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Abstract
In this paper, we completely determine all repdigits in base 10 which can be ex-
pressed as sums of two Fibonacci numbers and two Lucas numbers.

1. Introduction

Recall that a positive integer is called a repdigit (sequence A010785 in the OEIS
[13]), if it has only one distinct digit in its decimal expansion. In particular, a
repdigit with base 10 has the form

d

✓
10n � 1

9

◆
, for some n � 1 and 1  d  9.

Questions concerning the Diophantine equations involving repdigits have been
studied for a long time, (see [1, 4]). In recent years, there has been quite some
interests in computing base 10 repdigits expressible as sums or products of num-
bers from another sequence. In 2012, D. Marques and A. Togbé determined all the
repdigits which are the product of consecutive Fibonacci numbers [9]. In the same
year, Luca [6] found all the repdigits as sums of three Fibonacci numbers by follow-
ing a general method described in [5]. Also, some analogous results were obtained
for Lucas numbers and Pell numbers (see [8] and [12]).
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Recently, Normenyo, Luca, and Togbé [7, 11] extended these results to repdigits
as sums of four numbers in Fibonacci, Lucas or Pell sequences. However, results
such as repdigits as sums of numbers from at least two di↵erent sequences do not
exist. In fact, this came up in a question raised to A. Togbé during his talk at CNTA
XV in July 2018 in Quebec City, Canada. The goal of this paper is to provide an
answer to that question in the context of Repdigits, Fibonacci numbers and Lucas
numbers.

The Fibonacci sequence (Fn)n and the Lucas sequence (Ln)n are given, respec-
tively, by

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn, for n � 0

and
L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln, for n � 0.

In this paper, we determine all the base 10 repdigits which can be expressed as
the sum of two Fibonacci numbers and two Lucas numbers. In particular, we prove
the following theorem.

Theorem 1. All nonnegative integer solutions (s1, s2, t1, t2, n) of the equation

N = Fs1 + Fs2 + Lt1 + Lt2 = d

✓
10n � 1

9

◆
, (1)

with
d 2 {1, . . . , 9}, n � 1, s1  s2, and t1  t2,

have

N 2 {2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99,
111, 222, 333, 444, 555, 666, 777, 888, 999, 1111, 2222,
4444, 5555, 7777, 8888, 11111, 22222, 66666, 333333} = R.

Here is the organization of this paper. Our method consists in applying Bugeaud,
Mignotte, and Siksek’s theory of linear forms in logarithms of algebraic numbers
in order to get an absolute bound on the variables. Afterwards, we use reduction
procedures to reduce our bounds to some reasonable values. In the next section, we
recall some useful results which we need to prove our theorem. Section 3 contains
the proof of our main theorem. We divide the proof into several cases depending on
the relations among the variables si, ti, i = 1, 2. We explain our work thoroughly
for one of the cases. For the remaining cases, we put only the necessary results to
avoid any redundancy.

2. Preliminaries

In this section, we recall some results that are useful for the proof of Theorem 1.
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Firstly, we discuss a lower bound for linear forms in logarithms due to Bugeaud,
Mignotte, and Siksek [2], which is a consequence of the result of Matveev [10].

Let K be an algebraic number field of degree D over Q, let ↵1, . . . ,↵n 2 K \ {0}
and let b1, . . . , bn 2 Z. Set

B = max{|b1|, . . . , |bn|}

and
⇤ = ↵b1

1 · · ·↵bn
n � 1.

Let A1, . . . , An be real numbers with

max{Dh(↵i), | log↵i|, 0.16}  Ai, 1  i  n,

where h(⌘) is the logarithmic height of an algebraic number ⌘ which is given by the
formula

h(⌘) =
1

d(⌘)

0

@log |a0| +
d(⌘)X

i=1

log
⇣
max{|⌘(i)|, 1}

⌘
1

A ,

where d(⌘) is the degree of ⌘ over Q and

f(X) = a0

d(⌘)Y

i=1

⇣
X � ⌘(i)

⌘
2 Z[X]

the minimal polynomial of ⌘ of degree d(⌘) over Z.

Lemma 1. ([2, Theorem 9.4]) Assume that ⇤ 6= 0. We then have

log |⇤| > �3⇥ 30n+4 ⇥ (n + 1)5.5D2(1 + log D)(1 + log nB)A1 · · ·An.

Furthermore, if K is real, we have

log |⇤| > �1.4⇥ 30n+3 ⇥ n4.5D2(1 + log D)(1 + log B)A1 · · ·An.

We also require some properties of the absolute logarithmic height of algebraic
numbers. These properties are contained in Lemma 2 below.

Lemma 2. ([15, Property 3.3]) For algebraic numbers ↵1 and ↵2,

h(↵1↵2)  h(↵1) + h(↵2)

and
h(↵1 + ↵2)  log 2 + h(↵1) + h(↵2).

Moreover, for any algebraic number ↵ 6= 0 and for any n 2 Z,

h (↵n) = |n|h(↵).
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We now discuss a computational method for reducing upper bounds for solutions
of Diophantine equations.

Let #1,#2, � 2 R be given, and let x1, x2 2 Z be unknowns. Let

⇤ = � + x1#1 + x2#2. (2)

Let c, � be positive constants. Set X = max{|x1|, |x2|}. Let X0 be a (large) positive
constant. Assume that

|⇤| < c · exp(�� · Y ), (3)

X  X0. (4)

When � = 0 in (2), we get
⇤ = x1#1 + x2#2.

Put # = �#1/#2. Let the continued fraction expansion of # be given by

[a0, a1, a2, . . .],

and let the kth convergent of # be pk/qk for k = 0, 1, 2, . . .. We may assume without
loss of generality that |#1| < |#2| and that x1 > 0. We have the following results.

Lemma 3. ([14, Lemma 3.2]) Let

A = max
0kY0

ak+1,

where k is an integer such that

k  �1 +
log
�
1 + X0

p
5
�

log
⇣

1+
p

5
2

⌘ := Y0.

If (3) and (4) hold for x1, x2 and � = 0, then

Y <
1
�

log
✓

c(A + 2)X0

|#2|

◆
.

When �#1#2 6= 0 in (2), put # = �#1/#2 and  = �/#2. Then we have
⇤
#2

=  � x1#+ x2.

Let p/q be a convergent of # with q > X0. For a real number x we define kxk =
min{|x� n|, n 2 Z} to be the distance from x to the nearest integer. We have the
following result.

Lemma 4. ([14, Lemma 3.3]) Suppose that

k q k> 2X0

q
.

Then, the solutions of (3) and (4) satisfy

Y <
1
�

log
✓

q2c

|#2|X0

◆
.
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3. Proof of Theorem 1

Recall that if s and t are any nonnegative integers, then

Fs =
↵s � �s

p
5

, (5)

and
Lt = ↵t + �t, (6)

where

↵ =
1 +

p
5

2
and � =

1�
p

5
2

,

are the solutions of the quadratic equation x2 � x � 1 = 0. Equations (5) and (6)
are known as Binet’s formula for Fibonacci and Lucas numbers, respectively.

To prove our result, we shall consider six possible cases in the sequel. The first
three cases arise when we consider max{s2, t2} = t2, and the last three cases arise
when max{s2, t2} = s2.

Case 1: We consider 0  s1  s2  t1  t2. Assume that t2  500. By equation
(1), we obtain

10n�1  d

✓
10n � 1

9

◆
= Fs1 + Fs2 + Lt1 + Lt2  4(1 + Lt2)  4(1 + L500),

which leads us to the inequality

n  1 +
log(4(1 + L500))

log 10
,

from which it follows that 0  n  106.
A search in Maple reveals that all the nonnegative integer solutions (s1, s2, t1, t2, n)

of the Diophantine equation

N = Fs1 + Fs2 + Lt1 + Lt2 = d

✓
10n � 1

9

◆
,

with
1  d  9, 0  n  106, and 0  s1  s2  t1  t2,

have

N 2 {2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333,
555, 666, 777, 888, 2222, 11111, 66666} = R1.

The set R1 is a subset of R in Theorem 1.
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Next, we assume that t2 � 501. If t2 � 501, we have

L501  Lt2  Fs1 + Fs2 + Lt1 + Lt2 = d

✓
10n � 1

9

◆
 10n � 1,

which gives us

104  log(1 + L501)
log 10

 n.

Further, notice that

10n�1  d

✓
10n � 1

9

◆
= Fs1 + Fs2 + Lt1 + Lt2  4(1 + Lt2) < 12↵t2 < ↵t2+5.2.

The last inequality gives us

n < 4.78n� 9.98 < t2,

where we used the fact that n � 104.
Now, we examine equation (1) in four possible ways, as captured in the following

four steps.

Step 1: We express (1) in the form

↵t2

✓
↵s1�t2
p

5
+
↵s2�t2
p

5
+ ↵t1�t2 + 1

◆
� d⇥ 10n

9
= �d

9
+
�s1

p
5

+
�s2

p
5
��t1��t2 , (7)

which gives us
����↵

t2

✓
↵s1�t2
p

5
+
↵s2�t2
p

5
+ ↵t1�t2 + 1

◆
� d⇥ 10n

9

���� < ↵2.83. (8)

Thus, we arrive at
�����1� ↵

�s110n

 
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

�

!����� < ↵2.83�t2 . (9)

Put

�1 := 1� ↵�s110n

 
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

�

!

.

We wish to apply Lemma 1 on �1. First, we need to prove that � 6= 0. If indeed it
were zero, then

↵s1 + ↵s2 +
p

5
�
↵t1 + ↵t2

�
=

10n ⇥ d
p

5
9

,

which implies

�s1 + �s2 �
p

5
�
�t1 + �t2

�
= �10n ⇥ d

p
5

9
,
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by conjugating in Q
�p

5
�
. As a result, we obtain

↵501 < ↵t2 < ↵s1 + ↵s2 +
p

5
�
↵t1 + ↵t2

�

=
����s1 + �s2 �

p
5
�
�t1 + �t2

���� < 2
⇣
1 +

p
5
⌘

,

which is not possible as ↵501 > 2(1 +
p

5). Therefore, we find that �1 6= 0.
In the notation of Lemma 1, we set

K = Q
⇣p

5
⌘

, ↵1 = ↵, ↵2 = 10, ↵3 =
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

� ,

D = 2, b1 = �s1, b2 = n, b3 = 1, B = max{s1, n, 1}  t2.

We find that

max{2h(↵1), | log↵1|, 0.16} = log↵ < 0.49 =: A1,

max{2h(↵2), | log↵2|, 0.16} = 2 log 10 < 4.61 =: A2.

Let us set

C1 = 2.3⇥ 1012 > 1.4⇥ 306 ⇥ 34.5 ⇥D2 ⇥ (1 + log D)⇥A1 ⇥A2.

We observe that,

↵3 =
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

� <
p

5,

and

↵�1
3 =

9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

�

d
p

5


18
�
5 +

p
5
�

5
↵t2�s1 .

This means that | log↵3| < 4 + (t2 � s1) log↵. Furthermore, we have

h (↵3)  h
⇣
d
p

5
⌘

+ h(9) + h
⇣
1 + ↵s2�s1 +

p
5
�
↵t1�s1 + ↵t2�s1

�⌘

 h
⇣
9
p

5
⌘

+ h(9) + log 2 + h
⇣
↵s2�s1

⇣
1 +

p
5
�
↵t1�s2 + ↵t2�s2

�⌘⌘

 h(9) + 2h(
p

5) + h(9) + 2 log 2 + h(↵s2�s1) + h(↵t1�s2(1 + ↵t2�t1))

 2h(
p

5) + 2h(9) + 3 log 2 + h(↵s2�s1) + h(↵t1�s2) + h(↵t2�t1)

 2h(
p

5) + 2h(9) + 3 log 2 + (s2 � s1)h(↵) + (t1 � s2)h(↵) + (t2 � t1)h(↵)

= log 5 + 2 log 9 + 3 log 2 +
1
2
(t2 � s1) log↵.
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Therefore, 2h(↵3)  17 + (t2 � s1) log↵. As a consequence, we obtain

max{2h(↵3), | log↵3|, 0.16}  17 + (t2 � s1) log↵ =: A3.

The application of Lemma 1 to �1 and the use of (9) yield

t2 log↵ < 2.83 log↵+ (17 + (t2 � s1) log↵)C1(1 + log t2)). (10)

Step 2: Here, begin with the equation

↵t2

✓
↵s2�t2
p

5
+ ↵t1�t2 + 1

◆
� d⇥ 10n

9
= �d

9
+
�s1

p
5

+
�s2

p
5
� �t1 � �t2 � ↵s1

p
5

, (11)

from which we deduce that
����↵

t2

✓
↵s2�t2
p

5
+ ↵t1�t2 + 1

◆
� d⇥ 10n

9

���� < ↵s1+3.06. (12)

This means that
�����1� ↵

�s210n

 
d
p

5
9
�
1 +

p
5 (↵t1�s2 + ↵t2�s2)

�

!����� < ↵s1�t2+3.06. (13)

Put

�2 := 1� ↵�s210n

 
d
p

5
9
�
1 +

p
5 (↵t1�s2 + ↵t2�s2)

�

!

.

Let us assume, if possible, that �2 = 0. Then, we observe that

↵501 < ↵t2 < ↵s2 +
p

5
�
↵t1 + ↵t2

�
< 1 + 2

p
5,

which is a contradiction as ↵501 > 1 + 2
p

5. This shows that �2 6= 0.
To apply Lemma 1 to �2, we set

K = Q
⇣p

5
⌘

, ↵1 = ↵, ↵2 = 10, ↵3 =
d
p

5
9(1 +

p
5 (↵t1�s2 + ↵t2�s2))

,

b1 = �s2, b2 = n, b3 = 1, B = max{s2, n, 1}  t2.

Next, we find A3. Notice that

↵3 =
d
p

5
9(1 +

p
5 (↵t1�s2 + ↵t2�s2))

<
p

5

and

↵�1
3 =

9(1 +
p

5 (↵t1�s2 + ↵t2�s2))
d
p

5


9
�
10 +

p
5
�

5
↵t2�s2 ,
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from which we see that | log↵3| < 4 + (t2 � s2) log↵. We also have that

h (↵3)  h
⇣
d
p

5
⌘

+ h(9) + log 2 + h
⇣p

5
⌘

+ h
�
↵t1�s2

�
1 + ↵t2�t1

��

 log 5 + 2h(9) + 2 log 2 + h
�
↵t1�s2

�
+ h

�
↵t2�t1

�

 log 5 + 2h(9) + 2 log 2 + (t1 � s2)h(↵) + (t2 � t1)h(↵)

= log 5 + 2 log 9 + 2 log 2 +
1
2
(t2 � s2) log↵.

Hence, 2h(↵3)  15 + (t2 � s2) log↵. This leads us to conclude that

max{2h(↵3), | log↵3|, 0.16}  15 + (t2 � s2) log↵ =: A3.

By applying Lemma 1 to �2, we obtain

(t2 � s1) log↵ < 3.06 log↵+ (15 + (t2 � s2) log↵)C1(1 + log t2), (14)

where we used the inquality (13).

Step 3: In this case, we write equation (1) in the form

↵t2
�
↵t1�t2 + 1

�
� d⇥ 10n

9
= �d

9
+
�s1

p
5

+
�s2

p
5
� �t1 � �t2 � ↵s1

p
5
� ↵s2

p
5

, (15)

from which we obtain
����↵

t2
�
↵t1�t2 + 1

�
� d⇥ 10n

9

���� < ↵s2+3.26, (16)

which means that
����1� ↵

�t110n

✓
d

9(1 + ↵t2�t1)

◆���� < ↵s2�t2+3.26. (17)

Put
�3 := 1� ↵�t110n

✓
d

9(1 + ↵t2�t1)

◆
.

Suppose that �3 = 0. Then we obtain

↵501  ↵t2 < ↵t1 + ↵t2 < |�|t1 + |�|t2 < 2,

which implies that ↵501 < 2, an impossibility. Hence, �3 6= 0. In order to use
Lemma 1, we put

↵1 = ↵, ↵2 = 10, ↵3 =
d

9(1 + ↵t2�t1)
, b1 = �t1, b2 = n, b3 = 1,

B = max{t1, n, 1}  t2.
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We find that

↵3 =
d

9(1 + ↵t2�t1)
 1 and ↵�1

3 =
9(1 + ↵t2�t1)

d
 18↵t2�t1 .

Hence, we get | log↵3| < 3 + (t2 � t1) log↵. Next, we obtain

h(↵3)  h(d) + h(9) + log 2 + h(↵t2�t1)
 2h(9) + log 2 + (t2 � t1)h(↵)

= 2h(9) + log 2 +
1
2
(t2 � t1) log↵.

Hence, 2h(↵3)  11 + (t2 � t1) log↵. This implies that

max{2h(↵3), | log↵3|, 0.16} < 11 + (t2 � t1) log↵ =: A3.

Applying Lemma 1 to �3 yields

(t2 � s2) log↵ < 3.26 log↵+ (11 + (t2 � t1) log↵)C1(1 + log t2). (18)

Step 4: In the final step, we have

↵t2 � d⇥ 10n

9
= �d

9
+
�s1

p
5

+
�s2

p
5
� �t1 � �t2 � ↵s1

p
5
� ↵s2

p
5
� ↵t1 , (19)

which leads to ����1� ↵
�t210n

✓
d

9

◆���� < ↵t1�t2+3.65. (20)

Put
�4 := 1� ↵�t210n

✓
d

9

◆
.

Suppose that �4 = 0. Then

↵501 < ↵t2 =
d⇥ 10n

9
= |�t2 | < 1,

which is impossible as ↵501 > 1. Hence, �4 6= 0. We apply Lemma 1 to �4 by setting

↵1 = ↵, ↵2 = 10, ↵3 =
d

9
, b1 = �t2, b2 = n, b3 = 1, A3 = 2.2

Using Lemma 1 we find that

(t2 � t1) log↵ < 3.65 log↵+ 2.2C1(1 + log t2) < 2.21C1(1 + log t2). (21)

Putting together (21) and (18) yields

(t2 � s2) log↵ < 3.26 log↵+ (11 + 2.21C1(1 + log t2))C1(1 + log t2)
< 2.22C2

1 (1 + log t2)2.
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This inequality, together with (14), yield

(t2 � s1) log↵ < 2.23C3
1 (1 + log t2)3,

which combines with (10) to give us

t2 < 1.31 · 1050(1 + log t2)4. (22)

Therefore, we obtain t2 < 4.49 ⇥ 1058. We now employ the reduction method in
three steps as follows.

Let
⇤1 = �t2 log↵+ n log 10 + log

✓
d

9

◆
.

We see from (19) that

↵t2
�
1� e⇤1

�
= �d

9
� Fs1 � Fs2 � Lt1 � �t2  �1

9
+ |�|501 < 0,

since t2 � 501. This implies that ⇤1 > 0. It follows that

0 < ⇤1 < e⇤1 � 1 =
����1� ↵

�t210n

✓
d

9

◆���� < ↵t1�t2+3.65,

which leads to

log
✓

d

9

◆
� t2 log↵+ n log 10 < ↵3.66 exp(�0.48(t2 � t1)),

with X = max{t2, n} = t2  4.49⇥ 1058. It can also be seen that

⇤1

log 10
=

log(d/9)
log 10

� t2
log↵
log 10

+ n.

In order to apply Lemma 4, we set

c = ↵3.66, � = 0.48, X0 = 4.49⇥ 1058,  =
log(d/9)
log 10

, Y = t2 � t1,

# =
log↵
log 10

, #1 = � log↵, #2 = log 10, � = log(d/9).

For � 6= 0, which occurs when d 6= 9, computations reveal that the smallest value of
q such that q > X0 is q = q124, and that q = q125 satisfies the hypothesis of Lemma
4 for d = 1, . . . , 8. Application of Lemma 4 leads us to t2 � t1  299 and t1 � 202.

For � = 0, which occurs when d = 9, we deduce that 0  k  281 and A =
a138 = 770 using the notation of Lemma 3. Lemma 3 then gives us t2 � t1  297.

Next, we consider

⇤2 = �t1 log↵+ n log 10 + log
✓

d

9(1 + ↵t2�t1)

◆
,
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where 1  d  9 and 0  t2 � t1  299. We see from equation (15) that

↵t2(↵t1�t2 + 1)
�
1� e⇤2

�
= �d

9
� Fs1 � Fs2 � �t1 � �t2

 �1
9

+ |�|202 + |�|501

< 0,

and so ⇤2 > 0. Thus, we obtain

0 < ⇤2 < e⇤2 � 1 =
����1� ↵

�t110n

✓
d

9(1 + ↵t2�t1)

◆���� < ↵s2�t2+3.26.

from which comes

log
✓

d

9(1 + ↵t2�t1)

◆
� t1 log↵+ n log 10 < ↵3.27 exp(�0.48(t2 � s2)),

where X = max{t1, n}  t2  4.49⇥ 1058. We also have that

⇤2

log 10
=

1
log 10

log
✓

d

9(1 + ↵t2�t1)

◆
� t1

log↵
log 10

+ n.

We take

c = ↵3.27, � = 0.48, X0 = 4.49⇥ 1058,  =
1

log 10
log
✓

d

9(1 + ↵t2�t1)

◆
,

Y = t2 � s2, # =
log↵
log 10

, #1 = � log↵, #2 = log 10, � = log
✓

d

9(1 + ↵t2�t1)

◆
.

We find that q = q131 satisfies the hypothesis of Lemma 4 for d = 1, . . . , 9 and
0  t2 � t1  299. Applying Lemma 4, we get t2 � s2  321. Hence, s2 � 180.

For 1  d  9, 0  t1 � s2  t2 � s2  321, we let

⇤3 = �s2 log↵+ n log 10 + log

 
d
p

5
9
�
1 +

p
5 (↵t1�s2 + ↵t2�s2)

�

!

.

Using (11) we arrive at

↵t2

✓
↵s2�t2
p

5
+ ↵t1�t2 + 1

◆�
1� e⇤3

�
= �d

9
� Fs1 +

�s2

p
5
� �t1 � �t2

 �1
9

+
|�|180p

5
+ |�|202 + |�|501

< 0.
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Hence, ⇤3 > 0. Thus, we have

0 < ⇤3 < e⇤3 � 1 =

�����1� ↵
�s210n

 
d
p

5
9
�
1 +

p
5 (↵t1�s2 + ↵t2�s2)

�

!����� < ↵s1�t2+3.06.

This means that

log

 
d
p

5
9
�
1 +

p
5 (↵t1�s2 + ↵t2�s2)

�

!

� s2 log↵+ n log 10 < ↵3.07 exp(�0.48(t2 � s1)),

where X = max{s2, n}  t2  4.49⇥ 1058. We note also that

⇤3

log 10
=

1
log 10

log

 
d
p

5
9
�
1 +

p
5 (↵t1�s2 + ↵t2�s2)

�

!

� s2
log↵
log 10

+ n.

Hence, we put

c = ↵3.07, � = 0.48, X0 = 4.49⇥ 1058, Y = t2 � s1,

 =
1

log 10
log

 
d
p

5
9
�
1 +

p
5 (↵t1�s2 + ↵t2�s2)

�

!

, # =
log↵
log 10

, #1 = � log↵,

#2 = log 10, � = log

 
d
p

5
9
�
1 +

p
5 (↵t1�s2 + ↵t2�s2)

�

!

.

Computations with Maple indicate that q = q134 satisfies the hypothesis of Lemma
4 for 1  d  9, 0  t1 � s2  t2 � s2  321. We further deduce that t2 � s1  335
and hence s1 � 166 upon application of Lemma 4.

Finally, we consider

⇤4 = �s1 log↵+ n log 10 + log

 
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

�

!

,

with 1  d  9, 0  s2 � s1  t1 � s1  t2 � s1  335. Using equation (7), we
obtain

↵t2

✓
↵s1�t2
p

5
+
↵s2�t2
p

5
+ ↵t1�t2 + 1

◆�
1� e⇤4

�

 �1
9

+
1p
5
�
|�|166 + |�|180

�
+ |�|202 + |�|501 < 0.

Hence, ⇤4 > 0. We have that

0 < ⇤4 < e⇤4 � 1 =

�����1� ↵
�s110n

 
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

�

!�����

< ↵2.83�t2 ,
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from which it follows that

log

 
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

�

!

�s1 log↵+n log 10 < ↵2.84 exp(�0.48t2),

where X = max{s1, n}  t2 < 4.49⇥ 1058. In addition,

⇤4

log 10
=

1
log 10

log

 
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

�

!

� s1
log↵
log 10

+ n.

Thus,
c = ↵2.84, � = 0.48, X0 = 4.49⇥ 1058, Y = t2

 =
1

log 10
log

 
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

�

!

, # =
log↵
log 10

,

#1 = � log↵, #2 = log 10, � = log

 
d
p

5
9
�
1 + ↵s2�s1 +

p
5 (↵t1�s1 + ↵t2�s1)

�

!

.

We find that q = q138 satisfies the hypothesis of Lemma 4 for 1  d  9, 0 
s2 � s1  t1 � s1  t2 � s1  335. Applying Lemma 4, we get t2  374, which
contradicts the assumption that t2 � 501. And the result follows.

In the remaining five cases, we proceed as in the first case. The following are the
results.

Case 2: 0  s1  t1  s2  t2. We obtain the set R2 given by

N 2 {3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333,
555, 666, 777, 888, 999, 1111, 2222, 8888, 22222, 66666} = R2.

Case 3: 0  t1  s1  s2  t2. We obtain the set R3 given by

N 2 {3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333,
555, 666, 777, 888, 999, 1111, 2222, 11111, 66666} = R3.

Case 4: 0  t1  t2  s1  s2. Here, we get the set R4 given by

N 2 {4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222,
333, 444, 555, 666, 777, 888, 999, 2222, 4444, 7777, 11111, 66666} = R4.

Case 5: 0  t1  s1  t2  s2. Next, we get the set R5 given by

N 2 {4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333,
444, 555, 666, 777, 999, 5555, 7777, 11111, 333333} = R5.
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Case 6: 0  s1  t1  t2  s2. Here, we have the set R6 given by

N 2 {4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444,
555, 666, 777, 999, 5555, 7777, 11111, 333333} = R6.

Finally, we observe that the union of the sets Ri, i = 1, . . . , 6, is the set R as in
Theorem 1.

This completes the proof of Theorem 1.
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