Some Thoughts on Teaching Programming and Programming
Languages

John C. Reynolds

Carnegie Mellon University

john.reynolds@cs.cmu.edu

Abstract

It is argued that the teaching of programming is central
to the education of skilled computer professionals, that
the teaching of programming languages is central to
the teaching of programming. that these topics must
include the specification, structuring, and verification
of software, and that they should be taught with the
same regard to rigor and precision as in traditional
mathematics.

Categories and Subject Descriptors K.3 [2]: Com-
puter Science Education, Curriculum, also D.3 [0]

Keywords programming, programming languages,
teaching, undergraduate curriculum

The question of what to teach about programming
languages raises the prior question of what to teach
about programming. In fact, the ability to construct re-
liable and efficient software is the central hallmark of
the skilled computer professional, and the present-day
rarity of this ability is a major cause of the sad preva-
lence of bug-ridden computer systems. Our educational
institutions must help to solve this problem rather than
to exacerbate it.

(Throughout these remarks, the terms ‘“program-
ming” and “programming language” will be interpreted
broadly: By “programming” we mean the entire pro-
cess of constructing programs, not just coding, and by
“programming languages” we mean both executable
languages and logics for specifying program behavior.)

[Copyright notice will appear here once ’preprint’ option is removed.]

Some argue that one can manage software produc-
tion without the ability to program. This belief seems to
arise from the mistaken view that software production
is a form of manufacturing. But manufacturing is the
repeated construction of identical objects, while soft-
ware production is the construction of unique objects,
i.e., the entire process is a form of design. As such it
is closer to the production of a newpaper — so that
a software manager who cannot program is akin to a
managing editor who cannot write.

One might also argue that many computer profes-
sionals deal only with some specialization of program-
ming appropriate to a particular application area. But
these specializations vary widely and cannot provide
the commonality that must underly a profession. It is
precisely the general craft of programming that holds
the profession together.

It is also the craft of programming that lies at the
intellectual center of computer science (as central to
that subject as classical mechanics is to physics), and
has given rise to the concept of computational thinking.

Since programming languages are the languages in
which we program, there is obviously a close connec-
tion between the teaching of programming and of pro-
gramming languages. To teach one without the other is
as implausible as teaching novel-writing without teach-
ing natural language.

Most novelists, however, use a single language,
while most computer professionals use many, quite dif-
ferent programming languages. Moreover, almost ev-
ery programming language attempts to embody a par-
ticular style of programming, so that a broad education
requires immersion in a variety of languages.

As Alan Perlis once remarked, “A good program-
ming language is a universe for thinking about pro-
gramming”. In fact, it is entirely artificial and unpro-

2008/6/19



ductive to separate the teaching of a programming lan-
guage from the methodology it embodies. If one looks
at particular aspects of programming languages, say
type systems, or first-class continuations, or module
declarations, it is clear that understanding will be im-
peded if the student learns to use these mechanisms
separately from learning how they work.

In Perlis’s sense, however, not all programming lan-
guages are good. Most — including the most widely
used — have serious design defects, so that learning
such languages is less a matter of mastering a style than
of learning workarounds for the language designer’s
mistakes.

I believe that the most reasonable approach to this
problem is to first learn to program in a single well-
designed programming language (or perhaps a small
number of stylistically varied well-designed languages)
that imposes a minimal number of obstacles to the pro-
gramming task. One should first learn to play baseball
with a straight bat. Only later should one learn the spe-
cific workarounds needed for flawed languages.

I also believe that programming must be integrated
with program specification. To document their pro-
grams precisely, programmers should have a thorough
understanding of specification languages (which are
just as much “programming languages” as are lan-
guages for execution). They should also be able to con-
struct (most likely with computer assistence) formal
proofs that programs meet their specifications.

It is becoming increasingly clear that this kind of in-
tegration is essential for the creation of highly reliable
software. More to the point educationally, formal verifi-
cation is the most effective way of teaching the nascent
programmer to consider his work carefully enough to
be sure of its reliability and lack of bugs.

An additional reason for teaching programming lan-
guages to programmers is that whenever they design
a textual (or perhaps even graphical) input format that
will affect the behavior of a computer, they are de-
signing a programming language. It is often objected
that such formats are not real programming languages
since, for instance, they are not Turing complete. But
the reality is that these formats are close enough to pro-
gramming languages to be subject to the same design
faults. And so, from designers innocent of the princi-
ples of programming language design, we have been
given a nearly endless succession of “input formats”
that seem to be designed to encourage error. (Flawed

macro facilities that violate the basic laws of variable
binding are particularly prominent examples.)

In summary, the teaching of programming and of
programming languages are intrinsically linked. They
should include specification and verification, and they
should be taught with as much regard to rigor and
precision as in traditional mathematics.

The last of these points deserves particular empha-
sis. The era of seat-of-the-pants programming and lan-
guage design is waning, and the future belongs to pro-
grammers who are well-trained in the theory and logic
that underlies their work.

This is not the place to try to lay out a specific cur-
riculum. Instead, to indicate what should be expected
of such a curriculum, here is a short and partial list of
the kind of capabilities that should be expected of the
competent computer professional:

¢ To write short error-free programs, without testing,
for tasks such as binary search, and to use a formal
system such as Hoare logic to verify them.

¢ To use language features such as higher-order func-
tions and continuations to implement tasks such as
backtracking and memoization.

¢ To write concurrent programs using shared variables
or message-passing, and to give rigorous informal
arguments for their lack of errors.

¢ To specify precisely and implement correctly a sim-
ple programming language.

¢ To design, specify, and implement correctly a simple
language for a special-purpose input format.

¢ To hand-translate programs in functional or object-
oriented languages into a low-level language such as
C or assembly language.

¢ To write a clear and error-free program of sufficient
complexity — say a syntax-directed editor — that it
must be structured carefully.

¢ To estimate the time and space requirements of basic
operations on widely used data representations.

2008/6/19



