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The classical groups 

The Linear, Unitary, Symplectic, and Orthogonal groups have 
been collectively known as 'The classical groups' since the 
publication of Hermann Weyl's famous book of that name, 
which discussed them over the real and complex fields. Most of 
their theory has been generalized to the other Chevalley and 
twisted Chevalley groups. However, the classical definitions 
require little technical knowledge, lead readily to invariant treat­
ments of the groups, and provide many techniques for easy 
calculations inside them. In this A. lf 11.. A.§ we take a severely 
classical viewpoint, for the most part. Later in this introduction, 
however, we shall quickly describe the larger class of groups, 
and the present section contains some forward references. 

1. The groups GL.(q), SL,.(q), PGL.(q), and PSL.(q) = L.(q) 

The general linear group GL.,(q) consists of all then x n matrices 
with entries in IF q that have non-zero determinant. Equivalently 

· it is the group of all linear automorphisms of an n-dimensional 
vector space over IF w The special linear group SL., (q) is the 
subgroup of all matrices of determinant 1 .  The projective general 
linear group PGL.,(q) and projective special linear group PSL.,(q) 
are the groups obtained from GL.,(q) and SL.,(q) on factoring by 
the scalar matrices contained in those groups. 

For n;;, 2 the group PSL., (q) is simple except for PSL,(2) = S3 
and PSI-,(3) =A., and we therefore also call it L.,(q), in confor­
mity with Artin's convention in which single-letter names are 
used for groups that are 'generally' simple. 

The orders of the above groups are given by the formulae 

\GL.,(q)J = (q -1)N, \SL.,(q)J = \PGL.,(q)J = N, 

N 
\PSL.,(q)J = \L.,(q)J = d' 

where 
N = ql•<•-1\q" -1)(q"-1-1) ... (q2-1), 

and d = (q-1 , n). 
L.,+1(q) is the adjoint Chevalley group A.(q), with Dynkin 

diagram 

0-0-0 · · · Q---0 (n nodes). 
1 2 3 n-1 n 

The maximal parabolic subgroup correlated with the node label­
led k in the diagram corresponds to the stabilizer of a k­
dimensional vector subspace. 

2. The groups GU.(q), SU.(q), PGU.(q), and PSU.(q) = U.(q) 

Let V be a vector space over IF q'· Then a function f(x, y) which 
is defined for all x, y in V and takes values in lF.r is called a 
conjugate-symmetric sesquilinear form if it satisfies 

[(A1X1 + AzXz, y) = A,f(x, y) + Azf(xz, Y) 

(linearity in x ), and 

f(y, x) = f(x, y) 

(conjugate-symmetry), where x-'> x = x
q is the automorphism of 

IF q' whose fixed field is IF"' Such a form is necessarily semilinear 
in y, that is 

f(x, A 1Y1 + AzY2l = A,f(x, Y1l + A2f(x, yz). 

It is called singular if there is some Xo f 0 such that f(x0, y) = 0 

for all y. The kernel is the set of all such x0• The nullity and 
rank are the dimension and codimension of the kernel. 

A Hermitian form F(x) is any function of the shape f(x, x), 
where f(x, y) is a conjugate-symmetric sesquilinear form. Since 
either of the forms F and f determines the other uniquely, it is 
customary to transfer the application of adjectives freely from 
one to the other. Thus F(x) = f(x, x) is termed non-singular if 
and only if f(x, y) is non-singular. Coordinates can always be 
chosen so that a given non-singular Hermitian form becomes 

x1 x1 + XzX2 + .. . + X.X.· 

The general unitary group au. (q) is the subgroup of all 
elements of GL(q2) that fix a given non-singular Hermitian 
form, or, equivalently, that fix the corresponding non-singular 
conjugate-symmetric sesquilinear form. If the forms are chosen 
to be the canonical one above, then a matrix U belongs to 
au. (q) (is unitary) just if u-

1 = u, the matrix obtained by 
replacing the entries of U' by their qth powers. 

The determinant of a unitary matrix is necessarily a ( q + 1)st 
root of unity. The special unitary group SU.(q) is the subgroup 
of unitary rn.atrices of determinant 1. The projective general 
unitary group PGU. (q) and projective special unitary group 
PSU.(q) are the groups obtained from GU.(q) and SU.(q) on 
factoring these groups by the scalar matrices they contain. 

For n ;;,2 , the group PSU.(q) is simple with the exceptions 

PSU,(2) = S3, PSU2(3) =A., PSU3(2) = 32: Q8, 

and so we also give it the simpler name U.(q). We have 
U,(q) = L,(q). 

The orders of the above groups are given by 

where 

\GU.(q)\ = (q + 1)N, \SU.(q)\ = \PGU.(q)\ = N, 

N 
\PSU.(q)\ = \U.(q)\ =d, 

N = q!n(n-1l(q" _ ( -1)")(qn-1_ ( -1)"-1) ... (q3 
+ 1)(q2-1), 

and d=(q+1,n). 
U.+1(q) is the twisted Chevalley group 2 A.(q), with the Dyn­

kin diagram and twisting automorphism indicated: 

� 
o-o-o · · · o-o-o (n nodes). 
1 2 3 3 2 1 

The maximal parabolic subgroup correlated with the orbit of 
nodes labelled k in the diagram corresponds to the stabilizer of 
a k-dimensional totally isotropic subspace (i.e. a space on which 
F(x) or equivalently f(x, y) is identically zero). 

3. The groups Sp.(q) and PSp.(q) = S.,(q) 

An alternating bilinear form (or symplectic form) on a vector 
space V over IF q is a function f(x, y) defined for all x, y in V and 
taking values in IF q• which satisfies 

[(A1X1 + A2X2 , Y) = A,f(x, y) + Azf(x2, y) 

hulpke
Text Box
Conway, Curtis, Norton, Parker, Wilson:  ATLAS of finite groups



THE CLASSICAL GROUPS XI 

(linearity in x ), and also 

f(y, x) = -f(x, y) and f(x, x) = 0 

(skew-symmetry and alternation). It is automatically linear in y 
also (and so bilinear). 

The kernel of such a form is the subspace of x such that 
f(x, y) = 0 for all y, and the nullity and rank of f are the 
dimension and codimension of its kernel. A form is called 
non-singular if its nullity is zero. The rank of a symplectic form 
is necessarily an even number, say 2m, and coordinates can be 
chosen so that the form has the shape 

For an even number n = 2m, the symplectic group Sp.(q) is 
defined as the group of all elements of GL.. (q) that preserve a 
given non-singular symplectic form f(x, y ). Any such matrix 
necessarily has determinant 1 ,  so that the 'general' and 'special' 
symplectic groups coincide. The projective symplectic group 
PSp.(q) is obtained from Sp.(q) on factoring it by the subgroup 
of scalar matrices it contains (which has order at most 2). For 
2m ;;;.2, PSp2m(q) is simple with the exceptions 

PSpz(2) = S3, PSp2(3) = A., PSp.(2) = S6 

and so we also call it Szm(q). We have Sz(q)=Lz(q). 

If A, B, C, D are m x m matrices, then (� �) belongs to 

the symplectic group for the canonical symplectic form above 
just if 

A'C-C'A =0, A 'D- C'B=I, B'D-D'B=O, 

where M denotes a transposed matrix. 
The orders of the above groups are given by 

where 

N 
IPSpzm (q)l = ISzm (q)l = d, 

N = qm\q2m -1)(q2m-2_1) ... (qZ-1) 

and d = (q-1 , 2). 
S2m (q) is the ad joint Chevalley group c.,(q) with Dynkin 

diagram 

0--0--0 · · · � (m nodes). 
1 2 3 m-2 m-1 m 

The maximal parabolic group correlated with the node labelled 
k corresponds to the stabilizer of a k -dimensional totally iso­
tropic subspace (that is, a space on which f(x, y) is 
identically zero). 

4. The groups GO.(q), SO.(q), PGO.(q), PSO.(q), 
and O.(q) 

A symmetric bilinear form on a space V over IF q is a function 
f(x, y) defined for all x, y in V and taking values in IF q which 
satisfies 

f(JI.,x, + AzXz , y) = Jl..f(x, y) + Jl.zf(xz, y) 

(linearity in x), and also 

f(y, x) = f(x, y) 

(symmetry). It is then automatically linear in y. A quadratic form 
on V is a function F(x) defined for x in V and taking values in 
IF q, for which we have 

Fl:JI.x +fLY)= Jl. 2F(x)+ AfLf(x, y) + fL2F(y) 

for some symmetric bilinear form f(x, y ). 
The kernel of f is the subspace of all x such that f(x, y) = 0 for 

all y, and the kernel ofF is the set of all x in the kernel of f for 
which also F(x) = 0. 

When the characteristic is not 2 ,  F and f uniquely determine 
each other, so that the two kernels coincide. The literature 
contains a bewildering variety of terminology adapted to de­
scribe the more complicated situations that can hold in charac­
teristic 2. This can be greatly simplified by using only a few 

standard terms (rank, nullity, non-singular, isotropic), but always 
being careful to state to which of f and F they apply. 

Thus we define the nullity and rank of either f or F to be the 
dimension and codimension of its kernel, and say that f or F is 
non-singular just when its nnllity is zero. A subspace is said to 
be (totally) isotropic for f if f(x, y) vanishes for all x, y in that 
subspace, and (totally) isotropic for F if F(x) vanishes for all x in 
the subspace. When the characteristic is not 2 our adjectives can 
be freely transferred between f and F. 

The Witt index of a quadratic form F is the greatest dimen­
sion of any totally isotropic subspace for F. It turns out that if 

two non-singular quadratic forms on the same space over IF q 

have the same Witt index, then they are equivalent to scalar mul­
tiples of each other. The Witt defect is obtained by subtracting 
the Witt index from its largest possible value, Hn ]. For a non­
singular form over a finite field the Witt defect is 0 or 1. 

The general orthogonal group GO.(q, F) is the subgroup of all 
elements ofGL,(q) that fix the particular non-singular quadratic 
form F. The determinant of such an element is necessarily ±1, 
and the special orthogonal group SO. (q, F) is the subgroup of all 
elements with determinant 1. The projective general orthogonal 
group PGO. (q, F) and projective special orthogonal group 
PSO.(q, F) are the groups obtained from GO.(q, F) and 
SO.(q, F) on factoring them by the groups of scalar matrices 
they contain. 

In general PSO.(q, F) is not simple. However, it has a certain 
subgroup, specified precisely later, that is simple with finitely 
many exceptions when n;;;. 5. This subgroup, which is always of 
index at most 2 in PSO. (q, F), we call 0. (q, F). 

When n = 2m + 1 is odd, all non-singular quadratic forms on a 
space of dimension n over IF q have Witt index m and are 
equivalent up to scalar factors. When n = 2m is even, there are 
up to equivalence just two types of quadratic form, the plus type, 
with Witt index m, and the minus type, with Witt index m -1. 
(These statements make use of the finiteness of IF wl Accordingly, 
we obtain only the following distinct families of groups: 

When n is odd GO.(q), SO.(q), PGO.(q), PSO.(q), O.(q), 
being the values of GO. ( q, F) (etc.) for any non-singular F. 

When n is even GO�(q), SO�(q), PGO�(q), PSO�(q), O�(q) 
for either sign e = + or -, being the values of GO.(q, F) (etc.) 
for a form F of plus type or minus type respectively. 

We now turn to the problem of determining the generally 
simple group O.(q) or O�(q). This can be defined in terms of 
the invariant called the spinor norm, when q is odd, or in terms 
of the quasideterminant, when q is even. We define these below, 
supposing n;;;. 3 (the groups are boring for n .;:;2). 

A vector r in V for which F(r) f 0 gives rise to certain 
elements of GO. (q, F) called reflections, defined by the formula 

f(x, r) 
x...., x-

F(r) 
. r. 

We shall now define a group O�(q) of index 1 or 2 in SO�(q). 
The image P�(q) of this group in PSO�(q) is the group we call 

O�(q), which is usually simple. The a, PO notation was intro­
duced by Dieudonne, who defined O��o be the commutator 
subgroup of SO� (q), but we have changed the definition so as to 
obtain the 'correct' groups (in the Chevalley sense) for small n. 
For n;;;. 5 our groups agree with Dieudonne's. 

When q is odd, �(q) is defined to be the set of all those g in 
SO� (q) for which, when g is expressed in any way as the product 
of reflections in vectors r, r2 , • • •  , r, we have 

F(r1) • F(r2) . .... F(r,) a square in IF w 
The function just defined is called the spinor norm of g, and 
takes values in IF�/(IF�JZ. where IF� is the multiplicative group of 
IF.- Then O�(q) has index 2 in SO�(q). It contains the scalar 
matrix -1 just when n = 2m is even and (4, qm-e)= 4. 

When q is even, then if n =2m + 1 is odd, SO.(q) = GO.(q) is 
isomorphic to the (usually simple) symplectic group Spzm(q), and 
we define n.(q) = SO.(q). To obtain the isomorphism, observe 
that the associated symmetric bilinear form f has a one­
dimensional kernel, and yields a non-singular symplectic form 
on VI ker(f). 
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For arbi trary q, and n = 2m even, we define the quasidetermin­
ant of an element to be ( -1)", where k is the dimension of its 
fixed space. Then for q odd this homomorphism agrees with the 
determinant, and for q even we define 0� to be its kernel. The 
quasideterminant can also be written as ( -1)0, where D is a 
polynomial invariant called the Dickson invariant, taking values 
in IF2• 

An alternative definition of the quasideterminant is available. 
When s = + there are two families of maYJmal isotropic sub­
spaces for F, two spaces being in the same family just if the 
codimension of their intersection in either of them is even. Then 
the quasideterminant of an element is 1 or -1 according as it 
preserves each family or interchanges the two families. When 
e =-, the maximal isotropic spaces defined over IF • have dimen­
sion m -1, but if we extend the field to IF •', we obtain two 
families of m-dimensional isotropic spaces and can use the same 
definition. 

When n = 2m + 1 is odd, the groups have orders 

IGO"(q)l = dN, ISO"(q)l = IPGO"(q)l = IPSO"(q)l = N, 

IOn(q)l = IPiln(q)l = I On(q)l = N/d, 
where 

N = qm'(q2m -1)(q2m-2_1) . .. (q2-1) 

and d = (2, q -1). 02m+t(q) is the ad joint Chevalley group 
Bm(q), with Dynkin diagram 

0-0-0 · · · 09=0 (m nodes). 
1 2 3 m-1 m 

The maximal parabolic subgroup correlated with the node label­
led k corresponds to the stabilizer of an isotropic k-space for F. 

When n = 2m is even, the groups have orders 

IGO�(q)l = 2N, ISO�(q)l = IPGO�(q)l = 2N/e, 

IPSO�(q)l = 2N/e 2, IO�(q)l = N/e, 

IPO�(q)l = I On(q)l = N/d, 

where 

N = qm<m-tl(q"' _ s)(q,.,_2_1)(q2m-4_1) . . .  (q2_1) 

and d= (4,qm-s), e= (2,qm-s). 
O'i:m(q) is the adjoint Chevalley group Dm(q), with Dynkin 

diagram 

o-o-o 
1 2 3 

(m, 

( m  nodes). 
m -

m2 
The maximal parabolic subgroup correlated with the node label-

led k,;; m-2 corresponds to the stabilizer of an isotropic k­
space for F. Those correlated with the nodes labelled m, and m2 
correspond to stabilizers of members of the two families of 
isotropic m-spaces for F. 

02m(q) is the twisted Chevalley group 2Dm(q), with the Dyn­
kin diagram and twisting automorphism 

o-o-o 

· · . Am -1 
(m nodes). 

1 2 3 m-2'o.!
m�1 

The maximal parabolic subgroup correlated with the orbit of 
nodes labelled k ,;; m -1 corresponds to the stabilizer of an 
isotropic k-space for F. 

For n,;; 6, the orthogonal groups are isomorphic to other 
classical groups, as follows: 

O,(q) = L,(q), O;i(q) = L2(q) x L,(q), 04(q) = L,(q2), 

O,(q) = S.(q), O�(q) = L.(q), O;;(q) = U .(q). 

The group On(q) is simple for n;;. 5, with the single exception 
that 05(2) = S.(2) is isomorphic to the symmetric group S6• 

5. Oassification of points and hyperplanes in orthogonal 
spaces 

Let V be a space equipped with a non-singular quadratic form 
F. Then for fields of odd characteristic many authors classify the 
vectors of V into three classes according as 

F(v)=O, 

F(v) a non-zero square, 

F(v) a non-square, 

since these correspond exactly to the three orbits of projective 
points under the orthogonal group of F. 

In this A lf 1L A§ we prefer a different way of making these 
distinctions, which is independent of the choice of any particular 
scalar multiple of the quadratic form F, and which does the 
correct thing in characteristic 2 .  We say that a subspace H of 
even dimension on which F is non-singular is of plus type or 
minus type according to the type of F when restricted to H, and 
if H is the hyperplane perpendicular to a vector v , we apply the 
same adjectives to v. Thus our version of the above classification 
is 

v is ot r o pic (or null ), 

v of plus type, 

v of minus type. 

Table 2. Structures of classical groups 

d GL,.(q) PGL,.(q) SL,.(q) PSL,. (q) = L,. (q) 

(n,q-1) 
(q-1 ) 

d. dxG .d G.d d.G G 

d GUn(q) PGUn(q) SU"(q) PSU"(q) = Un(q) 

(n, q+ 1) 
(q+1 ) 

d. -
d

-XG .d G.d d.G G 

d Spn(q) PSpn(q) = S"(q) 

(2, q-1) =2 2.G G 
(2, q-1) = 1 G G 

d GO�(q) PGO�(q) SO�(q) PSO�(q) O�(q) PO�(q) = O�(q) 

(4,qm-s)=4 2 .G.22 G.22 2 .G.2 G.2 2.G g}n=2m (4,qm-s)=2 2X G.2 G.2 2XG G G 
(4,qm-s)=1 G.2 G.2 G.2 G.2 G 
(2, q-1) =2 2XG.2 G.2 G.2 G.2 G g}n=2m +1 
(2, q-1) =1 G G G G G 
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6. The Cliftord algebra and the spin group 

The Clifford algebra of F is the associative algebra generated 
by the vectors of V with the relations x2 = F(x), which imply 
xy+yx=f(x,y). If V has basis e, . . . ,e,, then the Clifford 
algebra is 2" -dimensional, with basis consisting of the formal 
products 

The vectors r with F(r) 'f 0 generate a subgroup of the Clifford 
algebra which is a central extension of the orthogonal group, 
the vector r in the Clifford algebra mapping to the negative of 
the 'reflection in r. When the ground field has characteristic 'f2, 
this remark can be used to construct a proper double cover of 
the orthogonal group, called the spin group. 

7. Structure tables for the classical groups 

Table 2 describes the structure of all the groups mentioned, in 
terms of the usually simple group G, which is the appropriate 
one of L,(q), U.(q), S.(q), O.(q). 

8. Other notations for the simple groups 

There are many minor variations such as L, (IF q) or L(n, q) for 
L, (q) which should give little trouble. However, the reader 
should be aware that although the 'smallest field' convention 

which we employ in this A.lr D.. A.§ is rapidly gammg ground 
amongst group theorists, there are still many people who write 
Un(q2) or U(n, q2) for what we call Un(q). Artin's 'single letter 
for simple group' convention is not universally adopted, so that 
many authors would use Un(q) and On(q) for what we call 
GU.(q) and GOn(q) . The notations E2(q) and E4(q) have some­
times been used for G2(q) and F.(q). 

Dickson's work has had a profound influence on group theory, 
and his notations still have some currency, but are rapidly 
becoming obsolete. Here is a brief dictionary: 

(Linear fractional) LF(n, q) = L,(q) 

(Hyperorthogonal) HO(n, q2) = Un(q) 

(Abelian linear) A(2m, q) = S2m(q) 

(F
. 

th l)
{F0(2m + 1, q) = 02m+1(q) 

1rst or ogona 

• )} F0(2m, q) = 02m(q where e = ± 1, 

(Second orthogonal) S0(2m, q) = 02!(q) qm 
== e modulo 4. 

(First hypoabelian) FH(2m, q) = O�m(q) 

(Second hypoabelian) SH(2m, q) = 02m(q) 

Dickson's first orthogonal group is that associated with the 
quadratic form xi+ x�+ ... + x�. His orthogonal groups are 
defined only for odd q, and his hypoabelian groups only for even 
q. He uses the notation GLH(n, q) (General Linear Homogene­
ous group) for GL,(q). 
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The Chevalley and twisted 
Chevalley groups 

1. The untwisted groups 

The Chevalley and twisted Chevalley groups include and neatly 
generalize the classical families of linear, unitary, symplectic, 
and orthogonal groups. 

In the entries for individual groups in the A lr IL A§, we have 
preferred to avoid the Chevalley notation, since it requires 
considerable technical knowledge, and since most of the groups 
we discuss also have classical definitions. The classical descrip­
tions, when available, permit easy calculation, and lead readily 
to the desired facts about subgroups, etc. 

However, for a full understanding of the entire set of finite 
simple groups, the Chevalley theory is unsurpassed. In particular 
the isomorphisms such as L.(q) = Ot(q) between different classi­
cal groups of the same characteristic become evident. The full 
Chevalley theory is beyond the scope of this A lr ILA§, but in the 
next few pages we give a brief description for those already 
acquainted with some of the terminology of Lie groups and Lie 
algebras. We reject any reproach for the incompleteness of this 
treatment. It is intended merely to get us to the point where we 
can list all the groups, and the isomorphisms among them, and 
also te specify their Schur multipliers and outer automorphism 
groups. 

In 1955 Chevalley discovered a uniform way to define bases 
for the complex simple Lie algebras in which all their structure 
constants were rational integers. It follows that analogues of 
these Lie algebras and the corresponding Lie groups can be 
defined over arbitrary fields. The resulting groups are now 
known as the adjoint Chevalley groups. Over finite fields, these 
groups are finite groups which are simple in almost all cases. The 
definition also yields certain covering groups, which are termed 
the universal Chevalley groups. If a given finite simple group can 
be expressed as an adjoint Chevalley group, then in all but 

Table 3. Dynkin diagrams 

0 o-o o-o-o o-o-o-o o--o-o-o--0 
A, Az A, A4 As 

0 � � � � 
B, Bz B, B4 Bs 

0 � � � � 
c, Cz c, c4 Cs 

0 

< ~ o-o-c( 0 
Dz D, D4 Ds 

� � 

�� Gz F4 

� 

finitely many cases its abstract universal cover is the correspond­
ing universal Chevalley group. 

In the standard notation, the complex Lie algebras are 

An Bn C, Dn Gz F4 E. E, Es 

where to avoid repetitions we may demand that n ;a.l, 2, 3, 4 for 
A., B., C,, Dn respectively. The corresponding adjoint Cheval­
ley groups are denoted by 

An(q), Bn(q), C,(q), Dn(q), Gz(q), F.(q), E.(q), E,(q), Es(q). 

The corresponding Dynkin diagrams, which specify the structure 
of the fundamental roots, appear in Table 3. In the cases when a 
p-fold branch appears (p = 2 or 3), the arrowhead points from 
long roots to short ones, the ratio of lengths being ../p. We have 
included the non-simple case D2=A1EBA, and the repetitions 
A1 = B1 = C, B2 = Cz, A3 = D3, since these help in the under­
standing of the relations between various classical groups. 

2. The twisted groups 

Steinberg showed that a modification of Chevalley's procedure 
could be made to yield still more finite groups, and in particular, 
the unitary groups. 

Any symmetry of the Dynkin diagram (preserving the direc­
tion of the arrowhead, if any) yields an automorphism of the Lie 
group or its Chevalley analogues, called an ordinary graph 
automorphism. Let us suppose that a is such an automorphism, 
of order t, and call it the twisting automorphism. We now define 
the twisted Chevalley group 'Xn (q, q') to be set of elements of 
Xn (q') that are fixed by the quotient of the twisting automorph­
ism and the field automorphism induced by the Frobenius map 
x .....;.xq of Fq'· 

The particular cases are 

2An(q,q2)= Un+l(q), (n;a.2) 
2D" (q, q2) = 02n(q), (n;;;. 3) 

'D.(q, q'), 
zE6(q, qz), 

the last two families being discovered by Steinberg. We usually 
abbreviate 'Xn(q, q') to 'X"(q). 

A further modification yields the infinite families of simple 
groups discovered by Suzuki and Ree. If the Dynkin diagram of 
X" has a p-fold edge (p = 2, 3), then over fields of characteristic 
p the Chevalley group is independent of the direction of the 
arrowhead on that edge. In other words, there is an isomorph­
ism between X"(pf) and Y"(pf), where Y" is the diagram ob­
tained from X" by reversing the direction of the arrowhead. 
Thus for example, B"(2f) = C,(2f), or in classical notation 
02n+1(2f) = S2"(2f), as we have already seen. 

In the three cases B2 = C2, 02, F., the diagram has an auto­
morphism reversing the direction of the p-fold edge, and so 
over fields of the appropriate characteristic p, the resulting 

· Chevalley groups have a new type of graph automorphism, 
which we call an extraordinary graph automorphism, whose 
square is the field automorphism induced by the Frobenius 
mapx____,..xP. 
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Now when q = p2m+l is an odd power of this p, the field 
automorphism induced by x --;. xp-•• has the same square, and 
the elements of Xn(p2m+1) fixed by the quotient of these two 
automorphisms form a new type of twisted Chevalley group, 
called 2Xn(*, p2m+1), and usually abbreviated to 2Xn(p2m+l). The 
particular cases are 

2B
2( *, 22m+') = 2C

2( *, 22m+'), a Suzuki group, 

2G
2( *, 32m+1), a Ree group of characteristic 3, 

2 F.(*, 22m+1), a Ree group of characteristic 2. 

These groups are often written 

Sz(q), R1(q), R2(q), 

where q = p2m+l , but the subscripts 1 and 2 for. the two types of 
Ree group can be omitted without risk of confusion. 

It turns out that the first group in each of these families is not 
simple, but all the later ones are simple. The cases are 

2B
2(2) = 5:4, the Frobenius group of order 20, 

2G
2(3) = Lz(S): 3, the extension of the simple group Lz(S) 

of order 504 by its field automorphism; 

2 F4(2) = T .  2, where T is a simple group not appearing elsewhere 
in the classification of simple groups, called the Tits group. 

Table 4 gives the Dynkin diagrams and twisting automorph­
isms for all the twisted groups. We remark that what we have 
called simply the twisted Chevalley groups are more fully called 

Table 4. Diagrams and twisting automorphisms for twisted 
groups 

0 o=D � � � z
A, 2A2 

2A, 2A• 2As 

0) 
0 c\) �) �) 

2D2 2D, 2D• 2Ds 

e) �� � 'D. E6 

� &iD � 
2B

2=2C
2 2G2 2p4 

the adjoint twisted Chevalley groups, and that, like the un­
twisted groups, they have certain multiple covers called the 
universal twisted Chevalley groups. We have included the un­
twisted group 2A1 =A1 in the table, and also the case 2D

2 
obtained by twisting a disconnected diagram, and the repetition 
2 A3 = 2 D3• The reason is again that these special cases illuminate 
relations between some classical groups. 

3. Multipliers and automorpbisms of Chevalley groups 

The Schur multiplier has order de, and the outer automorphism 
group has order dfg, where the order of the base field is q = p1 (p 
prime), and the numbers d, f, g are tabulated in Table 5. (An 
entry '2 if ... ' means 1 if not.) 

The Schur multiplier is the direct product of groups of orders 
d (the diagonal multiplier) and e (the exceptional multiplier). The 
diagonal multiplier extends the adjoint group to the correspond­
ing universal Chevalley group. The exceptional multiplier is 
always a p-group (for the above p ), and is trivial except in 
finitely many cases. 

The outer automorphism group is a semidirect product (in this 
order) of groups of orders d (diagonal automorphisms), f (field 
automorphisms ), and g (graph automorphisms modulo field auto­
morphisms), except that for 

Bz(21), Gz(31), F4(21) 

the (extraordinary) graph automorphism squares to the generat­
ing field automorphism. The groups of orders d, e, f, g are cyclic 
except that 3! indicates the symmetric group of degree 3, and 
orders written as powers indicate the corresponding direct pow­
ers of cyclic groups. 

4. Orders of the Chevalley groups 

In Table 6, the parameters have been chosen so as to avoid the 
'generic' isomorphisms. 
N is the order of the universal Chevalley group. 
N/d is the order of the adjoint Chevalley group. 

5. The simple groups enumerated 

The exact list of finite simple groups is obtained from the union 
of 

the list of Chevalley groups (Table 5) 
the alternating groups An, for n ;;. 5 
the cyclic groups of prime order 
the 26 sporadic groups, and finally 
the Tits simple group T = 2 F4(2)' 

by taking into account ' the exceptional isomorphisms below. 
Each of these isomorphisms is either between two of the above 
groups, or between one such group and a non-simple group. For 
the reader's convenience, we give both the Chevalley and classi­
cal notations. 

The exceptional isomorphisms: 

A,(2) = L2(2) ,S, 

A1(3) = L2(3) "'A• 

A,(4} = L2(4) "'As 

A,(5) = L2(5)"'As 

Bz(2) = S.(2)"' S6 

G2(2) "'2 Az(3} . 2 = U,(3) . 2 

2 A2(2) = U,(2)"" 32 . Os 

2 A3(2) = U.(2) ""B
2(3) = S.(3) 

A1(7) = Lz(7) ""A2(2) = L3(2) 2B2(2) = Sz(2) ,5:4 

A,(9) = Lz(9) ""A6 2Gz(3) = R(3) "'A1(8). 3 = Lz(S). 3 

A3(2) = L.(2) "'As 2F.(2) = R(2)"' T .  2. 

6. Parabolic subgroups 

With every proper subset of the nodes of the Dynkin diagram 
there is associated a parabolic subgroup, which is in structure a 
p"group extended by the Chevalley group determined by the 
subdiagram on those nodes. (Here p, as always, denotes the 
characteristic of the ground field IF.-) The maximal parabolic 
subgroups are those associated to the sets containing all but one 
of the nodes-we shall say that such a subgroup is correlated to 
the remaining node. According to the Borel-Tits theorem the 
maximal p-local subgroups of a Chevalley group are to be found 
among its maximal parabolic subgroups. These statements hold 
true for the twisted groups, provided we replace 'node' by 'orbit 
of nodes under the twisting automorphism'. 

7. The fundamental representations 

The ordinary representation theory of Chevalley groups, as 
recently developed by Deligne and Lusztig, is very complex, and 
the irreducible modular representations are not yet completely 
described. But certain important representations (not always 
irreducible) can be obtained from the representation theory of 
Lie groups. 

The irreducible representations of a Lie group are completely 
classified, and can be written as 'polynomials' in certain funda­
mental representations, one for each node of the Dynkin dia­
gram. The degrees of the representations for the various Lie 
groups Xn are given in Table 7. By change of field, we obtain 
the so-called fundamental representations of the universal 
Chevalley group Xn (q), which are representations over the field 
IF q having the given degrees. In the classical cases these are fairly 
easily described geometrically-for example in An(q) = L.+l(q) 
the fundamental representation corresponding to the rth node is 
that of S4+1(q) on the rth exterior power of the original vector 
space V. 
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Table 5. Automorphisms and multipliers of the Chevalley groups 

Definitions of 

Condition Group d f g Cases when e f 1 
A1(q) (2, q-1) q=pl 1 AM)-->2, A1(9)--> 3 n�2 A.,(q) (n+ 1, q-1) q=pl 2 Az(2) -->2, A2(4)--> 42, A3(2) -->� n�2 2A.,(q) (n+1,q+1) q2= pi 1 2 A3(2) --> 2, 2 A3(3)--> 32, 2 As(2) --> 22 
Bz(q) (2, q-1) q=pl 2ifp=2 B2( 2)--> 2 

fodd 2B2(q) 1 q=21 1 2 B2(8)--> 22 n�3 B.,(q) (2, q-1) q=pl 1 B3(2) -->2, B3(3)--> 3 n�3 C,(q) (2, q-1) q=pl 1 C3(2) -->2 
Diq) (2, q-1)' q=pl 3! D.(2)-->22 

3D.(q) 1 q3= pi 1 none n>4,even D.,(q) ( 2,q-1)' 
q=pf 2 none 

n>4,odd D.,(q) (4, q" -1) q=pf 2 none n;;=:4 2D.,(q) (4,q"+1) q2= pf 1 none 

G2(q) 1 q=pl 2ifp=3 G2(3)-->3, G2(4)--> 2 
f odd 2G2(q) 1 q=31 1 none 

Fiq) 1 q=pl 2 if p= 2 F.(2)-->2 
fodd 2Fiq) 1 q=21 1 

E.(q) (3, q-1) q=pl 2 
2E.(q) (3, q+ 1) q2=p 1 
E,(q) (2, q-1) q=pl 1 
Es(q) 1 q=pl 1 

Table 6. Orders of Chevalley groups 

G N d 

A,(q), n"' 1 q"(n+l)/2 fi (qHl_l) 
i=l 

(n+1,q-1) 

q"' fi (q2' -1) 
l;:ol 

q"' fi (q2' -1) 
i=l 

·-· q"'"-''(q"-1) n (q2'-1) 
i=l 

q6(q6-1)(q2-1) 

q24(q»-1)(q8 -1)(q6-1)(q2-1) 

q36(q»-1)(q9 -1)(q8-1)(q6 -1)(q5-1)(q2-1) 

(2,q-1) 

(2,q-1) 

(4,q"-1) 

1 

1 

(3,q-1) 

Gz(q) 
F.(q) 

E.(q) 

E,(q) q63(q"-1)(q"-1)(q»-1)(q'"-1)(q8-1)(q6-1)(q2-1) (2, q -1) 

E8(q) q'"'(q"'-1)(q24-1)(q"'-1)(q"-1) 1 

(q"-1)(q»-1)(q8-1)(q2-1) 

2A,(q),n;.2 q•<n+>l/Z TI (q<+'-(-1)<+') (n+1,q+1) 
·1.=1 

·-· 
2D.,(q), n ;.4 q•<•-•l(q"+1) n (q20-1) 

i=l 

3D.(q) q»(q8+q4+ 1)(q6-1)(q2-1) 
2Gz(q),q�32m+> q'(q'+1)(q-1) 

2F.(q), q =22m+> q»(q6+ 1)(q•-1)(q'+1)(q-1) 

2E6(q) q36(q»-1)(q9+ 1)(q8-1)(q6-1)(q'+ 1)(q2-1) 

1 

(4,q"+1) 

1 

1 

1 

(3,q+1) 

none 
none 

2E6( 2)--> 22 
none 
none 

Table 7. Degrees of the fundamental representations of Lie and 
Chevalley groups. (The degrees are the numbers below or to the 

right of the nodes.) 

1 2 r n-1 n 
0---0- : : :  -o-::: -0---0 

A., n+1 (n;1}·t;1)-·t��) n+1 
6----.6--:::�:::� B., 2n+1 (2n2+1)···(2nr+1)··{2=��) 2" 

1 2 r n-1 n 
�-··---o-···� --- ---

c. 2n (22n)-1··er n)-C�n2) ... (2nn)-C2�2) 

D., 

G2 

F. 

1 2 r 
f!:J('"' :-fl�::fF� C-2) 2 

.. _, 

1r4 

!' 
273 78 
1274 E6 52 

27 
351 2925 
351 
27 

56 
1539 27664 365750 912 8645 147250 

E, 133 Es 

248 
30380 2450240 
146325270 6899079264 
6696000 3875 




