Lecture Notes on
Basic Optimizations

15-411: Compiler Design
Frank Pfenning

Lecture 16
October 16, 2014

1 Introduction

The opportunities for optimizations® in compiler-generated code are plentiful. Gen-

erally speaking, they arise more from the tensions between the high-level source
language and the lower-level target language, rather than any intrinsic inefficien-
cies in the source. One common source, sometimes estimated to constitute as much
as 70% of optimization opportunities, is address arithmetic and is therefore tied to
structs and arrays.

In this lecture we discuss basic optimizations that apply pervasively during the
compilation process. In the next two lectures we will discuss specifically optimiza-
tions of loops. Another class of optimizations is concerned with functions calls,
like tail-call optimization and inlining. You had the opportunity to consider these
in Assignment 3.

2 Dead Code Elimination

Optimizations have two components: (1) a condition under which they are appli-
cation and the (2) code transformation itself. The applicability condition can come
in various forms, but often requires a dataflow analysis.

As a warm-up exercise, we reconsider dead code elimination from Section 4 of
Lecture 5. We defined there a predicate needed(/, ) which is defined via a backward
dataflow analysis. Instructions of the forms

Il : x4 51Dsy
Il : <+ s

]Very little in a compiler is actually optimal, so “optimizations” should be interpreted as “effi-
ciency improvements”.

LECTURE NOTES OCTOBER 16, 2014


http://www.cs.cmu.edu/~fp/courses/15411-f14/assignments/assignment3.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/05-dataflow.pdf

Basic Optimizations L16.2

with a pure (effect-free) right-hand side are considered dead code if x is not needed
in the successor [ + 1 of I. We use the notation were the lines of the program we
rewrite a shown on the left, and the new versions on the right with a “—" in
between.

l:xs1®sy —> l:nop (provided —needed(l+1,z))

where @ is an effect-free operation. We replace the instruction with a nop instead
of just deleting it so that, for example, jumps to line [ will continue to remain value.
At a later stage of optimization, spurious no-ops can be deleted from the code.

3 Constant Propagation

Another straightforward optimization is constant propagation. If we have definition
l : z + cfor a constant ¢, we might want to replace an occurrence of z by c in the
hope that we may be able to eliminate the assignment (and x) altogether. Moreover,
we may be able to apply other optimizations where we have substituted c for z,
such as constant folding.

The tricky question is when this is a correct optimization. For example, in the

code
l : xz+c

kE : y+—zxz+1
it depends on what happens in the lines between [ and k. Jumps may target lines
in between, or there may be another assignment to x so that  no longer has the
value ¢ when execution reaches k.

Rather than give a general solution to this question, we greatly simplify our
lives by assuming that the code has been transformed in static single-assignment
(SSA) form. In that form, any variable is defined exactly one so a reference to z
must be the correct one. We use the notation I’ : instr(z) for an instruction that uses
x (that is, use(!’, x)) and instr(c) for the result of replacing x by c.

l:x+c l:z+c
" : instr(z) I': instr(c)

Note that we to repeat [ : < c on the right-hand side because it remains un-
changed.

LECTURE NOTES OCTOBER 16, 2014



Basic Optimizations L16.3

4 Copy Propagation

Copy propagation is very similar to constant propagation, except that one variable
is defined in terms of another.

l:x<+y l:x4+c
" : instr(z) ' : instr(y)
Again, we should ask if this is sound, assuming the program is in SSA form. We

know there is exactly one definition of y thatis available at line /. Since z is available
at line I/, y must also be available there so the replacement is sound.

5 Termination

When applying code transformations, we should always consider if the transfor-
mations terminate. Clearly, each step of dead code elimination reduces the number
of assignments in the code. We can therefore apply it arbitrarily until we reach qui-
escence, that is, neither of the dead code elimination rules is applicable any more.
Quiescence is the rewriting counterpart to saturation for inference, as we have dis-
cussed in prior lectures. Saturation means that any inference we might apply only
has conclusions that are already known. Quiescence means that we can no longer
apply any rewrite rules.

A single application of constant propagation reduces the number of variable
occurrence in the program and must therefore reach quiescence. It also does not
increase the number of definitions in the code, and can therefore be mixed freely
with dead code elimination.

It is more difficult to see whether copy propagation will always terminate, since
the number of variable occurrences stays the same, as does the number of variable
definitions. In fact, in a code pattern

T4y
W T
instr(w)

! instr(x)

33 =T

we could for decrease the number of occurrence of z by copy propagation from
line [ and then increase it again by copy propagation from line k. However, if we
consider a string partial order x > y among variables if the definition of  uses y
(transitively closed), then copy progation reduces the occurrence of a variable by a
strictly smaller one. This order is well-founded since in SSA we cannot have a cycle
among the definitions. If  is defined in terms of y, then y could not be defined in
terms of z since it the single definition of y must come before x in the control flow

graph.

LECTURE NOTES OCTOBER 16, 2014



Basic Optimizations L16.4

6 Constant Folding

Constant folding evaluates a constant epxression at compile time. In the three-
address form, this is simply:

l:xc1O0cc — l:x+c (Wherec=c ®c)

where @ doubles as a syntactic binary operation and its arithmetic counterpart.
We need to make sure that ¢; ® ¢y is defined in this case (and should not raise an
exception at runtime). There is no other precondition to this transformations.

7 Common Subexpression Elimination

Itis natural to try to apply a transformation similar to copy or constant propagation

to of the form
Il : x4+ 8PSy

k : instr(x)

where we replace x by s1®s2. However, this will not work most of the time, because
the result may not even be a valid instruction (for example, if instr(z) = (y < z®1).
Moreover, the program becomes bigger, plus we are computing an expression more
than once instead of just once, so this is likely to make the code slower rather than
faster.

However, we can consider the opposite: In a situation

Il : x4+ 85D sy

k : y<+ s1Dso

we can replace the second computation of s; @ sy by a reference to # (under some
conditions), saving a reduction computation. This is called common subexpression
elimination (CSE).

For this to be correct we need to know that x will have the right value when
execution reaches line k. Because we are in SSA form, the right-hand sides will
always have the same meaning if they are syntactically identical. But will = be
available at £?

What we would like to know is that every control flow path from the beginning
of the code (that is, the beginning of the function we are compiling) to line k goes
through line /. Then we can be sure that x has the right value when we reach £. This
is the definition of the dominance relation between lines of code. We write [ > k if
[ dominates k and | > k if it [ strictly dominates k. We see how to define it in the

LECTURE NOTES OCTOBER 16, 2014



Basic Optimizations L16.5

next section; once it is defined we use it as follows:

l:2 4+ 81D sy l:2 4+ 51D so
— (provided [ > k)
k:y< s1® s k:y<+=x

It was suggested in lecture that this optimization would be correct even if the
binary operator is effectful. The reason is that if [ dominates & then we always
execute [ first. If the operation does not raise an exception, then the use of z in £ is
correct. If it does raise an exception, we never reach k. So, yes, this optimization
works even for binary operations that may potentially raise an exception.

8 Dominance

On general control flow graphs, dominance is an interesting relation and there
are several algorithms for computing this relationship. We can cast it as a form
of forward data-flow analysis. One of the approaches exploits the simplicity of our
language to directly generate the dominance relationship as part of code genera-
tion. We briefly discuss this here. The drawback is that if your code generation is
slightly different or more efficient, or if your transformation change the essential
structure of the control flow graph, then you need to update the relationship. A
simple and fast algorithm that works particularly well in our simple language is
described by Cooper et al. [CHKO06] which is empirically faster than the traditional
Lengauer-Tarjan algorithm [LT79] (which is asymptotically faster). In this lecture,
we consider just the basic cases.

For straight-line code the predecessor if each line is its immediate dominator, and
any preceding line is a dominator.

For conditionals, consider

if (e, s1,82)

We translate this to the following code, ¢ or 5 is the code for e and s, respectively

LECTURE NOTES OCTOBER 16, 2014



Basic Optimizations L16.6

and é is the temp through which we can refer to the result of evaluating e.

lp : ¢

o @ if (é1=0) gotoly ; goto Iy
lh @ 81 lll : goto I3

lo : 389 l/2 : goto I3

I3

On the right is the corresponding control-flow graph. Now the immediate domina-
tor of /; should be [j, and the immediate dominator of I, should also be [{,. Now for
I3 we don’t know if we arrive from [} or from . Therefore, neither of these nodes
will dominate I3. Instead, the immediate dominator is I{,, the last node we can be
sure to be traversed before we arrive at [5. Indicating immediate dominators with
dashed read lines, we show the result below.

LECTURE NOTES OCTOBER 16, 2014



Basic Optimizations L16.7

However, if it turns out, say, [} is not reachable, then the dominator relationship
looks different. This is the case, for example, if s; in this example is a return state-
ment or is known to raise an error. Then we have instead:

In this case, I} : goto I3 is unreachable code and can be optimized away. Of course,
the case where [ is unreachable is symmetric.

For loops, it is pretty easy to see that the beginning of the loop dominates all
the statements in the loop. Again, considering the straightforward compilation of
a while loop with the control flow graph on the right.

’

PO

lo B

o : if (6==0) goto I3 ; goto Iy
Iy 5

1 goto [y

ly

LECTURE NOTES OCTOBER 16, 2014



Basic Optimizations L16.8

Interesting here is mainly that the node p’ just before the loop header [j is indeed
the immediate dominator of [y, even [y has I} as another predecessor. The definition
makes this obvious: when we enter the loop we have to come through p’ node,
on subsequent iterations we come from [j. So we cannot be guaranteed to come
through /{, but we are guaranteed to come through p’ on our way to lo.

9 Implementing Common Subexpression Elimination

To implement common subexpression elimination we traverse the program, look-
ing for definitions ! : x < s1®ss. If 51 ©s3 is already in the table, defining variable y
at k, wereplace [ with [ : z < y if kK dominates [. Otherwise, we add the expression,
line, and variable to the hash table.

Dominance can usually be checked quite quickly if we maintain a dominator
tree, where each line has a pointer to its immediate dominator. We just follow
these pointers until we either reach % (and so k£ > [) or the root of the control-flow
graph (in which case k does not dominate [).

10 Strength Reduction

Strength reduction in general replaces and expensive operation with a simpler one.
Sometimes it can also eliminate an operation altogether, based on the laws of mod-
ular, two’s complement arithmetic. Recall that we have the usual laws of arithmetic
modulo 232 for addition, subtraction, multiplication, but that comparisons are more

LECTURE NOTES OCTOBER 16, 2014



Basic Optimizations L16.9

difficult to transform?
Common simplifications (and some symmetric counterparts):

a+0 = a
a—0 = a
ax0 = 0
axl = a

but one can easily think of others involving further arithmetic of bit-level opera-
tions. One that may be interesting for optimization of array accesses is the dis-
tributive law:

ax(b+c)=axb+axc

where @ could be the size of an array element and (b + ¢) could be an index calcu-
lation.

11 A Simple Example

Let’s consider the rather innocuous CO code fragment
Ali]l = A[i] + 1

Assuming we perform no null or array bound checking, and a holds the address
of the array, we would obtain something like the following. The semantics of CO
require left-to-right evaluation, so we first obtain the address of A[i] in ¢; (lines
lo — —11), then we evaluate the right-hand-side (lines [, — —I5), and then we write
to the memory at address ¢3 (line lg). The number 4 is the size of |int|, which is the
type of the array elements.

lp : to — 4xi #cse
i : — a-+ty

lo : to — 4x*i #cse
l3 : t3 — a-+ts

l4 . — M[tg]

ls : t5 — tg+1

l6 : M[tl] — 5

2For example, z + 1 > z is false in general, because x could be the maximal integer, 231 _ 1.

LECTURE NOTES OCTOBER 16, 2014



Basic Optimizations L16.10

We notice that [y and I; both compute 4 * i so we obtain the code on the left. This is
now subject to copy propagation from [ to I3 to obtain the code on the right.

lo ) — 4dx2 lo : o — 4dx1

i : 1 — a+ty lh @ t — a+tyg #Hcse
lo : to — to lo : to — o

l3 1 3 — a-+ts l3 ;13 — a+to # cse
ly : ty — M[tg] l4 Tty — M[tg}

ls : t5 — tg4+1 ls : t5 — tg4+1

l6 : M[tl] — 15 16 : M[tl] — 15

The code on the right yields another opportunity for common subexpressions elim-
ination for lines /; and /3. The result is pictured on the left, followed again by copy
propagation on the right.

lg : 1o — 4% l() ;1o — 42

i : — a-+ty i : — a-+ty

l2 . ) — o 12 1 to — o # dead
l3 . — t1 lg I — 1 # dead
ly : t4 — M[tg] ly : 4 — M[tl]

ls : t5 — tg+1 ls : ts — tg+1

l6 : M[tl] — 5 l6 : M[tl] — 5

A pass of dead code elimination yields the code in which the address of A[i] is
computed only once.

lo : 1o — 4x3
l1 . A — a+ty
lo : nop

I3 : nop

l4 Doty — M[tl]
ls : t5 — tg+1

l6 M [tl] — 5
This example illustrates the cascading of optimizations: initially, we only had two
common subexpressions, but after some optimizations more were uncovered. Tech-
niques such as global value numbering help to avoid multiple passes over code by
combining several iterations into one. Neededness analysis is another example
where multiple lines are declared dead code at once, rather than in sequence with
new analysis in between.

References

[CHKO06] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A simple, fast
dominance algorithm. Technical Report TR-06-33870, Department of
Computer Science, Rice University, 2006.

LECTURE NOTES OCTOBER 16, 2014



Basic Optimizations L16.11

[LT79]  Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on Programming Languages
and Systems, 1(1):115-120, July 1979.

LECTURE NOTES OCTOBER 16, 2014



	Introduction
	Dead Code Elimination
	Constant Propagation
	Copy Propagation
	Termination
	Constant Folding
	Common Subexpression Elimination
	Dominance
	Implementing Common Subexpression Elimination
	Strength Reduction
	A Simple Example

