
Assignment 3
Calling Conventions and Optimizations

15-411: Compiler Design
Frank Pfenning

Flávio Cruz, Maxime Serrano, Rokhini Prabhu, Tae Gyun Kim

Due Thursday, October 9, 2014 (11:59pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be
all your own. Hand in your solutions as a PDF file on Autolab. Please read the late policy
for written assignments on the course web page.

Problem 1: Calling Conventions (15 points)

(a) The function on the next page is written in x86-64 assembly (with some syntactic
liberties), and it is a bit too concerned about preserving the calling function’s register
values. Without modifying the function’s “work” section, rewrite the function to
remove as many of the “prologue” and “epilogue” instructions as you safely can.
You should also give the reasons why those instructions are unnecessary, and why
the remaining ones are necessary. You should also reduce the stack frame size to the
amount that is actually necessary for your new function.

(b) In addition to saving and restoring registers it doesn’t need to, the program is violat-
ing the x86-64 calling conventions. Explain how.

(c) There is nothing on an x86-64 processor actually enforcing the calling conventions,
and there are a couple reasons why you might be tempted to forgo them. In some sit-
uations you could optimize away a few instructions by ignoring them, or you might
simply want to use the easier to remember rule that %r8 through %r15 are the callee-
save registers. However, conventions usually exist for a good reason. What would
be the negative consequences of ignoring calling conventions in your compiler? Are
there any circumstances (in your compiler, or in general) when it would be okay to
ignore calling conventions?

ASSIGNMENT 3 THURSDAY, OCTOBER 9, 2014 (11:59PM)



Calling Conventions and Optimizations A3.2

// Prologue

subq $1337, %rsp

movq %rbx, 108(%rsp)

movq %rcx, 116(%rsp)

movq %rdx, 124(%rsp)

movq %rsi, 132(%rsp)

movq %rdi, 140(%rsp)

movq %rbp, 148(%rsp)

movq %r8, 156(%rsp)

movq %r9, 164(%rsp)

movq %r10, 172(%rsp)

movq %r11, 180(%rsp)

movq %r12, 188(%rsp)

movq %r13, 196(%rsp)

movq %r14, 204(%rsp)

movq %r15, 212(%rsp)

// Work

movq $8, %rax

movq %rsi, %rbp

addq %rdi, %rbp

movq %rbx, 0(%rsp)

movq %rbp, 8(%rsp)

addq 0(%rsp), %r8

subq 8(%rsp), %r8

addq %r8, %rax

// Epilogue

movq 108(%rsp), %rbx

movq 116(%rsp), %rcx

movq 124(%rsp), %rdx

movq 132(%rsp), %rsi

movq 140(%rsp), %rdi

movq 148(%rsp), %rbp

movq 156(%rsp), %r8

movq 164(%rsp), %r9

movq 172(%rsp), %r10

movq 180(%rsp), %r11

movq 188(%rsp), %r12

movq 196(%rsp), %r13

movq 204(%rsp), %r14

movq 212(%rsp), %r15

addq $1337, %rsp

ret

ASSIGNMENT 3 THURSDAY, OCTOBER 9, 2014 (11:59PM)



Calling Conventions and Optimizations A3.3

Problem 2: Tail Call Optimization (20 points)

Tail call optimization is an optimization which can be applied wherever a function f makes
a call to a function g and then returns either nothing or directly the result of g. (An impor-
tant special case of this is tail recursion, where f and g are the same function.) Because f
does nothing with its local variables after the call to g, it is safe to have g overwrite the con-
tents of f ’s stack frame instead of creating a new one, and additionally save a somewhat
costly ret operation. In this problem you’ll walk through tail-recursion optimization of an
exponential function using an accumulator a.

int powacc(int b, int e, int a)

//@requires e >= 0;

{

if (e == 0) return a;

else return powacc(b, e-1, a*b);

}

int pow(int b, int e)

//@requires e >= 0;

{

return powacc(b, e, 1);

}

First, we translate to abstract assembly with parameters, not yet employing calling
conventions.

powacc(b, e, a) :
if (e == 0) goto done
t0 ← e− 1
t1 ← a ∗ b
t2 ← powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 ← powacc(b, e, 1)
return t0

(a) Now insert standard code templates for calling sequences as described in Lecture
11, using abstract notations for the registers (for example, arg1 is the first argument
register, and res0 the result register). Assume that we do not use any callee-save
registers. Functions are no longer parameterized, function calls and returns no longer
have explicit arguments; instead we are using argument and return registers. Be
careful not to optimize (yet)!

ASSIGNMENT 3 THURSDAY, OCTOBER 9, 2014 (11:59PM)

http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/11-calling.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/11-calling.pdf


Calling Conventions and Optimizations A3.4

(b) Next we want to apply some simple optimizations to obtain the code pattern

call f
ret

which we can then replaced by

goto f

The only optimizations you are allowed to perform are:

• Copy and constant propagation: given a move t ← s, you may replace an occur-
rence of t by s in code reachable from it. This is correct only under some condi-
tions. You do not have to verify any explicit conditions, but you should make
sure your particular application of copy or constant propagation is correct.

• Self-move elimination: delete an instruction t← t.

• Dead-code elimination: an instruction t ← s or t ← s1 ⊕ s2 for a pure (effect-free)
operator ⊕ can be deleted, if t is not live in its successor.

Indicate for each line that you optimize, which optimization(s) were necessary to
achieve it.

(c) Perform register allocation for the remaining temps and show the resulting x86-
64 program. Your register allocation may be as clever as you like (you can freely
pick registers for temps, as long as they create no conflict in the interference graph).
Briefly compare the resulting code to what you might obtain from an iterative pro-
gram computing with a while loop.

ASSIGNMENT 3 THURSDAY, OCTOBER 9, 2014 (11:59PM)



Calling Conventions and Optimizations A3.5

Problem 3: Inlining (25 points)

In this problem we explore inlining, which is another important optimization related to
function calls. In brief, we replace a function call with the body of the function, taking care
to rename temps to avoid naming conflicts.

Consider the following functions, where catalan(n) computes the nth Catalan number.

int next(int n, int c)

//@requires n >= 0;

{

return 2*(2*n+1)*c/(n+2);

}

int catalan(int n)

//@requires n >= 0;

{

int i = 0;

int c = 1;

while (i < n) {

c = next(i,c);

i = i + 1;

}

return c;

}

(a) The catalan function was compiled to a 3-address SSA form and then transformed
into assembly code by removing the parametrized labels:

catalan(n):

i0 <- 0

c0 <- 1

i1 <- i0

c1 <- c0

L0:

if (i1 >= n) goto L1

c2 <- next(i1,c1)

i2 <- i1 + 1

i1 <- i2

c1 <- c2

goto L0

L1:

return c1

Transform this code by making calling conventions explicit. Stay in the 3-address
form, but use argument and result registers appropriately.

ASSIGNMENT 3 THURSDAY, OCTOBER 9, 2014 (11:59PM)



Calling Conventions and Optimizations A3.6

(b) If you were to apply register allocation now, would you assign n, i1 and c1 to caller-
save or callee-save registers? Briefly explain.

(c) Compile the auxiliary function next to a 3-address SSA form, taking care that the eval-
uation order for subexpressions is strictly from left to right. Since there are no loops
in the function, you do not need to worry about SSA minimization or parametrized
labels.

(d) Make parameter passing in next explicit, using appropriate argument and result reg-
isters.

(e) Inline the code for next inside catalan. Do not apply any optimizations (yet)!

(f) Apply applicable optimizations as in Problem 2. Which instructions, and how many
of each, have been eliminated by inlining and subsequent optimization? What is the
impact (if any) on subsequent register allocation? Compare to your answer in (b).

ASSIGNMENT 3 THURSDAY, OCTOBER 9, 2014 (11:59PM)


