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Suppose g(n) tends monot'onically to infinity and g(n)/n
tends to zero. If f is an integer-valued arithmetic function
with normal order g, then the set of # such that f(n) divides n
has asymptotic density zero. More generally, the set of n with
a divisor between g(n) and 2 g(n) has asymptotic density zero.

1. Introduction and statement of results

Recently, Cooper and Kennedy [2] considered the following problem.
Let f be an arithmetic function with positive integer values. That is,
f:N—> N. What can be said about the set of n with f(n)|n ?

THEOREM (Cooper, Kennedy). Let f: N — N, let u(x) denote the
mean of f(1), ..., f(Ix]) and let o(x) denote the standard deviation. If
p(x) — oo and o(x)[u(x) — O, then the set of n with f(n)|n has asymptotic
density 0.

[ 4

Cooper and Kennedy give several examples to illustrate their theorem
including f(n)=w(n), the number of distinct prime factors of », and
f(n)=s, (n), the sum of the base g digits of n.

In this note we first give a short proof of a result that is very similar
to the Cooper, Kennedy theorem. In particular, it is good for every
examplé they consider and a few for which their theorem is not strong
enough. Next we give a somewhat more complicated proof of a stronger

theorem.
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Recall that we say an arithmetic function S has normal order g if
for each €>0, the set of n with

Lf(n)—g(n)| > e g(n)
has asymptotic density 0. We first prove

THEOREM 1. Suppose g(n) is monotone, g(n) — oo and g(n)jn —0. If
'S has normal order g, then the set of n with f(n)|n has asymptotic density 0.

Since f(n)=w(n) has normal order loglog n, a result of Hardy and
Ramanujan, it follows that w(n)|n only on a set of asymptotic density 0.
The same result holds for f(n)=8(n), the number of prime factors of n
counted with multiplicity. (This was stated as an open problem by
Cooper and Kennedy. However, £(n) also satisfies the hypothesis of their

theorem.)

The question of the set of h for which w(n)|n actually was already con-
sidered by Spiro [9] who showed the number of such n<{x is ~x/loglog x.
She also obtained the same result for Q(n).

It is clear that Sy (n) has normal order cg logn where ¢y =(g—1)/
(2 log g). Thus the set of n with Sg (m)]n has asymptotlc density O.

Anotherexample of a function satisfying the hypothesis of Theorem 1
is f(n)=m(n), the number of primes up to n. From the prime number
theorem, 7(n) ~nflog n, so that w(n) has normal order n/log n. In fact,
7r(n) does not satisfy the hypothesis of the Cooper, Kennedy theorem.
However, the fact that m{n) almost never divides n is really rather trivial
and does not require our Theorem 1. Indeed, m(n) stays constant on long
intervals, so from this ocne can see that w(n)|n is rare. It is amusing to
note that m(n)|n does hold infinitely often-in fact, the only properties
of mr(n) used to show this are that 7(n) is integer valued, monotone
and o(n).

Our Theorem 2 majorizes Theorem 1, but the proof is much harder.

THEOREM 2. Suppose g(n) is monotone, g(n) — oo and g(n)/n -» 0.
Then the set of n with a divisor between g(n) and 2 g(n) has asymptotic

density 0.

This theorem is very reminiscent of an old result of Besicovitch [1]
that says that if dp is the asymptotic density of the set of n with a divisor
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in (T, 2T}, then lim inf dp=0. Later, in [3], the first author improved
this result to lim dp=0. Our Theorem 2 follows from the same circle of
ideas used in [3]. ‘

It is not too easy to find applications of Theorem 2 for naturally
occurring arithmetic functions f(n) for which Theorem I is not strong
enough. One example is the following which appeared in Pomerance
and Stone [8]. Let D(n) denote the largest divisor of n in the interval
[1, «/n]. Then from Theorem 2 it easily follows that there is a set S
of asymptotic density 1 such that D(n)/y/n —-O0asn-—>oo,neS. Of
course, the function /n can be replaced with any function g() satisfying
the hypotheses of Theorem 2.

Consider the function S(n)==ZyaP, the sum of the prime factors of
n. Our theorems do not immediately answer the question of how often
S(n)|n. However, using the ideas of this paper and of [§], it can be
shown that the set of n with S(n)|n has asymptotic density 0. The idea
is to first restrict to integers n with P(n)<S(n)<2P(n), where P(n) is the
largest prime factor of n (see [5]). We now count how many such n have
S(n)ln and n € (x/2, x]. Write such an n as mp, where p=P(n). Then
S(n)|m, so that m has a divisor between x/(2m) and 2x/m. The ideas of
this paper can now complete the proof that the number of such n is o(x).

 Finally we remark that the Besicovitch-Brdés result was greatly
improved by the first author in [4] (also see [6], Ch. V, Sec. 7 and {7],
Ch. 2). Namely, it is shown that if €y — O arbitrarily slowly, then the set
of integers with a divisor between T and T**+¢7 has asymptotic density that
tends to 0 as T — oo. It remains to be seen if there is an analog of this
result along the lines of Theorem 2, but almost certainly some sort of
stronger theorem could be proved using these ideas.

Throughout the paper, the letters p, ¢ will always denote primes.
2. Proof of Theorem 1

Let 1>e€>0 be fixed, but arbitrary. It will be sufficient to show
that there is some absolute constant ¢ such that for all large x thc number

N=N(x) of n € (x, 2x] with f(n)|n is at most ¢ € x. In fact, we shall show
that ¢=10 will do.

If x is sufficiently large, then the number of n ¢ (x, 2x] such that

(D (1+e)7g(m <fln) <(1+€)g()
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fails is at most ex. Indeed, this foilows immediately from the definition
of normal order.

Let k, be such that -
(1 +e)ko“1<§%2§-)-<(l + €)ko.
For each k=1, ..., k, the set

{n € (x, 2x]: (1 +e)*1g(x)<g(n) < (1 + €)kg(x)}
is an interval of consecutive integers-say it is the set of integers in (ak, by],
where these k, intervals partition (x, 2x].

Let Ni denote the number of n e (ag, b;] such that (1) holds and
f(m)ln. Butif n € (ag, bg] and (1) holds, then

(2) f(n) e (1+e)F-2g(x), (14 €)k+1g(x)).
Let 7, denote the set of integers in the interval in (2). Note that

[kl < 1+ (14 €)Fg(x) — (14-€)k-2g(x).

Thus
by a
Ni< 2 1= 2z ([7]~[d—])
d € It ne (ay,, byl de I}
d|n
<br—ar) 2 ! z 1
h del; ¢ *del;
br—ay;
S eyFrgem i1
bk-—-ak

<((1+€*—1)(bg—ap+ +17]

(1+€)F-%g(x)

1+e€
F76) (br—ar) + |1l

We conclude that the number of n € (x, 2x] for which (1) holds and f(n)|n
is at most

<Te(by—ap) -+

k

0 1+e€
Tey Lo~ 1 Yot
Ifl Ne<Tex + ) x4+ 3(1+ e)fotlg(x)

<8ex+3(1 + €)?g(2x) < 9ex
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for x sufficiently large. Together with the number of # for which (1) fails,
we have N<10ex.

3. Proof of Theorem 2

We first establish a lemma that will be used heavily in the proof
of Theorem 2. The proof is essentially that of the Turin-Kubilius

inequality

LemMA. Let Q,(n) denote the number of prime and prime power
factors of n that do not exceed z. If 223 and 0<C<D, then the number
of integers n € (C, D] with |R,(n)-loglog z|>% loglog z is uniformly

D—C z

< loglog z +log z loglog z°

Proof. Let

E=E(z, C,D)= X  Q,n), B=B(z, C,D)= I  Q,m)?
C<n<D Cc<n<D

Then
E= X X l=2% I 1=2 ([%]_[%D
C<n<D p?<z p<z C<n<D  p°<z \P P

péln piin

=(D—C) Z _+0( z 1)
<z ¥ p<z

=(D—C) loglog z+ O(D—C)+O(z(log 2).

Also, we similarly have

B= X (X (Z D
C<n<D p?<z %<z

pln gln
=éa, q‘bvsz qub] —[P‘(‘ilb]>+2pbiz q% ] [C )
pq 0<a<d

v 2 (29

z loglog z)

=(D—C)(loglog z)*+ O((D - C)loglog z)+0< Tog z
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using
1
z ~ =(log] 240 _
p qbng (loglog 2)*+4 O(loglog z)
Thus

z (2:(n)—loglog 2)*=B—2F loglog z4-({D]—[C])(loglog z)?
c<nD -

_ z loglog z
<(D—-C) loglog z+- —lgg—;—.

The lemma follows immediately from this estimate.

Proof of Theorem 2. For each natural number x, let N=N(x)

denote the number of e (x, 2x] with a divisor in (g(n), 2g(n)]. It will
suffice to show that N=o0(x).

Let k, be such that
2k0-1< g (2x)/g(x) < 2o.
For each k=1, 2, ..., k,, the set
{n e (x, 2x]: 2k-1g(x)<g(n) <2k g(x)}

is an interval of consecutive integers-say it is the set of integers in (4, By]
where these k, intervals partition the interval (x, 2x]. Let

z==z(X)=min {g(x), -g—(;;)}

We now divide the integers n e (x, 2x] with a divisor d e (g(n), 2g(n)]
into four, possibly overlapping classes: ‘

(i) n has a divisor d € (g(n), 2g(n)] with .Qz(d)<§ loglog z,
. 2
. (ii) n has a divisor d € (g(n), 2g(n)] with .Qz(n/d)<3~ loglog z,
(iii) » has a prime power divisor p2 with a>1, pa>z,

(iv) .Qz(n)>§ loglog z.
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To see that these classes exhaust all possibilities, suppose n € (x, 2x] has a
divisor d € (g(n), 2g(n)] with

.Qz(a)>~ loglog z and .Qz(n/d)> loglog z.
If also n is not counted in class (iii), then
2,(n)=8,(d) +.Qz('n/d)>§ loglog z,
so that # is counted in cléss (>iv).

Let Ngy, Niiys Niiy» Nin denote the number of n counted in each
of the four classes (i), (ii), (iii), (iv), respectively.

Let NV;), denote the contribution to N;, from those n € (dg, Byl
Let [p=(2t-1g(x), 26+1g(x)] and let 2’ denote a sum over integers m with
.Q,z(m)gg loglog z. Then by the Lemma,

Nmfkg .2 ([%]_[%ﬁb

€ Iy

Br— Ak \ g
L2411 & 1
\(Zk“g(x) Y, de I

B4k ) 2k+ig(x) —26~1g(x) z
<2k—1g(x)+ ( loglog z log z loglog z)

Br— 2kg(x) —dk z
<Joglog z +loglog z +( g(x) + )log z loglog 2’

Thus
to
g(2x) &
,N(i)=kf_‘7l Ny k< 10g10g Z+1oglog z+(g(v) Tk ) “log z loglogz
X
loglog 2’

since g(x)=o0(x), z<g(x), z<v/x and k,<Llog x.

<

Next, let N, denote the contribution to Ny; from those
n € (Ag, Br]. Let

Joe Ak By
k~(2k+1g(x)’ 2/c—1g(x)>"
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Thus if n is counted by Ny;;) x then n has a divisor m e J; with .(m<

2§loglog z. Thus, as above,

o, 2, (]2

m e Jp \U" m
(ot ) ey,
< (A k/?;;é»zx» i )(Bk/(Zk‘lg(lxo);;); /;/(Z’F“g(x))
- +log z lozglog z)
< Br—Ag x B 2kg(x) z

joglog z T oke(x) loglog z +10g z loglog 2’
using x<{Agp<<Bx<<2x. Thus

k

0 x ' g(2x) z X
Ngiy= kzi N(ii),

+< oglog z Tiog z loglog z < Toglog z°

By an elementary argument,

2x _ x

Nan< £ Zg X

(m)\pa>zpa \/z
a>1

Finally, by the Lemma we have
x
N(i”)<13§—lo?g~z'

Putting together our estimates, we have

X

N<N(i)+N(ii)+N(iii)+N(iU)< loglog Z.

Since z=2z(x) -» o as x — oo, we have the thorem.
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