Lecture Notes on
Memory Optimizations

15-411: Compiler Design
Frank Pfenning

Lecture 18
October 23, 2014

1 Introduction

Even on modern architecures with hierarchical memory caches, memory access, on
average, is still significantly more expensive than register access or even most arith-
metic operations. Therefore, memory optimizations play a significant role in gener-
ating fast code. As we will see, whether certain memory optimizations are possible
or not depends on properties of the whole language. For example, whether or not
we can obtain pointers to the middle of heap-allocated objects will be a crucial
question to answer.

2 A Simple Example

We will use a simple running example to illustrate memory optimization and their
conditions of applicability. In this example, mult(A, p, ¢) will multiply matrix A
with vector p and return the result in vector q.

struct point {
int x;
int y;
s
typedef struct point pt;

void mult(int[] A, pt* p, ptx q) {
g->x = A[0] * p—>x + A[1] * p->y;
g->y = A[2] * p->x + A[3] * p->y;
return;

¥

LECTURE NOTES OCTOBER 23, 2014

Memory Optimizations L18.2

Below is the translation into abstract assembly, with the small twist that we have
allowed memory reference to be of the form M{base + offset]. The memory opti-
mization question we investigate is whether some load instructions ¢ <— M|s] can
be avoided because the corresponding value is already held in a temp.

mult(A, p,q) :
to < M[A + 0]
t] M[p + 0}
to < to + 11
ts + M[A+ 4]
ty < M[p + 4}
ts < t3 x4
tg < t2 + 15
M[q + O] — g
tg < M[A + 8]
tg <— M[p + 0] # redundant load?
ti0 ¢ 1g + 19
t11 M[A + 12]
tig < M[p+4] #redundantload?
t13 ¢ t11 * 12
t14 < t10 + t13
M[q + 4] —t14
return

We see that the source refers to p->x and p->y twice, and those are reflected in the
two, potentially redundant loads above. Before you read on, consider if we could
replace the lines with ¢9 < ¢; and t12 < t4. We can do that if we can be assured
that memory at the addresses p + 0 and p + 4, respectively, has not changed since
the previous load instructions.

LECTURE NOTES OCTOBER 23, 2014

Memory Optimizations L18.3

It turns out that in CO the second load is definitely redundant, but the first one
may not be.

The first load is not redundant because when this function is called, the pointers
p and ¢ might be the same (they might aliased). When this is the case, the store to
M [g+0] will likely change the value stored at M [p+0], leading to a different answer
than expected for the second line.

On the other hand, this cannot happen for the first line, because M [g + 0] could
never be the same as M [p+ 4] since one accesses the z field and the other the y field
of a struct.

Of course, the answer is mostly likely wrong when p = ¢. One could either
rewrite the code, or require that p # ¢ in the precondition to the function.

In C, the question is more delicate because the use of the address-of (&) operator
could obtain pointers to the middle of objects. For example, the argument int [] A
would be int* A in C, and such a pointer might have been obtained with &q->x.

3 Using the Results of Alias Analysis

In CO, the types of pointers are a powerful basis of alias analysis. The way alias
analysis is usually phrased is as a may-alias analysis, because we try to infer which
pointers in a program may alias. Then we know for optimization purposes that
if two pointers are not in the may-alias relationship that they must be different.
Writing to one address cannot change the value stored at the other.

Let’s consider how we might use the results of alias analysis, embodied in a
predicate may-alias(a, b) for two addresses a and b. We assume we have a load
instruction

l:t< Mlad]

and we want to infer if this is available at some other line I’ : ¢/ < Ma] so we could
replace it with " : ¢/ <— ¢. Our optimization rule (in the notation of linear inference
from Lecture 16):

[:t <+ Mlad] [:t <+ Mld]
—q ... provided [> k,avail(l, k)
k:t' < Mladl kot t

The fact that | dominates £ is sufficient here in SSA form to guarantee that the
meaning of ¢ and a remains unchanged. avail is supposed to check that M[a] also
remains unchanged.

Reaching analysis for memory references is a simple forward dataflow analysis.
If we have a node with two or more incoming control flow edges, it must be avail-
able along all of them. For the purposes of traversing loops we assume availability,
essentially trying to find a counterexample in the loop. To express this concisely,

LECTURE NOTES OCTOBER 23, 2014

http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/16-basicopt.pdf

Memory Optimizations L18.4

our analysis rules propagate unavailability of a definition [: ¢ < M]a] an other
instructions £ that are dominated by .

For unavailability, unavail(l, k), we have the seeding rule on the left and the
general propagation rule on the right. Because we are in SSA, we know in the
seeding rule that [> k where k is the (unique) successor of I.

l:t+ Mld]

>0

U': M[b] + s unavail(, k)

may-alias(a, b) succ(k, k')

succ(l’, k) 1>k
unavail(l, k) unavail (1, k)

The rule on the right includes the cases of jumps or conditional jumps. This ensures
that in a node with multiple predecessors, if a value is unavailable in just one of
them, in will be unavailable at the node. Function calls can also seed unavailability.
Unfortunately it is enough if one of the function parameters is a memory reference,
because from one memory reference we may be able to get to another by following
pointers and offsets.

l:t< Mlad]

>0

Uid< f(s1,...,8n)

memref (s;)

succ(l', k)

unavail(l, k)

With more information on the shape of memory this rule can be relaxed.

From unavailability we can deduce which memory values are still available,
namely those that are not unavailable (restriction attention to those that are domi-
nated by the load—otherwise the question is not asked).

l:t< Mlad]
1>
—wnavail(, 1)

avail(l, 1)

Note that stratification is required: we need to saturate unavail(l, I") before applying
this rule.

4 Type-Based Alias Analysis

The simplest form of alias analysis is based on the type and offset of the address.
We call this an alias class, with the idea that pointers in different alias classes cannot

LECTURE NOTES OCTOBER 23, 2014

Memory Optimizations L18.5

alias. The basic predicate here is class(a, 7, offset) which expresses that a is an ad-
dress derived from a source of type 7 and offset offset from the start of the memory
of type 7.

Then the may-alias relation is defined by

class(a, ,k) class(b, 1, k)

may-alias(a, b)

There is a couple of special cases we do not treat explicitly. For example, the
location of the array length (which is stored in safe mode at least) may be at offset
—8. But such a location can never be written to (array lengths never change, once
allocated), so a load of the array length is available at all locations dominated by
the load.

The seed of the class relation comes from the compiler, that annotates an address
with this information. In our example,

mult(A, p,q) :
to <—M[A+O]
i <—M[p—|—0]
to < tog+ 11
ty — M[A + 4]

the compiler would generate

class(A,int[],0)
class(p, struct pointx, 0)
class(q, struct pointx, 0)

We now propagate the information through a forward dataflow analysis. For ex-
ample:
l:b<+ a class(a,T, k) l:b<a+93%n class(a,T,k)

class(b, 7, k) class(b, 7,k + n)

In the second case we have written $n to emphasize the second summand is a
constant n. Unfortunately, if it is a variable, we cannot precisely calculate the offset.
This may happen with arrays, but not with pointers, including pointers to structs.
So we need to generalize the third argument to class to be either a variable or T,
which indicates any value may be possible. We then have, for example

l:b<a+t class(a,T,k)
class(b, 7, T)

Now T behaves like an information sink. For example, T + %k = k+ T = T.
Since in SSA form a is defined only once, we should not have to change our mind

LECTURE NOTES OCTOBER 23, 2014

Memory Optimizations L18.6

about the class assigned to a variable. However, at parameterized jump targets
(which is equivalent to ®-functions), we need to “disjoin” the information so that
if the argument is known to be k at one predecessor but unknown at T at another
predecessor, the result should be T.

Because of loops, we then need to generalize further and introduce L which
means that we believe (for now) that the variable is never used. Because of the
seeding by the compiler, this will mostly happen for loop variables. The values are

arranged in a lattice
T \
0 1 2 .
| /

where at the bottom we have more information, at the top the least. The LI oper-
ation between lattice elements finds the least upper bounds of its two arguments.
For example, 04 = T and L U2 = 2. We use it in SSA form to combine information
about offsets. We now read an assertion class(a, 7, k) as saying that the offset is at
least k£ under the lattice ordering. Then we have

Iab(al) :

class(ay, 7, k1)
[: goto lab(asz)
class(ag, 7, k2)

class(ay, 7, k1 U k2)

Because of loops we might perform this calculation multiple times until we have
reached a fixed point. In this case the fixed point is least upper bound of all the
offset classes we compute, which is a little different than the saturated data base
we considered before.

This is an example of abstract interpretation, which may be a subject of a future
lecture. One can obtain a more precise alias analysis if one refines the abstract do-
main, which is lattice shown above.

5 Allocation-Based Alias Analysis

Another technique to infer that pointers may not alias is based on their allocation
point. In brief, if two pointers are allocated with different calls to alloc or alloc_array,
then they cannot be aliased. Because allocation may happen in a different function
than we are currently compiling (and hopefully optimizing), this is an example of
an interprocedural analysis.

LECTURE NOTES OCTOBER 23, 2014

	Introduction
	A Simple Example
	Using the Results of Alias Analysis
	Type-Based Alias Analysis
	Allocation-Based Alias Analysis

