
Near-Optimal Hardness Results and Approximation

Algorithms for Edge-Disjoint Paths and Related Problems∗

Venkatesan Guruswami† Sanjeev Khanna‡ Rajmohan Rajaraman§

Bruce Shepherd¶ Mihalis Yannakakis‖

Abstract

We study the approximability of edge-disjoint paths and related problems. In the
edge-disjoint paths problem (EDP), we are given a network G with source-sink pairs
(si, ti), 1 ≤ i ≤ k, and the goal is to find a largest subset of source-sink pairs that
can be simultaneously connected in an edge-disjoint manner. We show that in directed
networks, for any ε > 0, EDP is NP-hard to approximate within m1/2−ε. We also de-
sign simple approximation algorithms that achieve essentially matching approximation
guarantees for some generalizations of EDP. Another related class of routing problems
that we study concerns EDP with the additional constraint that the routing paths be of
bounded length. We show that, for any ε > 0, bounded length EDP is hard to approx-
imate within m1/2−ε even in undirected networks, and give an O(

√
m)-approximation

algorithm for it. For directed networks, we show that even the single source-sink pair
case (i.e. find the maximum number of paths of bounded length between a given source-
sink pair) is hard to approximate within m1/2−ε, for any ε > 0.

Keywords: approximation algorithms, bounded length edge-disjoint paths, edge-disjoint
paths, hardness of approximation, multicommodity flow, network routing, unsplittable
flow, vertex-disjoint paths.

1 Introduction

In the edge-disjoint paths problem, denoted EDP, we are given a (possibly directed) graph G
and a set T = {(si, ti) : 1 ≤ i ≤ k} of k source-sink pairs, and the objective is to connect a
maximum number of these pairs via edge-disjoint paths. EDP turns out to be a fundamental,
extensively studied problem in the fields of combinatorial optimization, algorithmic graph
theory and operations research, and is one of the classical NP-hard problems [9]. This

∗A preliminary version of this paper appeared in the Proceedings of the 31st Annual ACM Symposium

on Theory of Computing, 1999, pp. 19–28.
†MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139. Email:

venkat@theory.lcs.mit.edu.
‡Dept. of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104. E-

mail: sanjeev@cis.upenn.edu.
§College of Computer Science, Northeastern University, Boston MA 02115. Email: rraj@ccs.neu.edu.

Part of this work was done when the author was visiting Bell Labs during his DIMACS postdoctoral fellowship

1997-1998.
¶Bell Labs, 700 Mountain Avenue, Murray Hill, NJ 07974. Email: bshep@research.bell-labs.com.
‖Bell Labs, 700 Mountain Avenue, Murray Hill, NJ 07974. Email: mihalis@research.bell-labs.com.

1

paper investigates the approximability of EDP and of two related classes of network routing
problems (on undirected as well as directed graphs) that are natural generalizations and
variants of EDP. We now define these classes of problems for the directed graph case; we
omit defining their standard restrictions to the undirected case.

Multicommodity Flow Problems: In multicommodity problems, we are given a directed
graph G = (V, A) and a set T of k source-sink pairs as above. We let m = |A| and n = |V |
throughout. In addition, we are given an integer capacity function u : A → Z on the arcs,
and a positive integer demand di for each (si, ti) pair in T , 1 ≤ i ≤ k; di represents the
bandwidth requested for flow from source si to sink ti. The source-sink pairs need not be
at distinct vertices. We use the notation umin and dmax to denote the minimum capacity
and maximum demand value respectively. In all versions discussed, we assume that the
bandwidth assigned (or reserved) for a pair (si, ti) induces a standard network flow between
si and ti of value di. Depending on the version addressed, we may require extra conditions
on each of these si-ti flows, e.g., for unsplittable flow problems, we require each si-ti flow to
be sent on a single path.

We denote by Pi the set of all (simple) directed paths in G from si to ti. A routing (of T)
in G is an assignment x : P → R+ of weights to directed paths in G, where P = ∪1≤i≤kPi.
A routing is said to fulfill the demand di for pair i, if

∑

(x(P) : P ∈ Pi) = di, i.e, if the
following demand constraint is satisfied with equality:

∑

(x(P) : P ∈ Pi) ≤ di. (1)

A routing x satisfies the arc capacities if

∑

(x(P) : P ∈ P, e is an arc of P) ≤ u(e) (2)

holds for every arc e ∈ A.
We consider several versions of these multicommodity routing problems. In each case,

there is a profit ri ≥ 0 associated with each demand pair (si, ti) and we wish to maximize
our total profit. The common thread is that we only gain profit for the pair (si, ti) if our
routing has fulfilled its demand di.

We can consider two basic feasibility models: (i) unsplittable flow (USF), where we only
gain profit for the demand pair (si, ti) if our routing has assigned a flow of value di to a
single path in Pi, and, (ii) splittable flow (SF), where we gain the profit ri as long as our
routing has assigned a total weight of di to the paths in Pi. In the splittable version, if we
further require our routings to be integral, then we refer to the model as integral splittable
flow (ISF). Throughout, we let Ou, Ois, Os respectively denote the maximum earnable profit
from a feasible routing for the unsplittable, integral-splittable and splittable versions. One
natural assumption is made throughout for all versions of the problem:

The input graph always has enough capacity

to satisfy any single demand. (3)

Note that in the special case when all demands, capacities and profits equal one, both
USF and ISF reduce to EDP. Hence these problems are NP-hard themselves, which motivates
the investigation of their efficient approximability, which is one of the focuses of this paper.

Bounded Length Edge Disjoint Paths (BLEDP) Problems: A second set of problems
that we study here is that of routing a maximum number of edge-disjoint paths between

2

specified source-sink pairs in a network such that each of the paths used is of length at
most L, for some length-bound L that is also part of the problem instance. We refer to this
problem as BLEDP. As observed in Kleinberg [16], this length constraint, which arises quite
naturally in practical routing problems, can transform tractable disjoint paths problems
into NP-hard variants. For instance, even the single source-single sink case of this problem,
referred to as (s, t)-BLEDP, is NP-hard.

1.1 Overview of Our Results

EDP, USF and ISF: Approximation algorithms for USF and EDP have been extensively stud-
ied in prior works [23, 10, 1, 18, 19, 15, 16, 17, 28, 2, 21, 22, 6]; [16] provides a comprehensive
background on these and related problems. The best known approximation factor for EDP is
O(

√
m) [16] (an O(

√
m) approximation for weighted EDP, where profits are not necessarily

all one, is presented in [28]). In recent work, an O(
√

m) approximation algorithm has been
obtained for the more general USF problem [2], under the assumption that dmax ≤ umin.
The preceding result improves upon the O(

√
m log m) approximation algorithm of [22] for

USF. All these approximation bounds are rather weak and reflect the generally appreciated
hardness of these problems. Yet no better hardness than MAX SNP-hardness is known for
any of these problems. We prove that even EDP on directed graphs is NP-hard to approxi-
mate within a factor of m1/2−ε for any ε > 0; our proof is surprisingly simple and does not
rely on the PCP theorem. Recently, Ma and Wang [24] have independently shown a weaker
hardness result, namely, EDP on directed graphs is Quasi-NP-hard to approximate within
2O(log1−ε m) for any ε > 0. Their proof uses the hardness of approximating Label Cover,
and hence relies on the PCP theorem.

On the algorithmic side, we present a simple randomized O(
√

m log3/2 m) approximation
algorithm for USF with polynomially bounded demands, without making the assumption
that dmax ≤ umin. With the assumption that dmax ≤ umin, the approximation guarantee
of our algorithm improves to O(

√
m log m log log m). While the preceding approximation

guarantee is weaker than the O(
√

m) bound achieved recently by [2], the significance of
our result lies in the fact that our randomized algorithm uses, perhaps, the most basic
rounding scheme introduced by Raghavan and Thompson [26] and our analysis relies on
elementary combinatorial arguments and straightforward Chernoff-type bounds. We also
achieve an O(

√
m log2 m) approximation for USF using a simple greedy algorithm; the main

contribution here is extending the analysis of [22] for EDP to handle general capacities.
While our strong inapproximability results above apply only for the directed case, we can
also prove the (once again tight up to polylogarithmic factors) result that undirected USF

is NP-hard to approximate within n1/2−ε, for any ε > 0, if we consider the node-capacitated
version [17] instead.

The ISF problem was shown to be NP-hard on directed as well as undirected graphs
(even with just two sources and sinks) in [7] and also for trees in [10], and to our knowledge
no explicit results on its approximability appear in the literature. Our hardness result for
EDP trivially implies a similar hardness bound for approximating ISF on directed graphs.
In fact, an easy reduction from Independent Set (where the demand pairs play the role of
the nodes) shows that the same hardness bound of m1/2−ε applies for the undirected case
as well. This same reduction shows that the “fractional” splittable version of the problem
remains as hard to approximate. On the algorithmic side, we present a simple greedy
algorithm, again generalizing the one in [22], that achieves an approximation guarantee of

3

O(
√

mdmax log2 m).

BLEDP: We show that BLEDP can be approximated in polynomial time within a factor
of O(

√
m). We prove a matching hardness result of m1/2−ε for any ε > 0 that works for

undirected graphs as well. For (s, t)-BLEDP we prove an inapproximability result of m1/2−ε

for directed graphs, and MAX SNP-hardness for undirected (and directed) graphs. The
MAX SNP-hardness applies even when the length bound is a (small) constant. We also
present a simple greedy algorithm for BLEDP that achieves an O(

√
m) approximation.

Remark: In general, directed versions of these problems appear to be harder than their
undirected counterparts. Accordingly, all our algorithms are described for the directed
case, but they all work for the undirected case as well. Regarding hardness results, unless
mentioned otherwise the result applies only to the directed case – but if a hardness result
is stated or proved specifically for the undirected case, we stress that a similar result will
hold for the directed case as well.

1.2 Organization

A portion of our algorithmic work follows a linear programming (LP) based approach, and
hence we begin by describing the relaxations we use, bound their integrality gaps, and note
a useful property about the structure of basic feasible solutions in Section 2. In Section 3, we
present the hardness results for EDP, USF and ISF, and present an LP-based approximation
for USF. We study the hardness of BLEDP problems in Section 4. Finally, in Section 5,
we present simple greedy algorithms for all versions of our problems that almost match the
corresponding hardness bounds.

2 LP Formulations and Rounding

LP Formulations: A natural relaxation (in the sense of the objective function) of all of
the network routing problems that we study in this paper is the following linear program
(LP) LP-Basic.

max{
k
∑

i=1

ri

di
(
∑

P∈Pi

x(P)) : x ≥ 0 and satisfies the

constraints (1), (2)} (4)

Let LPs denote the optimum value of this LP. Of course, in solving such an LP, one would
resort to the well-known compact formulation which uses variables f i

e for the flow for the
demand pair (si, ti) through edge e, for each i ∈ [k] and e ∈ A. For the purposes of
exposition, however, we view our solutions as vectors in RP . For any such vector x, we
denote by supp(x) (support of x) the set of paths P for which x(P) > 0.
One sees immediately that LPs may be much more than our desired optimum.

Example 2.1 Let G be a cycle with a unit capacity on each arc, and a demand of size 2
and a profit of 1 between each pair of vertices. Then LPs = m/2, however, Ois = Os = 1
(N.B. Ou = 0 and would hence violate (3)).

For many versions of our problems, we may easily amend the LP formulation to get a
tighter relaxation. For instance, in the unsplittable version we define P∗

i to be those paths

4

in Pi for which each arc has capacity at least di (and let P∗ be the union of these sets).
Clearly, any feasible solution to the unsplittable problem may only use the paths in P∗ in
its support. Thus we define the linear program LP-Unsplit:

max{
k
∑

i=1

ri

di
(
∑

P∈P∗
i

x(P)) : x ≥ 0 and satisfies the

constraints (1), (2)} (5)

We use LPu to denote the optimum value of this LP. Clearly we have Ou ≤ LPu ≤ LPs

and Ou ≤ Ois ≤ Os ≤ LPs. Again, we view solutions as vectors in RP∗
. It turns out that

this LP is a better approximation for the unsplittable flow problem than (4) was for the
splittable flow problem. We will see that Ou = Ω(LPu/(

√
m · polylog(m))).

For a solution x to any of our LP’s, we use Sg(x) to denote the set of (good) demand
pairs (si, ti) for which (1) is satisfied with equality. Let Sb(x) denotes the set of demand
pairs (si, ti) which are not good but for which the left hand side of (1) is positive. Finally,
let S(x) = Sb(x) ∪ Sg(x) be the set of demand pairs which are at least partially satisfied.
There seems to be very little known about the structure of basic solutions for such multi-
commodity LP’s. One elementary result we can prove is the following.

Proposition 2.1 If x is a basic optimal solution to (4) or (5), then |supp(x)| ≤ |Sg(x)|+m.

Proof: We argue this proposition for (4) but the same holds for (5). One easily sees that
each unit vector in RP is feasible for (4) and hence the solution space is full-dimensional (i.e.
has dimension |P|). It follows that any basic solution must satisfy some linearly independent
subsystem of |P| constraints. The result now follows.

Proposition 2.1 gives the following weak lower bound on the number of pairs which are
satisfied by an unsplit flow (i.e. their demand is satisfied along a single flow path).

Proposition 2.2 If x is a basic optimal solution to (4), then at least |S(x)| − m pairs are
satisfied by an unsplit flow under x.

Proof: Let x be a basic optimal solution to (4). Each demand pair (si, ti) is satisfied
by an unsplit flow under x if and only if (si, ti) ∈ Sg(x) and |supp(x) ∩ Pi| = 1. Let Su(x)
denote the set of such pairs. Then, by Proposition 2.1, we have:

|Sg(x)| + m ≥ |supp(x)|
≥ |Su(x)| + |Sb(x)| + 2|Sg(x) − Su(x)|

The last inequality above follows from the fact that each pair in Sg(x) \ Su(x) has at least
two flow-paths associated with it. Hence |Su(x)| ≥ |Sb(x)| + |Sg(x)| − m = |S(x)| − m, as
required.

If our demands set T consists of every pair of vertices in G and for each pair of vertices
i 6= j there is a positive integral demand d(ij), then we call this an all-pairs instance. The
preceding immediately implies:

Corollary 2.1 If all profits equal one, i.e if r ≡ 1̄, then Os ≥ Ois ≥ Ou ≥ LPs −m, and in
particular for any all-pairs instance, the LP (4) gives a 2-approximation algorithm as long
as d(ij) ≤ u(ij) for each (i, j) ∈ A.

5

Another corollary, using Example 2.1, is a tightness result for the formulation (4) – the
proof is easy and is omitted.

Corollary 2.2 Os ≥ Ois ≥ Ou ≥ 1
2mLPs.

Standard Rounding and Deviation Bounds: We will later show how the LP formu-
lation for USF can be rounded to obtain an approximate solution with performance ratio
almost matching our hardness result. We now review a standard rounding technique and
develop some bounds on its performance that we will use in our analysis later.

Consider a solution to our LP formulation for USF. Let zi denote the fraction of the
demand between the pair (si, ti) that is satisfied by this solution. Decompose the flow of
value zidi into a set of flow paths {Γi,1, Γi,2, ..., Γi,qi

} where flow on path Γi,j is given by fi,j .
Now consider the following randomized rounding procedure, introduced by Raghavan and
Thompson [26] in a classic paper. We first choose whether or not to route pair (si, ti); each
pair (si, ti) is routed with probability zi, and the decision is made independent of any other
pairs. If we choose to route pair (si, ti), we toss a qi-sided dice with the property that the
jth face shows up with probability fi,j/(zidi). We choose to route the pair along the path
Γi,j if the jth face turns up. This rounding procedure is referred to as the standard rounding
from here on. In what follows, we develop some properties of this rounding procedure. We
start by stating some well-known deviation bounds [4, 11].

Proposition 2.3 (Chernoff-Hoeffding Bounds) Let X1, X2, . . . , X` be a set of k indepen-
dent random variables in [0, 1] and let X =

∑`
i=1 Xi.

1. For any δ ≥ 0, we have:

Pr[X > (1 + δ)E(X)] ≤
(

eδ

(1 + δ)1+δ

)E(X)

2. For 0 ≤ δ < 1, we have:

Pr[X < (1 − δ)E(X)] ≤ e−δ2E(X)/2.

Proposition 2.4 Consider an LP solution to an instance of the USF problem in which
each demand is at least 1. Let S be a set of arcs and let fe denote the flow through an arc
e ∈ S in an LP solution. Then if X is the random variable indicating the total number
of paths in the standard rounding solution that use at least one arc in the set S, Pr[X >
c · max{∑e∈S fe, log m}] < 1/m2 for some suitably large constant c.

Proof: For each demand pair (si, ti), consider the standard decomposition of the flow
from si to ti in the LP solution into at most m path flows from si to ti and a flow of value
0. Let Γi denote the set of si-ti paths in the flow decomposition that use at least one arc
in S. Let f(Γi) denote the total flow on all flow paths in the set Γi. Finally, let Xi be a
0/1 random variable that indicates whether or not any path in Γi is chosen in the rounded
solution. Clearly, E(Xi) = f(Γi)/di and X =

∑

i Xi. By linearity of expectation, we have
E[X] =

∑

i f(Γi)/di.
Let c be a positive real constant and let

δ =
c · max{∑i(f(Γi)/di), log m}

E[X]
− 1.

6

By the definition of δ, we have 1 + δ ≥ c. Since Xi’s are independent random variables, we
can use the bound in Proposition 2.3(1) to derive the following inequality for c ≥ 2e.

Pr[X > c · max{E[X], log m}] ≤
(

1

21+δ

)E(X)

≤ 1

m2
.

The proposition now follows from the fact that
∑

e∈S fe ≥ ∑

i f(Γi) ≥ ∑

i f(Γi)/di since
each di is at least 1.

Corollary 2.3 If umin/dmax ≥ c log m for some suitably large constant c, then USF can be
approximated to within a constant factor.

Proof: Solve LP-Unsplit, scale the flow down by a factor of 1/c, where c is a positive
constant, and perform the standard rounding. If c is chosen sufficiently large, then it follows
from Proposition 2.3(1) that w.h.p.1 no arc capacity is violated in the rounding procedure.
On the other hand, the expected value of the solution obtained is Ω(LPu). The result
follows.

3 EDP, USF and ISF

3.1 Hardness of Approximating EDP (USF and ISF)

Recall that in the edge-disjoint paths problem (EDP), we are given a graph G and a set T of
k source-sink pairs (s1, t1), . . . , (sk, tk), and the goal is to find a subset S ⊆ T of maximum
cardinality such that all (si, ti) pairs in S can be connected by edge-disjoint paths. The
best known approximation factor for EDP is an O(

√
m)-approximation [16]. We now prove

an essentially matching hardness result on directed graphs.

Theorem 1 Suppose we are given a directed instance [G = (V, A), T = {(si, ti) : i ∈
[k], si, ti ∈ V }] with |A| = m. Then, for any ε > 0, it is NP-hard to distinguish whether all
k pairs in T can be connected by edge-disjoint paths or at most a fraction 1/m1/2−ε of the
k pairs can be connected.

In other words, the difficulty of the problem is not due to determining which subset of
pairs to “route”, but lies in determining the edge-disjoint routes for given pairs.

Proof of Theorem 1: The proof is by a reduction from the following well-known NP-hard
problem [8]:

Problem: 2DIRPATH:
Instance: A directed graph H = (V, A), distinct vertices x1, x2, y1, y2 ∈ V .
Question: Are there two edge-disjoint directed paths, one from x1 to y1 and the other
from x2 to y2, in H?

Given an ε > 0, we construct a directed graph G (which will be the directed graph
underlying our EDP instance) from H as follows. The starting point in the construction of

1We use the abbreviation “w.h.p” throughout the paper to mean “with high probability” or, more pre-

cisely, “with probability 1 − n
−c, where n is the number of nodes in the graph and c is a constant that can

be set arbitrarily large by appropriately adjusting other constants defined within the relevant context.”

7

copy of H

x

t

y

y

x
t

s s
n-1 n-2

n-1
t

n-2
t

j

2

1

j

i

1

i ss

2

s

tn

���������
���������
���������
���������

���������
���������
���������
���������

n 1s

1
t

Figure 1: The reduction from 2DIRPATH to EDP

G will be the graph G′, which we refer to as the skeleton, whose basic structure is described
below. The graph G′ will comprise of vertices si, ti for 1 ≤ i ≤ N , where N = |A|d1/εe,

together with vertices {h(1)
ij , h

(2)
ij , v

(1)
ij , v

(2)
ij : 1 ≤ j < i ≤ N} and the “diagonal” vertices

{dii : 1 ≤ i ≤ N}. The vertices are connected in a grid-like fashion as follows. Each si is
connected by a directed path Pi to ti where

Pi =
[

si, v
(1)
i1 , v

(2)
i1 , v

(1)
i2 , v

(2)
i2 , . . . , v

(1)
i,i−1, v

(2)
i,i−1, dii,

h
(1)
i+1,i, h

(2)
i+1,i, . . . , h

(1)
n,i , h

(2)
n,i , ti

]

Note that there are 4 points associated with each grid point except the diagonal vertices
and the boundary vertices. The edge set of G′ will be the (disjoint) union of the edges in
the paths Pi for 1 ≤ i ≤ N . (For geometric intuition, one can identify si, ti with the points
(N − i + 1, 0) and (0, i) on the 2-dimensional grid, and visualize Pi as the path connecting
(N − i + 1, 0) with (0, i) on the 2-dimensional grid that first goes “up” the y-direction,
makes a single bend, and then goes “left” along the x-direction. The “ij intersection” can
be thought of as located at the point (N − i + 1, j) of the 2-dimensional grid.)

The graph G is constructed by making the following modification to G′ at each “ij

intersection” for 1 ≤ j < i ≤ N : (i) remove the edges (h
(1)
ij , h

(2)
ij) and (v

(1)
ij , v

(2)
ij), and (ii)

place a copy of the graph H at the ij intersection while identifying the vertices x1, y1, x2, y2

of the copy of H with the vertices v
(1)
ij , v

(2)
ij , h

(1)
ij , h

(2)
ij , respectively, of the ij intersection.

The instance of EDP will now comprise of the graph G together with the N source-sinks
pairs T = {(si, ti) : i ∈ [N]}.

8

Claim 1 If there are edge-disjoint paths from x1 to y1 and x2 to y2 in H, then there are
N edge-disjoint paths in G, one connecting si to ti, for each i ∈ [N].

Proof: Suppose A1 and A2 are two edge-disjoint paths in H connecting x1 to y1 and x2

to y2 respectively. For r ∈ [N], define the path Qr in G to be the sr-tr path that is the

same as the path Pr of the skeleton G′ except that instead of using the edges (h
(1)
ij , h

(2)
ij)

and (v
(1)
ij , v

(2)
ij) (for the relevant values of i, j for the path Pr), it uses the edge-disjoint paths

A1 and A2, respectively, of the local copy of H at the ij intersection. The paths Qr thus
defined are clearly edge-disjoint.

Claim 2 If there exist edge-disjoint paths Qi1 and Qi2 in G connecting si1 to ti1 and si2 to
ti2, respectively, for any 1 ≤ i1 6= i2 ≤ N , then there must be two edge-disjoint paths in H
from x1 to y1 and x2 to y2.

Proof: Identify G with its embedding in the plane. Clearly, one can extend Qi1 to a
closed contour where si2 , ti2 are on the outside and inside respectively. It follows (cf. [25])
that Qi2 must cross this contour, but this implies that there exists p, q such that Qi1 ,Qi2

each uses one of the edges associated with the pq intersection.
Now going back to the graph G, the two paths Qi1 and Qi2 will intersect at a point as

guaranteed by the above fact, i.e Qi1 enters at x1 and leaves at y1 in the copy of H at this
intersection, while Qi2 enters at x2 and leaves at y2, and the edge-disjointness of Qi1 and
Qi2 implies that there must exist two edge-disjoint paths in H from x1 to y1 and x2 to y2.

The above two claims imply that YES instances of 2DIRPATH are mapped to instances of
EDP where all N pairs can be satisfied, while NO instances are mapped to instances of
EDP where at most one pair is satisfied. This creates a gap of N , and since the number
of arcs in G equals m = O(N 2|A|) = O(N2+ε) (recall that N = |A|d1/εe), the gap equals
Ω(m1/(2+ε)). Finally, note that the choice of ε > 0 was arbitrary. This completes the proof
of the theorem.

Corollary 3.1 The USF and ISF problems on directed graphs are NP-hard to approximate
within m1/2−ε for any ε > 0.

Extending these m1/2−ε-hardness results for EDP, USF and ISF to undirected graphs
pose problems of widely varying degrees of difficulty. For ISF the task is straightforward as
there is an easy approximation-preserving reduction from the independent set problem in a
graph G. Namely, one creates a new graph G′ obtained by creating a non-adjacent copy v′

of each node in G. Each edge in G′ is assigned a capacity of one, and we include a demand
between each v and v′ for a flow of size dv, the degree of v. This together with H̊astad’s
inapproximability result for independent set [12], gives

Fact 3.1 Unless NP = ZPP, ISF on undirected graphs cannot be approximated to within
m1/2−ε of the optimum in polynomial time, for any ε > 0.

At the other end, the hardness of undirected EDP remains an interesting open ques-
tion. Indeed, even the hardness of edge-capacitated USF remains open. We show next an

9

inapproximability bound of n1/2−ε, for any ε > 0, on node-capacitated USF in undirected
graphs.

We start by formally defining the undirected node-capacitated USF problem, denoted
Undir-Node-USF. We are given an undirected graph G = (V, E) with positive integral ca-
pacities on the nodes, and k source-sink pairs (si, ti) with a positive integer demand di

and a “profit” ri for i ∈ [k] — the objective is to find a subset of the pairs that can be
routed feasibly (i.e all node capacities are obeyed) and that maximizes the total profit (as
before we only get the profit for a pair (si, ti) when its demand di is fully routed on a single
path). When all profits are equal, we refer to the version as being “unweighted”. Note that
unweighted Undir-Node-USF is simply the classical vertex-disjoint paths problem when all
demands and capacities are equal to 1.

Theorem 2 It is NP-hard to approximate unweighted Undir-Node-USF within a factor of
n1/2−ε for any ε > 0.

We will see that the above theorem is nearly tight since LP-based (or greedy) algorithms,
such as those presented in the following section for the edge-capacity version, can achieve
an approximation ratio of O(

√
n poly(log n)) for Undir-Node-USF.

The proof of Theorem 2 is based on a reduction from SAT along the lines of the NP-
hardness proof for two-commodity integral flow presented in [7].

Theorem 3 Given an instance of Undir-Node-USF with two source-sink pairs, it is NP-hard
to decide if both pairs can be feasibly routed, even if all node capacities are 1 or 2, and the
two demands are 1 and 2.

Proof: Given an instance of SAT, we will create an undirected graph G = (V, E) with
four distinct nodes s1, s2, t1, t2 and node capacities c : V → {1, 2} with the property that
the instance of SAT is a yes-instance if and only if G contains a pair of node-disjoint paths
P1, P2 such that Pi is a path from si to ti and P2 only uses nodes of capacity two.

The graph G is obtained by stringing together n cycle gadgets, one for each variable xi

in the SAT instance. Cycle i is formed by combining two paths Txi
and Tx̄i

each of which
alternates between capacity 2 and capacity 1 nodes. We join the left end-points of these
paths into a new node ai and the right end-points into a new node bi; each of ai and bi

have capacity 1. We also create two capacity 2 nodes Ci, C̄i for each clause i, 1 ≤ i ≤ m,
and connect C̄i to Ci+1 for 1 ≤ i < m, and also include edges from these to nodes in cycle
gadgets corresponding to the literals in clause i — see Figure 2. In addition we add vertices
s1, s2, t1, t2 to G and join s1 (resp. t1) to the node a1 in the cycle Tx1

(resp. node bn in Txn
)

where x1 (xn) is the first (last) variable in the SAT instance as per some arbitrary ordering.
The vertex s2 is connected to C1 and t2 to C̄m.

Now consider a pair of paths P1, P2 satisfying our Undir-Node-USF problem. The path
P2 must have the form s2C1v1C̄1C2v2C̄2 . . . C̄mt2, where each vi is a node corresponding to
some literal x in clause i. The path P1 must therefore have the form s1Q1Q2 . . . Qnt1 where
each Qj is either Txj

or Tx̄j
. Since each Qj is disjoint from each vi, the path P1 determines a

satisfying truth assignment for the instance of SAT in the natural way. Conversely, a solution
to the node-capacitated unsplittable flow problem can be obtained from a satisfying truth
assignment.

10

C C
~

T
x

s
1

i

1 2 1 2

Variable x gadget

Clause i (x V y V z)

i

xT

2t

1

s 2

t

Figure 2: The reduction from SAT to Undir-Node-USF

We remark that the preceding proof (and hence Theorem 2) could be extended to
showing hardness of USF with only the extra condition that flow paths must be node-
disjoint (and not arbitrary node capacities). We now return to our task of proving hardness
of Undir-Node-USF. In the following, we refer to an instance of Undir-Node-USF in which
there are two source-sink pairs, all node capacities are 1 or 2, and the demands of the two
pairs are 1 and 2, as 2PAIR-Undir-Node-USF.

Proof of Theorem 2: We use a construction similar to the one used in Theorem 1 – the
main difference is that at each “ij intersection” we now place a hard instance I of 2PAIR-

Undir-Node-USF above, instead of the 2DIRPATH instance we used in Theorem 1. Suppose
the two source-destination pairs in instance I are (x1, y1) and (x2, y2), with demands 1 and
2, respectively. We construct the graph for Undir-Node-USF as follows. We start with the
same skeleton graph G′ of Theorem 1 and make the following modifications. At each ij

intersection, 1 ≤ j < i ≤ N , we remove the edges (h
(1)
ij , h

(2)
ij) and (v

(1)
ij , v

(2)
ij), and place a

copy of the instance I at the ij intersection while identifying the vertices x1, y1, x2, y2 of

the copy of H with the vertices v
(1)
ij , v

(2)
ij , h

(1)
ij , h

(2)
ij , respectively, of the ij intersection. For

the nodes in the copy of I placed at the “ij intersection” (for 1 ≤ j < i ≤ N) we change
the capacities of nodes with capacity 1 (recall that all nodes in instance I have capacity
1 or 2) to n − i, and those of nodes with capacity 2 to n − j. We set the capacity of the

vertices v
(1)
ij and v

(2)
ij as n− i and the capacity of h

(1)
ij and h

(2)
ij as n− j. Finally, we set the

demand of the pair (si, ti) to n − i, for i ∈ [N].

11

We first show that if the instance I is feasible, then the demands of all the N (si, ti)
pairs can be fully met by a feasible routing. The argument is along the lines of the proof
of Claim 1. Suppose A1 and A2 are two node-disjoint paths in I such that Ai is a path
from xi to yi, i ∈ {1, 2} and A2 uses only nodes of capacity two. This implies that at any

ij intersection in G, 1 ≤ j < i ≤ N , there are two node-disjoint paths, one from v
(1)
ij to

v
(2)
ij that passes through nodes with capacity at least n − i, and the other from h

(1)
ij to h

(2)
ij

that passes through nodes with capacity at least n − j. For each i, define the path Qi in
G to be the si-ti path the same as the single bend path from si to ti in G′ except that

instead of using the edges (h
(1)
ij , h

(2)
ij) and (v

(1)
ij , v

(2)
ij) (for the relevant values of i, j for the

path Pr), it uses the node-disjoint paths A1 and A2, respectively, of the local copy of I at
the ij intersection. The set of paths Qi are node-disjoint and at each ij intersection, the
path Qi passes through nodes with capacity at least n − i, thus completing our first claim.

We now show that if there exist two paths Qi1 and Qi2 connecting si1 to ti1 and si2 to
ti2 , respectively, for any 1 ≤ i1 < i2 ≤ N , then there must be two node-disjoint paths in
I, one from x1 to y1 and from x2 to y2, with the latter path traversing nodes of capacity

of 2 only. Since the capacity of the vertices v
(1)
ij and v

(2)
ij , for i > i1, is less than n − i1,

the path Qi1 (resp., Qi2) cannot pass through any vertex v
(1)
ij or v

(2)
ij , for i > i1 (resp., for

i > i2). Similarly, since the capacity of the vertices h
(1)
ij and h

(2)
ij , for j > i1, is less than

n − i1, Qi1 cannot pass through any vertex h
(1)
ij or h

(2)
ij , for j > i1. It thus follows that

the path Qi1 passes through each ii1 intersection, i > i1. A geometric argument along the
lines of Claim 2 implies that Qi2 intersects with Qi1 at some ii1 intersection. Due to the
above restriction on path Qi2 , it follows that the two paths meet at some ii1 intersection,
for i1 < i ≤ i2. The subgraph placed at the ii1 intersection has node capacity either n − i1
or n − i. Since the demand being routed along path Qi1 is n − i1 > n − i, it follows that
the path Qi1 uses nodes of capacity exclusively n − i1. By construction, the subpaths of
Qi1 and Qi2 in the ii1 intersection yield two paths A2 and A1, respectively, for the instance
I, that satisfy the following conditions: The path A1 is from x1 to y1, the path A2 is from
x2 to y2 and passes through nodes of capacity 2 only, and the two paths are node-disjoint.
This completes the proof of our second claim.

Analogous to the proof of Theorem 1, the above two claims establish that it is NP-hard
to approximate unweighted Undir-Node-USF to within a factor of O(n1/2−ε), where n is the
number of nodes in the Undir-Node-USF instance.

In the next section we give an (essentially tight) approximation algorithm for USF based
on rounding an optimal solution to the LP (5). Standard rounding techniques are not as
easily applied to ISF; we defer the positive results for the latter problem to Section 5.

3.2 An LP-Based Approximation for USF

We now give a simple algorithm to approximate USF to within O(
√

m log m log log m) when
umin ≥ dmax, and an O(

√
m(log m)3/2)-approximation without this assumption, but with

the requirement that dmax is polynomially bounded.

Theorem 4 If all demands are between 1 and 2, then there is a polynomial-time randomized
algorithm to compute a routing for USF that, w.h.p, achieves an approximation factor of
O(

√
m log m) and satisfies all capacity constraints.

12

Proof: We assume w.l.o.g. that the maximum profit, maxi ri, is 1; otherwise, we can
scale the profits appropriately. We first solve LP-Unsplit. If the LP value LPu is less
than

√
m, then routing the demand with the highest profit yields a

√
m approximation.

Therefore, in the remainder of the proof, we assume that LPu ≥ √
m. We scale down the

LP flow by a factor of 1/6, and perform standard rounding. In the rounding procedure,
each demand is selected independently with a probability equal to one-sixth of the fraction
routed in the LP. Thus, the expected total profit of the rounded solution is Ω(LPu). Since
LPu ≥ √

m and the profit of each demand is in [0, 1], it follows from Proposition 2.3(2) that
w.h.p. the total profit of the rounded solution is Ω(LPu). The rounded solution, however,
may violate the capacity of many arcs. We now show that we can obtain a solution which
w.h.p. has value Ω(LPu/

√
m log m) and does not violate any arc capacities.

Heavy and Light Edges. Let c0 denote the quantity 12 ln m. Call an arc x heavy if
u(x) > c0 and light otherwise. Our first claim is that with probability at least (1 − 1/m),
the rounded solution does not violate the capacity of a heavy arc. To see this, define Xx to
be a random variable that indicates the total number of demands routed through an arc x.
Therefore, E[Xx] ≤ u(x)/6. Applying Proposition 2.3(1) with δ = u(x)/(2E(Xx)) − 1, we
obtain

Pr[Xx >
u(x)

2
] ≤

(

eδ

(1 + δ)1+δ

)E[Xx]

≤
(

e

u(e)/(2E(Xx))

)E[Xx]

≤
(

e

3

)6 ln m

≤ 1

m
.

In the third step, we use the inequality E[Xx] ≤ u(e)/6, and in the final step, we use 12 ln m.
We have thus shown that with probability at least 1 − 1/m, at most u(x)/2 paths are

chosen to go through an arc x of capacity at least 12 ln m. Since all demands are between
1 and 2, it follows that, with probability at least 1 − 1/m, no heavy arc is violated.

Processing the Rounded Solution. Now let R denote the set of paths in a solution
obtained by standard rounding. A path P ∈ R is said to be α-light if the total capacity
associated with the light arcs that lie on this path is exactly α. Partition R into two sets
R1 and R2 such that R1 is the set of all α-light paths with α ≥ √

mc0, and R2 = R \R1.
It is easy to see that R contains at most mc0/α paths which are α-light. Thus, |R1| is at
most

√
mc0.

Initialize S1 to be the single-element set consisting of a path of largest profit in R1.
For a given set S of paths, let profit(S) denote the sum of the profits of the source-sink
pairs routed in S. Clearly, profit(S1) ≥ profit(R1)/

√
mc0. Construct also another set

S2 of paths as follows: Repeatedly pick a path P of largest profit from R2, add P to S2,
and delete P along with all paths in R2 that share a light arc with P . Since the total
capacity of light arcs is at most

√
mc0, it follows from Proposition 2.4 that for any path

P in R2, the total number of paths in R that share a light arc with P is O(
√

mc0) with
probability at least 1 − 1/m2. Therefore, with probability at least 1 − 1/m, for every path
added to S2, only O(

√
mc0) other paths in R2 are thrown away. Thus, upon termination

13

(i.e. when R2 = ∅), profit(S2) is Ω(profit(R2)/
√

mc0) w.h.p. Output the better among
the solutions S1 and S2.

Approximation Ratio and Correctness. It is clear from the preceding description that
we are guaranteed a profit of Ω(profit(R)/

√
mc0); this yields the claimed approximation

guarantee as profit(R) is Ω(LPu) w.h.p. To see that with w.h.p., the set of paths in S2

does not violate the capacity of any arc, observe that: (a) no two paths in S2 share a light
arc, and (b) with probability 1 − 1/m, the set of paths in R does not violate the capacity
of a heavy arc.

Theorem 5 If all demands are polynomially bounded, then there is a polynomial-time ran-
domized algorithm to compute a routing for USF that, w.h.p, achieves an approximation
factor of O(

√
m log3/2 m) and satisfies all capacity constraints.

Proof: Let dmax = O(mO(1)) denote the largest demand. Partition the demands into
O(log m) classes, say D0, D1, ... where the class Di contains all demands in the interval
[2i, 2i+1). Find a solution for each demand class using the approach of Theorem 4. Output
the solution with the largest profit. By pigeonhole principle, one of these classes contains
Ω(1/ log m)-fraction of the optimum solution’s total profit. The theorem follows.

Theorem 6 USF with arbitrary demands can be approximated to within a O(
√

m log m log log m)
factor if the minimum arc capacity is at least as large as the largest demand.

Proof: Without loss of generality, we may assume that dmin = 1. As before, partition the
demands into classes D0, D1, ..., Dq where the class Di contains all demands in the interval
[2i, 2i+1). Set p = q− (log log m + log c) where c is the constant of Corollary 2.3, and define
D1 =

⋃p
i=1 Di and D2 =

⋃q
i=p Di. Also, for some optimal solution, let opt1 and opt2

denote the profit generated by commodities in the demand sets D1 and D2 respectively.

Since the maximum demand in D1 is at most
(dmax/c log m) ≤ (umin/c log m),

by Corollary 2.3, it follows that opt1 can be approximated to within a constant factor. On
the other hand, we can use Theorem 4 to find an approximate solution for each demand class
Di with p ≤ i ≤ q. By pigeonhole principle, one of these classes contains Ω(1/ log log m)-
fraction of opt2. Choosing the better of the two solutions, we get the desired approximation
ratio.

4 Bounded Length Edge-Disjoint Paths

We are given a (possibly directed) graph G = (V, E), in which each edge e has a given
nonnegative length. We are also given an integer L, which is referred to as the length
bound. The length of a path is defined to be the sum of the lengths of the edges on the
path. In BLEDP, we are given a set T of k source-sink pairs (s1, t1), . . . , (sk, tk), and the
goal is to find a subset S ⊆ T of maximum cardinality such that all (si, ti) pairs in S can
be connected by edge-disjoint paths, each path of length at most L. In the (s, t)-BLEDP

problem, we are given a single pair (s, t), the goal is to find a maximum number of edge-
disjoint s–t paths where each path has length at most L.

14

We consider (α, β)-approximations for the BLEDP problems. An (α, β)-approximation
algorithm is one that obtains for each instance I with length bound L, α · opt(I) edge-
disjoint paths each of length at most βL, where opt(I) is the size of the optimal solution.
For convenience, we refer to an (α, 1)-approximation as an α-approximation.

4.1 (α, β)-Approximating (s, t)-BLEDP

4.1.1 Inapproximability results

A simple reduction from 2DIRPATH shows that the directed version of (s, t)-BLEDP does
not have a polynomial time (1

2 + ε, 4
3 − ε)-approximation algorithm unless P = NP. This

reduction, however, is inexorably tied to the directed case; indeed the undirected version
of 2DIRPATH is solvable in polynomial time by the work of Robertson and Seymour [27].
One could possibly attack the undirected case, however, by considering the related NP-
hard problem (see [7]) INTEGER2COMMODITY where in we are given an undirected graph
G = (V, E) and distinct vertices x1, x2, y1, y2 ∈ V , and the objective is to find a maximum
collection of edge-disjoint paths, each joining xi to yi for i = 1 or 2. We note that the half-
integral version of INTEGER2COMMODITY flow was shown to be polynomially solvable in
a classical paper of Hu [13]. We now give a reduction which shows MAX SNP-hardness of
both undirected (s, t)-BLEDP and INTEGER2COMMODITY; a similar result for undirected
(s, t)-BLEDP has recently been obtained independently in [3].

Theorem 7 For both undirected as well as directed graphs, (s, t)-BLEDP with a length
bound of six is MAX SNP-hard. Hence, there exist constants α and β, α < 1 and β > 1,
such that there is no polynomial-time (α, β)-approximation for (s, t)-BLEDP unless P=NP.

Proof: We prove the desired claim for undirected graphs only. The proof can be easily
amended to apply to directed graphs.

The reduction is from Bounded Occurrence 3-Dimensional Matching (3DM) and fol-
lows the reduction presented in [21] which in turn is motivated by ideas from [10]. In an
instance I of 3DM, we are given three disjoint sets A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn}
and C = {c1, c2, . . . , cn}, and a set T of m triples Tµ ∈ A × B × C, µ ∈ [m]. It is shown in
[14] that there exists an ε0 > 0 such it is NP-hard to distinguish between instances I where
there exist n disjoint triples in T (call them “satisfiable” instances) and those where there
are at most (1− ε0)n disjoint triples in T (call these “ε0-unsatisfied” instances), even if we
assume that each element of A, B, C is in the same constant number M of triples in T .2

We denote the µth triple Tµ as (apµ
, bqµ

, crµ
) for some 1 ≤ pµ, qµ, rµ ≤ n.

Create an undirected graph H = (V, E) as follows:

V = {bi, ci : i ∈ [n]}
⋃

{xµ, yµ : µ ∈ [m]}
⋃

{ail : i ∈ [n], l ∈ [M − 1]}
⋃

{s, t}
E = {(s, bi), (ci, t), (ail, t) : i ∈ [n], l ∈ [M − 1]}

⋃

{(s, xµ), (yµ, apµ,l) : µ ∈ [m], l ∈ [M − 1]}
⋃

{(bqµ
, xµ), (xµ, yµ), (yµ, crµ

) : µ ∈ [m]}
2Actually we only need the fact that each element in A occurs in some constant number of triples.

15

The graph H contains a vertex for each element in the sets B and C, and (M − 1)
vertices for each element in A. In addition, there are 2 special vertices s and t, and tuple
vertices xµ and yµ, for each triple µ. The vertex s is connected to each vertex corresponding
to elements in B, and the tuple vertices x1, x2, ..., xm. Similarly, the vertex t is connected
to each vertex corresponding to elements in C, and the n(M − 1) vertices corresponding to
the elements in A. Finally, for each tuple Tµ = (apµ

, bqµ
, crµ

), we connect xµ to bqµ
and yµ,

yµ to crµ
as well as (M − 1) copies of apµ

. We assign positive integer lengths on every edge
of H and consider the problem of finding the maximum number of edge-disjoint s-t paths
of total length at most 6 in H. The edges (s, xµ) for µ ∈ [m] have a “length” of 3 each, and
the edges (yµ, crµ

) have a length of 2, while all other edges have a length equal to 1.
We now claim that (a) [completeness] if the instance I of 3DM is satisfiable, then we

can find Mn edge-disjoint paths from s to t of length at most 6, and (b) [soundness] if I is
ε0-unsatisfied, then there are at most (M − ε0/2)n such s-t paths in H.

Let us first verify the completeness. Suppose Tµ1
, Tµ2

, . . . , Tµn
are n disjoint triples.

Denote fi = qµi
and gi = rµi

for i ∈ [n]. Define the paths Pi = [s, bfi
, xµi

, yµi
, cgi

, t]
for i ∈ [n], and the paths Qµ = [s, xµ, yµ, apµ,lµ , t] for µ ∈ [m] − {µ1, µ2, . . . , µn} and an
lµ ∈ [M −1] defined such that no two µ’s whose corresponding triples “share” an element of
A, have the same value of lµ. (This is possible to achieve since the fact that each element of
A is present in exactly one triple among Tµ1

, . . . , Tµn
implies that, for each element ai ∈ A,

there are M − 1 such µ’s in the set [m] − {µ1, . . . , µn}.) It is now easy to check that the
paths Pi and Qµ are all edge-disjoint and that each has length exactly 6.

To prove soundness, suppose there is a collection C of (Mn− δn) edge-disjoint s-t paths
of length at most 6. Clearly at most (M − 1)n of these paths use a final edge of the form
apµ,lt and hence at least (1 − δ)n of the paths in C use a final edge of type cit. Any such
path of length at most 6 is easily verified to be of the form Pi above. The bi’s and cj ’s used
in these paths are all distinct and yield a set S of (1 − δ)n triples which have distinct B
and C “coordinates”. If some ai is present in say t > 1 triples in S, we can only take 1 of
these in a 3-matching. But then we also “lost” at least t − 1 potential paths of the form
Qµ for our collection C. Thus ai was used to get at most (M − t) paths of the form Qµ

(as opposed to the M − 1 paths in the completeness case). We can clearly lose at most δn
such paths in all, and hence by retaining in S at most one triple containing any ai, for each
i ∈ [n], we will be left with a set of at least (1 − 2δ)n disjoint triples.

We have thus proved that the undirected (s, t)-BLEDP problem (even with a length
bound of 6) is MAX SNP-hard, and in fact for any ε > 0, there is no polynomial-time
(1 − ε0

2M , 7
6 − ε)-approximation for (s, t)-BLEDP unless P=NP.

One can easily amend the previous reduction to obtain the following claim.

Corollary 4.1 INTEGER2COMMODITY is MAX SNP-hard.

Proof: We create an instance of INTEGER2COMMODITY by taking the graph H in
the preceding proof, and splitting s and t into s1, s2, t1, t2 as follows. The node s1 will be
adjacent only to the nodes bi and t1 will be adjacent only to the ci. Similarly, s2 is adjacent
to the xµ’s and t2 is adjacent only to the ail’s. The si − ti paths are one of the two types
prescribed in the original proof.

16

4.1.2 An (1 − ε, 1/ε)-approximation algorithm for (s, t)-BLEDP

We are given an undirected graph G, length bound L, a source s and a sink t in G. Let p
be the optimal number of edge-disjoint paths from s to t, where each path has length at
most L. In this section, we present a simple algorithm that obtains, for any positive real ε,
at least (1 − ε)k paths, each of length at most L/ε.

We first define a minimum-cost flow problem in G from s to t, where the cost of an
edge is defined to be its length and the value of the desired flow is p. Since there exists a
flow of value p and cost at most pL, the minimum-cost flow algorithm returns a set S of
edge-disjoint paths from s to t such that the sum of all of the path lengths is at most pL.
By averaging, it follows that at least (1 − ε)p s-t paths in S have length at most L/ε, thus
yielding the desired approximation.

4.2 Hardness of α-approximating BLEDP

4.2.1 Hardness of (s, t)-BLEDP

Theorem 8 For directed graphs, (s, t)-BLEDP is NP-hard to approximate within a factor
of m1/2−ε for any ε > 0.

Proof: The reduction is from 2DIRPATH. Given an instance [H; x1, x2, y1, y2] of 2DIRPATH,
we construct an instance [G = (V, A′); s, t; L] where G is the same directed graph as the
one constructed in the proof of Theorem 1 together with two new vertices s and t, and arcs
joining s to s1, s2, . . . , sN and joining t1, t2, . . . , tN to t, and L is a suitable length bound to
be mentioned later in the proof.

We now define non-negative integer lengths on the arcs and consider the problem of
finding edge-disjoint paths of total length at most L between s and t. In the directed graph
G, the arcs at the bend (the ones incident to dii for i ∈ [N]) and the arcs which lie wholly
within the various copies of H, get a length of zero. The arc (s, si) gets a length of i, and
the arc (ti, t) gets a length of N − i, for i ∈ [N], and all other arcs have a length of 1.

We now claim that any s, t path P with total length at most 2N −1 must use a “bend”,
i.e must go through drr for some r ∈ [N]. Indeed, let the path P go through si and tj .
Then, if it does not use a bend, all arcs it uses in the underlying grid of (the skeleton of)
G have a length 1, and at least j such “vertical” arcs and N − i + 1 such “horizontal”
arcs are required for any directed path through si and tj . This, together with the lengths
i and N − j on (s, si) and (tj , t) respectively, implies that P has total length at least
i+(N − j)+ j +(N − i+1) = 2N +1. Hence, using the same geometric argument as in the
proof of Theorem 1, we can prove that in the case when there are no edge-disjoint paths
between x1, y1 and x2, y2 in H, the maximum number of edge-disjoint (s, t)-paths in G of
length at most 2N − 1 is one.

Also, when we start from a YES instance of 2DIRPATH, there are N edge-disjoint (s, t)-
directed paths of length 2N − 1 in G, namely the N paths Pi where Pi is the (s, t) path
that goes through si and ti via the “bend” vertex dii. That is, the path P〉 follows i vertical
arcs from si up to dii and then N − i + 1 horizontal arcs to ti, for an overall length of
i + (i − 1) + (N − i) + (N − i) = 2N − 1.

Thus the gap between the optimum values of the instances created from the YES and
NO instances of 2DIRPATH is N , which as before will prove an inapproximability bound of
m1/2−ε by choosing N suitably.

17

4.2.2 Hardness of BLEDP

We now employ an approximation preserving reduction from the independent set problem
to establish that BLEDP, even on undirected graphs, is hard to approximate within m1/2−ε.

Theorem 9 Unless NP = ZPP, BLEDP on undirected graphs cannot be approximated in
polynomial time within a factor of m1/2−ε for any ε > 0.

Proof: The reduction is from the independent set problem. Assume we are given a graph
G = (V, E) with V = {1, 2, . . . , n}. It is known that unless NP = ZPP, it is not possible to
distinguish in polynomial time between the cases when α(G) ≥ n1−ε0 and when α(G) ≤ nε0

for any fixed ε0 > 0 [12].
Starting from G, we construct a “grid graph” instance of BLEDP [H; {(si, ti) : i ∈ [n]}]

as follows. The n sources si correspond to the vertices (i, 0) respectively, while the n sinks
ti correspond to (0, n− i+1) respectively. Each si is connected to ti through a “canonical”
path Qi = [si, a[i, 1], a[i, 2], . . . , a[i, n−i], b[i−1, n−i+1], b[i−2, n−i+1], . . . , b[1, n−i+1], ti];
here, we view each a[i, j] and b[i, j] is as an edge (with a designated entry and exit point)
placed at vertex (i, j) of the plane grid (for 1 ≤ i, j ≤ n with i + j ≤ n). The adjacency
information of G is encoded in H by identifying the edges a[i, n − j + 1] and b[i, n − j + 1]
whenever vertices i and j (with i < j) are adjacent in G; this serves the purpose that
whenever i and j are adjacent in G, the canonical paths Qi and Qj will share an edge
(viz. the “identified” copy of a[i, n − j + 1] and b[i, n − j + 1]), and thus cannot both be
simultaneously routed.

We assign a length of 2 to the following edges: (i) (si, a[i, 1]) for 1 ≤ i < n, and
(b[1, n − i + 1], ti) for 1 < i ≤ n; (ii) a[i, j] and b[i, j] for i, j such that i + j ≤ n; and (iii)
edges joining the “exit” of a[i, j] (respectively b[i, j]) to the “entry” of a[i, j+1] (respectively
b[i − 1, j]) for i, j such that i > 1 and i + j < n. We assign a length of 1 to all other edges.

We now claim that the only si-ti path in H of total length at most 4n−3 is the canonical
path Qi. We first note that the unique shortest path between any two vertices in the same
row (or the same column) is simply the shortest-hop path that is contained in the row (or
column). Therefore, it follows that the shortest si− ti path lies wholly within the portion of
the grid X = {(p, q) : p ≤ i and q ≤ n− i + 1}, since any other path will contain a subpath
connecting two vertices in the same row (or column) that is not the shortest path between
the two vertices. Any si-ti path in X passes through at least n grid points. At each grid
point, except the point (i, n− i + 1), there is an edge of length 2. The edge at (i, n− i + 1)
has length 1. In addition, there are n − 1 edges of length 2 that connect these grid points
together. So any path that does not pass through the edge located at grid point (i, n−i+1)
has cost at least 4n − 2. The shortest si − ti path is a path that lies wholly in X, passes
through (i, n − i + 1), and passes through the least number of other grid points in X. The
unique path that satisfies the preceding conditions is Qi and has length 4n − 3.

Thus, starting from G, we can, in polynomial time, construct a graph H with n source-
sink pairs (si, ti) such that the maximum number of pairs which can be joined by edge-
disjoint paths of length at most 4n − 3, equals α(G). The gap of n1−2ε0 in α(G) thus
clearly translates into a gap of m1/2−ε0 for the BLEDP instance we create, and the proof is
completed.

18

5 Greedy Algorithms for USF, ISF and BLEDP

We now show that the hardness bounds for all problems considered can be matched (up to
polylogarithmic factors) by suitable adaptations of a greedy algorithm. We give the “core”
algorithm in Figure 3, although subroutines must be tailored for the different problems
considered. In the code description, a network refers to a directed graph together with
integer capacities on the arcs. The operation of decrementation of a network by a flow f ,
results in a new network for which the capacity on an arc e is precisely fe units less than
before.

Greedy Multicommodity Routing (greed)
{
/* Input is a directed network in which each arc e has

length le in {0, 1} */

1. S = ∅;
2. While (there is an unsatisfied demand)

3. For each demand pair s-t in D − S
4. Find a shortest flow f from s to t in the residual network;

(i.e., f is an s-t flow that minimizes the measure
∑

e fele)
5. EndFor

6. If no routings are found, then Output Current Solution;

7. Let s-t be a demand pair that has the shortest flow value,

among all demand pairs, and let f be the flow from s to t;
8. Decrement the residual network by the flow f;
9. Add s to S;
10. EndWhile

Output Current Solution;

}

Figure 3: The “core” greedy algorithm

The flows (or routings) f found by the greedy algorithm (refered to as greed) depend
(e.g., split or unsplit) on the problem version being addressed. In any case, “shortest” (see
line 4 of the algorithm) will always refer to minimizing the measure

∑

e fele where le is
either 0 or 1. In the cases of USF and ISF, the problem of finding such an f reduces to
solving a shortest path or mincost flow problem respectively. For BLEDP with length bound
L, the “shortest flow” f is a source-sink path with the fewest number of edges among all of
the source-sink paths of length L. In the following, we briefly describe a simple subroutine
that computes such a path. It is sufficient to provide an algorithm that given a directed
graph D = (V, A), a source s, a sink t, and a positive integer k, determines a path that has
length at most L and has less than k edges, if such a path exists. We now define such an
algorithm.

We construct a layered directed graph D′ = (V ′, A′) in which the set V ′ consists of k
copies of each vertex in V . We denote the ith copy, 1 ≤ i ≤ k of a vertex v in V by vi. For
every arc (u, v) in E, we have the following k − 1 arcs in A′, each of which has the same
length as that of (u, v): (ui, vi+1) for 1 ≤ i < k. In addition, for each v in V , we have the

19

following k− 1 arcs in A′, each of length zero: (ui, ui+1) for 1 ≤ i < k. It is now easy to see
that there is a path in D from s to t that has length at most L and has at most k arcs if
and only if there is a path in D′ from s1 to tk that has length at most L. Moreover, given
a path P ′ in D′ from s1 to tk that has length at most L, we can construct, in polynomial
time, a path in D from s to t that has length at most L and has at most k arcs. To complete
the description of the algorithm, we note that we can determine the existence of path P ′

by finding the shortest path between s1 and tk.

In [16], [20], and [22], the greedy algorithm is analyzed to show that it satisfies at least
Ou/

√
m demands for an instance of EDP (also see [5]). (Recall that Ou denotes the optimum

value for a given USF instance.) Their arguments may be extended easily to give
√

u(A)-
approximations for unsplittable problems with general demands and capacitated networks
(where u(A) =

∑

e u(e)). We improve this bound for capacitated networks by invoking the
greedy algorithm several times.

Theorem 10 Consider a unit-profit instance of USF in a directed graph D. If dmax ≤
dmin∆ for some integer ∆, then the greedy algorithm may be used to find a solution which
satisfies at least Ou

2∆
√

m
demands.

Proof: Consider a guess O for Ou and set uO
e = min{ue,

dminO√
m

}. Call an arc clipped if

uO
e 6= ue. We associate a length le with each arc in the following manner: e is assigned a

length of 0 if it is clipped and 1 otherwise. Run the greedy algorithm on the graph DO

obtained by reducing the capacity of each arc e to uO
e . Let P1, P2, . . . , Pt be the flow paths

chosen by the greedy algorithm in DO.
Let Q be those demands which are satisfied in some optimal solution but not by the

greedy algorithm. Let Q be a path in the optimal solution satisfying some demand in Q.
It follows that there is an arc e in D such that (i) Q uses the arc e, and (ii) the greedy
algorithm is using at least a capacity of uO

e − dmax on the arc e. Otherwise, the greedy
algorithm could have satisfied this demand along the flow path Q. Now if e were a clipped
arc then the greedy algorithm must have routed (Odmin√

m
− dmax)/dmax ≥ O

2∆
√

m
demands

and we are done. So we may assume this is not the case and hence each such Q must contain
an arc of length 1 from DO that is in common with some Pi.

We now build on the ideas used in [20, 22] and analyze how many demands in the set
Q are not satisfied due to a greedily selected flow path Pi. Let ni denote the number of
arcs of length 1 in the greedy flow path Pi. Consider any arc e and the greedy flow paths
routed through it. We can imagine e as a bin of capacity uO

e such that each successive
greedy flow path is allocated a contiguous block of capacity on e. In an analogous manner,
the optimal flow paths corresponding to the demands in Q can be viewed to have been
allocated successive contiguous blocks of capacity on e. A greedy flow path Pi is said to
block an optimal flow path Q if i is the least index such that (a) Pi and Q share a common
arc e of length 1, and (b) the capacity block of Pi on e overlaps with the capacity block of
path Q. Since each blocked optimal path Q uses up a capacity of dmin at least and each
greedy path Pi uses a capacity of dmax at most, we deduce that any Pi may block at most
niddmax/dmine ≤ ni∆ flow paths in Q. Let ki denote the number of optimal flow paths
(corresponding to demands in Q) that are blocked by Pi. It follows that ki ≤ ni∆. But
also by the definition of the greedy algorithm, we have that each such blocked flow must
have used at least nidmin ≥ (ki/∆)dmin units of length 1 capacity. Hence the total length
1 capacity used by the unrouted paths from the optimal solution is at least dmin

∆

∑

i k
2
i .

20

Combining this with the observations that all length 1 arcs are unclipped and that the total
available length 1 capacity is at most

∑

e∈A(D) uO
e , we obtain

dmin

∆
· (
∑t

i=1 ki)
2

t
≤ dmin

∆

t
∑

i=1

k2
i ≤

∑

e∈A(D)

uO
e ≤ √

mOdmin. (6)

Since
∑

i ki = |Q| = Ou − t, we obtain (Ou−t)2

t ≤ ∆
√

mO. Running the above procedure
for various possible values of O (guessed within a factor of 2 by doubling), we may deduce
that t ≥ Ou

2∆
√

m
as required.

If ∆ > 2, we can divide the demands into O(log ∆) classes and do the above analysis for the
class that has the largest number of pairs satisfied by an optimal solution. This would give
us a solution that satisfies at least O(Ou

log ∆
√

m
) demands. The preceding argument applies

equally well (with ∆ = 1 of course) to BLEDP and so we obtain the following result.

Theorem 11 There is a polynomial-time O(
√

m) approximation algorithm for BLEDP.

At first glance, it may appear that the proof of Theorem 10 also gives a similar bound
for the integral splittable problem. There is a snag, however; we may only deduce the
following.

Theorem 12 Consider a unit-profit instance of the ISF problem. Then by applying the
greedy algorithm O(log n) times, we may find a solution which satisfies at least Ois

2
√

mdmax

demands.

Proof: Mimic the proof of Theorem 10 directly, except clip each capacity at O
√

dmax√
m

.

The proof breaks down only because we cannot guarantee that the flow Pi blocks at most
ni∆ flow systems from an integral splittable optimum. Indeed, we can only deduce that Pi

must use at least ki units of length 1 capacity, and hence so do each of the flows which it
blocks. Equation (6) becomes

∑

i k
2
i ≤

√
mdmaxO, and the rest then follows.

Returning to the general versions with profits and arbitrary demands, the repeated
greedy algorithm, together with techniques from the proof of Theorem 6, gives us an upper
bound on the approximation factor that nearly matches the hardness result of Corollary 3.1.

Corollary 5.1 The general USF problem with arbitrary polynomially bounded demands can
be approximated to within a factor of O(

√
m log2 m). The general ISF problem with arbitrary

polynomially bounded demands can be approximated to within a factor of O(
√

mdmax log2 m).

Acknowledgements

We are grateful to Jon Kleinberg, Stavros Kolliopoulos, and Éva Tardos for guiding us
through the extensive literature on this subject. We would also like to thank an anonymous
referee whose detailed comments have helped us greatly improve the presentation.

21

References

[1] Y. Aumann and Y. Rabani. Improved Bounds for All Optical Routing. Proceedings
of 6th ACM-SIAM Symposium on Discrete Algorithms, 1995, pp. 567–576.

[2] A. Baveja and A. Srinivasan. Approximation algorithms for disjoint paths and
related routing and packing problems. Submitted, January 1998.

[3] A. Bley. On the complexity of vertex-disjoint length-restricted path problems.
Konrad-Zuse-Zentrum für Informationstechnik Berlin Tech. Report SC-98-20, 1998.

[4] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Mathematical Statistics, 23:493–507, 1952.

[5] E. A. Dinitz. Algorithm for solution of a problem of maximum flow in networks with
power estimation. Soviet Math. Dokl., Vol. 11 (1970), pp. 1277-1280.

[6] Y. Dinitz, N. Garg and M. X. Goemans. On the single source unsplittable flow
problem. Proceedings of the 39th Symposium on the Foundations of Computer Science,
1998, pp. 290–299.

[7] S. Even, A. Itai and A. Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM Journal on Computing, Vol. 5, No. 4 (1976), pp. 691-703.

[8] S. Fortune, J. Hopcroft and J. Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, Vol. 10, No. 2 (1980), pp. 111–121.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, 1979.

[10] N. Garg, V. Vazirani and M. Yannakakis. Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica, 18 (1997), pp. 3–20. (Preliminary
version in Proceedings of 20th International Colloquium on Automata, Languages, and
Programming, 1993, pp. 64–75.)

[11] W. Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association, 58:13–30, 1963.

[12] J. Håstad. Clique is hard to approximate within n1−ε. ECCC Technical Report TR97-
038. (Preliminary version in Proceedings of the 37th Symposium on the Foundations of
Computer Science, 1996, pp. 627–636.)

[13] T. C. Hu. Multi-commodity Network Flows. Operations Research, 11(1963), pp.
344–360.

[14] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Infor-
mation Processing Letters, 37(1991), pp. 27–35.

[15] J. M. Kleinberg. Single-source unsplittable flow. Proceedings of the 37th Symposium
on the Foundations of Computer Science, 1996, pp. 68–77.

[16] J. M. Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis,
MIT, Cambridge, MA, May 1996.

22

[17] J. M. Kleinberg. Decision algorithms for unsplittable flow and the half-disjoint paths
problem. Proc. of STOC ’98, pp. 530–539.

[18] J. M. Kleinberg and É. Tardos. Approximations for the disjoint paths problem
in high-diameter planar networks. Journal of Computer and System Sciences, 57, pp.
61-73, 1998. (Preliminary version in the Proceedings of the 27th Symposium on the
Theory of Computing, 1995, pp. 26–35.)

[19] J. M. Kleinberg and É. Tardos. Disjoint Paths in Densely Embedded Graphs.
Proceedings of the 36th Symposium on the Foundations of Computer Science, 1995, pp.
52–61.

[20] S. G. Kolliopoulos. Exact and approximation algorithms for network flow and
disjoint-path problems. PhD Thesis, Dartmouth College, Hanover, NH, August 1998.

[21] S. G. Kolliopoulos and C. Stein. Improved approximation algorithms for un-
splittable flow problems. Proceedings of the 38th Symposium on the Foundations of
Computer Science, 1997, pp. 426–435.

[22] S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using
greedy algorithms and Packing Integer Programs. Integer programming and Combina-
torial Optimization, 1998.

[23] F. T. Leighton and S. B. Rao. An approximate max-flow min-cut theorem for
uniform multicommodity flow problems with applications to approximation algorithms.
Proceedings of the 29th Symposium on the Foundations of Computer Science, 1988, pp.
422–431.

[24] B. Ma and L. Wang. On the inapproximability of disjoint paths and minimum
steiner forest with bandwidth constraints. Journal of Computer and Systems Sciences,
to appear.

[25] W. S. Massey. Algebraic Topology: An Introduction. Graduate texts in mathematics
56, Springer-Verlag, 1967.

[26] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for prov-
ably good algorithms and algorithmic proofs. Combinatorica, Vol. 7 (1987), pp. 365–
374.

[27] N. Robertson and P. D. Seymour. Outline of a disjoint paths algorithm. In
B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, Eds., Paths, Flows and VLSI-
Layout. Springer-Verlag, Berlin, 1990.

[28] A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable flow,
and related routing problems. Proceedings of the 38th Symposium on the Foundations
of Computer Science, 1997, pp. 416–425.

23

