 
a=i([flG] + 1). Then the at are distinct and ac E (n, fi(flTgT+ I)]. Let 

I=p,qi0gn] n 2, J=(rt(flflogn+l), (2+Whpl n Z. 

Let U be the bipartite graph from I to J where (i, j) E I x J is an edge 
if and only if j/i is prime. 

If i E I, then the valence of i is 

n((2 + &)?a* /i) -n(n(yG + 1)/i) 

& 
( > 

nKn 
’ l+ 2 i log (?@@%/a) 

> l+E----- 
( > 

log n 
2 loglog n 

for all sufficiently large n by the prime number theorem. If j E J, then 
the valence of j is at most o(j), the number of distinct prime factors of j. 
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But again from the prime number theorem, we have for all large n 

w(j) < (1+ E/2) log n/loglog ?l/. 

Thus by the K&.ig-Hall theorem, it follows that G contains a matching 
of I into J. Hence for all large n, f(n) < (2+e)n@ogn. IJ 

We can improve the theorem slightly. Let P be the solution of the 
equation e* = r and let c=@/(l--r)=1.7398 . . . . Then 

(11) f(n) < (c + o(l))nVi@G. 

We now sketch a proof of (11). Let y E (0, 1) and let k be a natural number. 
Let 

Ij=(yjn/fli, yf-ln/fli] n Z for j= -k+l, -k+2, . . . . k, 
I-r=(y-bb/l/logn,n] n z, Ik+l=[l,pn/pogn]n z. 

Thus the 1, are disjoint and ufi’, If= [l, n] n Z. Now let b be a positive 
number and let 

Jl=(n, yb(fli+ l)] n Z, Jz=(yb(fii+ l), (y*+b)$ii]. 

If i E I--r, let ac =i([rkfli] + 1) E Jl. Let 

I= Uf2,+, Ij=(p, n] n Z)-I-+. 

Let G be the bipartite graph on I, Ja with (i, j) E 1 x Je an edge if and 
only if j/i is prime. We shall show that for a suitable choice of y, k, b, 
G contains a matching of I into Jz. It will thus follow that f(n)< 
< (p++)ng@Yi. 

Say G does not contain a matching of I into Jz. Then by the Kiinig-Hall 
theorem there is a set U C I with x= 1 VI > Ispan UI =y. Let V=span U 
and let q=lUn.Q forj=-k+l,...,k. 

If u E Ij, -k+l<j<k+l, the valence of u is at least 

(by-j+1 + o( 1))log n/loglog a. 

If v E Jz, the number of u E 1, which are connected to w by an edge is 
at most the lesser of 

(b + yk + o( I))(+ - ++l)log n/loglog n and (I+ o( 1))log n/loglog n. 

Now the number of edges incident to U n 1j is at least the number of 
edges incident to I’ with an endpoint in 1~. Thus for -k + 1 qj < k, 

(by-l+l+o(l))g<(b+y~+o(l))(yj-y-j+’)y. 

Hence for -k+l<j<k and using y<s, 

(12) bq<(b+yk+o(l))(y-1-1)s. 

The number of edges incident to V is at least as big as the number of 
edges incident to U. But the number of edges incident to V is at most 
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(1 +o( 1)) y log n/loglog n. Thus 

(1 +o(lM>(l +oP))y > f I,, (b ~+l+o(l))~+(~Y-~+o(l))(x- f $,, 5) 

= ,-& (by-‘+l-by-~+o(l))xj + (by”+o(l))x 

> ,-g+, (b+y~+O(l))(y-l--)(y-‘+l-yy-~)x + (by-k+o(1))x 

using the negative of (12). Thus dividing by x and multiplying by rk+l, 
we have 

y~“(l+o(l))>(b+y~)(l-y) 2 (yk-‘+I-- 1) + by 
I--k+1 

= - (b+p)(p*+l--y- 2ky+ 2k) +by. 

Let @=b + yk. Then, by letting n --f CO, we have 

2yk+l> /3( - pa+1 + (2k + 2)y - 2k). 

We thus conclude that if y, k, b are chosen so that - ~sE+l+ (2k + 2)~ 
-2k>O and 

(13) /?>2y~+l/(-y2~+~+(2k+2)y-2k) 

then for all sufficiently large n, f(n) </In@=. 
Let r be the solution of the equation e+=r and let y= 1 --r/2k. Then 

the right side of (13) is 

2( 1 - r/2k)*+l 
- (I- r/2k)=+l+ (2k + 2)(1 -r/2k) - 2k 

2e+@+o(l/k) 
= -e++2-r+o(l/k) =&+o($ =c+,($. 

Thus letting k + 00, we have (11). 

$ 4. EXTREME VALUES OF f(n, m) 

THEOREM 4. For all positive integers m, n, we have 

fh W 6 WWnl+ 1). 

PROOF. Let nz, n be arbitrary positive integers, let Ii= [l, n] A Z, 
J1 = (m, m + 4n[l/n]] n Z. Using the intervals (m + (k - l)n, m + kn] for 
k= 1, 2, . . . . 4[@], we have a partition of J1 into 4[vn] consecutive intervals 
of length n. If j E Ji, let (j) denote the interval to which j belongs. Let 
Q be the bipartite graph from 11 to J1 where (i, j) is an edge if and 
only if ilj. 
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Say the valence of every j E Ji is at most [vn]. Since the valence of 
every i E 11 is at least 4[h], it follows from the K&rig-Hall theorem 
that Gi contains a matching of Ii into Ji. Thus we would have our result. 
Thus assume some ji E Ji has valence larger than [@I. Say span (ji} = 
=&CIi where ]&I>[Ilr;J+l. Send each i~Ri tojl-t-i=o+ Then il@ 
and these at are all distinct. Moreover these a+ lie in (ji) u (ji+n>. If 
Kl=Il, we are all done. So assume .Ki ~11. Let 1s=Ii -RI, Jg= J1 
- (G1- rt) u (ji) u (ji+n)). Let Gs be the subgraph of Gi determined 

by 12, J2. 

Say the valence of every j E JZ is at most [vn]. Since the valence of 
every i E 12 is at least 4[1/r] - 3> [vn], it follows from the Kijnig-Hall 
theorem that Gs contains a matching of Is into J2. Thus we would have 
our result. So assume some js E JZ has valence larger than [In]. Say 
span (ja)=&CIz where l&l>[vn]+l. Send each in& to js+i=at. 
Then ;I&, the q are distinct, and the &r all lie in (js) u (ja+n). These 
two intervals are disjoint from (ji) u (j,+n). If &=1r, we are done. 
So assume K~#Iz. Let Is=Ia-K2, Js=Jz-((jz-n) u (jz) U (jz+n)). 
Note that we might have (js+n> = (ji-n> or (js-n> = (jl+n>. Let GS 
be the subgraph of Gs determined by Is, Js. 

Say we continue this procedure until we reach the bipartite graph 
Gt+l from It+1 to Jt+l. We have that 

(14) IIt+ <n-Wd+ 1) 
and that Jt+i consists of at least 4[@] - 3t disjoint intervals of length n. 
From (14) we may assume t < [I/n], so that Jt+l consists of at least [I/n] 
disjoint intervals of length n. Thus every i E It+1 has valence at least [vn]. 

We thus conclude that our procedure must terminate at some t and 
when it does, one of two events must occur. Either It=0 or Gt contains 
a matching from It to Jt. In either case, we“are done. 0 

We can lower the constant “4" in Theorem 4 somewhat, but we do not 
know how to prove f(n, m)=o(ns’s). We conjecture that f(n, m)<nl+o(l). 

$ 6. THE AVERAGE VALUE OF f(T&, m) 

THEOREM 5. Let d = 1 -log(e log 2)/lag 2 = .08607 . . . . Then for all 
sufllciently large 12, 

L(n)-1 a$) f(n, m) >n(log nr. 
m-1 

PROOF. From Tenenbaum [12] we have that the density d, of the 
integers which have a divisor between [n/2] and n is o((log n)-a). In the 
interval (m, m + f(n, m)] there are at least n/2 distinct integers with a 
divisor between [n/2] and n. Let S(n, 5) denote the number of j Q z which 
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have a divisor d with [n/2] < d 4%. Then 

L(n) 

21 @l( 
n, m + 2n(log np) - S(n, m)) < 2n(log nY l S(n, L(n)) 

= Sn(log n)“&&(n) 

< Bn(log n)@ . *(log 12)-O. L(n) = &nL(n) 

for all sufficiently large n. Therefore, the number 2 of m, 1 <m<L(n), 
such that S(n, m+ 2n(log n)*) - S( 12, m) > n/2 satisfies (n/2) 2 < (n/4)L(n). 
That is, for all large n, Z<.L(n)/2. Thus for at least L(n)/2 choices of m, 
l<m~L(n), we have f(n, m)>2n(log n)“. Thus 

mzl f (12, m) > *L(n) . Bn(log 12)” = L(n) - n(log n)‘*, 

for all large 12. 0 

THEOREM 6. Let ,8 = log( @/a/2.33/2) = 1.6825 . . . . Then 
Lb) 

W-l 2 f (n, m) < n - exp ((/3 + o( 1))log n/loglog n). 
m-1 

PROOF. Let E>O be arbitrary and let c=3/2+4&. Let 

b=log (l+c)+clog(l+c-l), 

so that as a--f 0, we have b + j3. 
For any integer m let d,(m) denote the number of divisors d of m with 

d <n and let o,(m) denote the number of prime divisors I, of m with 
p<n. Let T, denote the number of m E [l, L(n)] with 

d,(m) > exp (b log n/loglog n) E e(n). 

We now show 

(16) T, < L(n)/n”l”+“. 

First we note that for any m, if On(m) =a, then d,(m) ~~(12, pa) where 
ps denotes the s-th prime. Indeed, if ql, QZ, . .., q8 are the prime factors 
of m not exceeding n, then every divisor d of m with d <n is composed 
of just the q’s. We thus observe that an upper bound for d,(m) is the 
number of integers not exceeding n composed of just ~1, pa, . . . , p8; that is, 
yh zb). 

Now if p8s< (3/2 + 3E)log n, it follows from de Bruijn [l], that for all 
large n, y(n, p#)te(n). Thus, for large n, d%(m) >e(n) implies 

pa > (312 + 340g n 

where s=o,(m). This in turn implies that 

on(m) > (3/2 + 2e)log n/loglog n !% T,. 
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Thus T, is rtt most the number of m<.&(n) with w&n) >rn. Hence, for 
large n, 

T’n < L(n)( & l/p)‘“/m ! < L(n) . (2 loglog nfm/(%/e)cn 

= L(n) - exp (rs logloglog n + m( 1 + log 2) - rn log m) 

<L(n).exp(-(3/2+&)logn), 

which gives (16). 

Suppose now m is such that in the interval J= (m, m+n.e(n)] n Z 
there is no integer j with d,(j)>e(n). Then f(n, m) <n-e(n). Indeed, if we 
consider the bipartite graph from I = [l, n] n Z to J where i E I is con- 
nected to j E J if ilj, then the minimum valence of an i E I is at least 
e(n), while the maximum valence of a j E J is less than e(n). Thus the 
Kijnig-Hall theorem applies. 

Now the number of m<L(n) for which there is an integer j E (m, m+ 
n-e(n)] with d,(j) > e(n) is at most 

T,,.n.e(n)<L(n).n-l’a-m.e(n) 

by (15) for large n. For these m we have f(n, m) < ns’c by Theorem 4. 
We have seen that for the remaining m we have f(n, m)<n.e(n). Thus 

L(n) 
m;l f(n, m) 6 5-W” - L(n) - n-li2-* - e(n) f n - e(n) - L(n) 

= 2L(n) - n - e(n) 

<L(n) - n 0 exp ((b - e)log n/loglog n) 

for all large n. Thus letting e + 0, we have already seen that b +,9, and 
so our theorem follows. 0 

Improvements on the size of B in Theorem 6 are attainable. The limit 
of the method gives /l =log 4. However, we believe much more is true. 
We conjecture that 

L(n) 

WO-l z1 fh m) < n(log W 
m-1 

for some y> 0. 

$ 6. OTHER PROBLEXS 

If 1 <k <n, let g(n, k) denote the smallest number so that for each 
choice of integers 1 <al c . . . <ok <n, there &re distinct integers bl, . . ., bk 
in (n, g(n, k)] with ail bg for i= 1, . .., k. Also let h(n, k) denote the least 
number so that in any interval of length k(n, k) we c&zz find a set of 
distinct multiples for each k-element subset of (1, . .., n}. Thus g(n, k) 
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<h(n, k) +n. In our previous notation we have f(n) =g(n, n), 

max f(n, m) =h(n, n). 
IA 

By a similar argument as the one which gives Theorem 2 from Lemma, 2, 
we have 

so that 

w-v limzg(n, J+>f(k)/k. 

Mimicking the proof of Theorem 4, we have 

(17) hh k) < nl/k 

uniformly for all k, n (with k<n). Thus 

(18) lim sup g(n, k)/n < l/k. 
- 

We do not know how to narrow the gap between (16) and (Hi), but we 
feel (16) is closer to the truth. 

Now we look at particular subsets of (1, . . . . n> that are of interest. Let 
f&a) denote the smallest number so that in (n, fg+)] we can Cnd distinct 
h, a*-, b,(,) where plbr for each i @ denotes the i-th prime). It is not 
too hard to show that for each n> 1, fg(n)=2p+ except that fga(4)=8 
and fga( 10) = 16. More interesting is the function fg(n, m), the least number 
so that in (m, m-t- f&z, m)] there are distinct numbers bl, . .., b,(,) such 
that ps’fJb( for each i. The question is, what is the average value of fp(n, m), 
that is, what is 

g&) =-WW E f5dn, m) 

where H(n) is the product of the primes not exceeding n ? By Theorem 6, 
we have gg(n) <n 1+0(l). Perhaps it is possible to show that g&)/n is 
bounded above by a power of log n. We cannot show (nor are we sure 
we believe) that gg(n)/n is unbounded. 

Now let 

h&n) = max f&, m). 
tn 

We know very little about h&a). ErdGs and Selfridge can show, using 
Brim’s method, that 

(19) lim sup hp(n)/n > 3. 
MOO 

Using (17) in the case k=n(n), we have 

c-3-J h&)ln < Vs. 
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We do not know how to narrow the immense gulf between (19) and (20). 
Related to these questions, we ask if there is a large constant c so that 

in any interval of length cn there are n(n)-n(n/2) distinct multiples of 
the primes in (n/2, n] (there need not be a matching). If yes, what is the 
smallest value of c ? The same question can be asked if pr < . . . <$& is 
any set of primes, but now “cn” should be replaced by “cr)k”. Erdbs and 
Selfridge have shown that for every k there is a set of primes pl< . . . <bus 
with only 2k multiples in some interval of length (3 -o(l))$~ This is 
how (19) is established. 

Is it true that for a large enough c, every interval of length cn contains 
a number divisible by precisely one prime in (n/2, rt]? What if we replace 
the primes in (n/2, n] with the primes in [l, n]? 

Let /s(n) denote the least number so that in (n, fs(n)] we can find 
distinct numbers bl, . . . , bt where a& for each i and {al, . . . . at} is the set 
of numbers not exceeding n divisible by no prime exceeding log n. 
Theorems 1 and 3 immediately give inequalities for /s(n). However, 
Theorem 2 does not seem to carry over for /s(n), although Lemma 2 does. 
Is it true that /s(n) = f( ) f n or all sufficiently large 12, or for almost all n 2 

Let f&n) denote the least number so that in (n, /g(n)] we can find 
distinct numbers ba for each din such that dlba. We at first thought that 
/s(n) could be as large as /s(n) by considering highly composite choices 
for n. But a very simple proof shows fg(n)=2n for every choice of la. 
Indeed, let bd=n+d. 

Given a particular set of integers 0 <ai < . . . <ok, what is the length 
of the shortest interval which contains distinct numbers bl, . .., bk with 
qlbt for each i 1 Say, for example, p, (I, r are distinct odd primes and 
al =H, az =pr, as=qr. Let ~81, &, C& be the minimal integers with 

a129=elq+fl~, &q=e2p+fic &r=w+f2q 

such that the Q, ft are positive integers. Then it is easy to show that 
the shortest interval which contains distinct numbers bl, bz, bg with a;rlb‘ 
for each i has length I= min {dip, &q, t&r). If p <q< r, 

~(r-r))q=3(r-alr,+~@-p)r, 

so that ds <#r-p). Thus Z<&(r-p)q which is half the length of bq, qr]. 
Does equality hold infinitely often ? 

In the introduction we remarked that we cannot show m&x, f(n, m) 
> f (n, n). Nevertheless, we believe this to be the case for all n> 6. In 
fact we conjecture 

m&x f(n, m)-f(n, n) -+ 00. 
m 

All we can prove is that there are ir&nitely many n with 

(2~) max f(n, m) -f(n, n) > 1. 
0) 

160 



In fact (21) holds if n is a sufficiently large prime (p. In this case /@,I,- 1) 
-f(p,p)= 1. To see this, suppose not, so that there exist 

a, . . ..apE[r).p+f@,p)---l 

distinct with ila+ Thus f(r, - 1, p - 1) < f(p, p). But this inequality is untrue 
for all large p. What is true is that f(p - 1, p- 1) = 1 +f(p, p), since given 
the mapping of (1, . . . . p-1) into {p, . . . . p-I+/@--l,p-1)) we note 
that r, need not be used as an image. Thus we can map (1, . .., 23) into 
b+ 1, .*. ,~-1+f(r,-1~+1)) by sending p to 2~. Note that 29~ need 
not be used as an image for 1 or 2 - we may use p’ for 1 and 2~’ for 2 
where p’>p is prime. Probably it is possible to show the left side of (21) 
is unbounded, but we are not sure of the details. 

Another problem that is perhaps of some interest is to estimate 8(n, c), 
the asymptotic density of the set of n with f(n, m) <en. It is clear the 
density exists since f(n, m) is periodic in m. Moreover if c> 1, then 
8(n, c) > 0. Even the case c = 1 provides some interesting considerations. 
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