
Assignment 2
SSA, Lexing and Parsing

15-411: Compiler Design
Frank Pfenning

Flávio Cruz, Maxime Serrano, Rokhini Prabhu, Tae Gyun Kim

Due Thursday, September 25, 2014 (11:59pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must
be all your own. Hand in your solutions as a PDF file on Autolab. Please read the late
policy for written assignments on the course web page.

Problem 1 (30 points)

We generate a Collatz sequence ci starting from some positive integer n with the following
mathematical definition:

a0 = n

ai+1 =

{
ai/2 if ai is even
3ai + 1 if ai is odd

The stopping time of a Collatz sequence is the smallest index i such that ai = 1. It is cur-
rently not known if every Collatz sequence eventually reaches 1 (and thereby stops). The
following C0 function is intended to compute the maximum number in the Collatz sequence
for n before it stops.

int collatz(int n)

//@requires n >= 1;

{

int r = 0;

while (n > 1) {

if (n > r) r = n;

if (n % 2 == 0)

n = n / 2;

else

n = 3*n + 1;

}

return r;

}

ASSIGNMENT 2 THURSDAY, SEPTEMBER 25, 2014 (11:59PM)

SSA, Lexing and Parsing A2.2

(a) Compile this program to abstract assembly code as used in Lecture 6. You do not
need to follow a specific instruction selection algorithm, but the correspondence of
the source to abstract assembly code should be direct and easy to discern.

(b) Show the control flow graph of the program in (a) pictorially, carefully encapsulating
each basic block. Label each basic block with the label from the abstract assembly
code.

(c) Convert the program into SSA, using the form with parameterized labels. Feel free to
either use the control flow graph or the abstract assembly form to show your result.
You do not need to show intermediate steps, only your final form, but it is easier to
assign partial credit if you show your work. For full credit, your result should have
the minimal number of parameters for each label.

(d) Apply the de-SSA transformation to obtain a program where labels are no longer
parameterized. Again, you may show your result in the form of a control flow graph
or in textual form.

(e) If we are not interested in the maximum value in the sequence, but just a confirma-
tion that it stopped, we can transform the program by replacing the last line with

return 0;

If we apply neededness analysis from Lecture 5 which code will be flagged as not
needed?

(f) [Extra credit] The original code for collatz has a bug. Describe and fix this bug in
the source.

Problem 2 (30 points)

The following table defines the tokens for a simple language with Σ = {[a−z], [0−9], .,⊕, (,)}.

token regular expression
〈num〉 ≡ 0 | [1-9][0-9]*
〈lam〉 ≡ lam
〈ident〉 ≡ [a-z][a-z0-9]*
〈dot〉 ≡ .
〈lp〉 ≡ (
〈rp〉 ≡)
〈binop〉 ≡ ⊕

(a) Construct a DFA that accepts tokens from this language using Brzozowski deriva-
tives. Show the calculation of the derivatives, combining the treatment of character
ranges when all characters in the range have the same derivatives.

ASSIGNMENT 2 THURSDAY, SEPTEMBER 25, 2014 (11:59PM)

http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/06-ssa.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/05-dataflow.pdf

SSA, Lexing and Parsing A2.3

You may show the resulting DFA either graphically, or by explicitly writing down
the states and transitions. You may omit transitions to the (non-accepting) state with
regular expression 0, where all further derivatives remain 0.

In either notation, the connection to the Brzozowski derivates should be clear. Also,
note for each final state which token was recognized. See Lecture 7 for an example
notation.

Here is the grammar for the language whose tokens were defined in part a, using x for
identifiers 〈ident〉 and n for numbers 〈num〉.

γ1 : 〈E〉 → n
γ2 : 〈E〉 → x
γ3 : 〈E〉 → lam x . 〈E〉
γ4 : 〈E〉 → 〈E〉 〈E〉
γ5 : 〈E〉 → (〈E〉)
γ6 : 〈E〉 → 〈E〉 ⊕ 〈E〉

(b) This grammar is ambiguous. Give two examples of ambiguous expressions along
with two ways in which each can be parsed. The two examples should illustrate
different sources of ambiguity in the grammar.

(c) Some additional information is needed to make the grammar unambiguous. Make
some design decisions that resolve the ambiguity and state your decisions clearly, in
words. Use examples to illustrate your choices.

(d) Rewrite the grammar so that it accepts the same language of strings but is unambigu-
ous. The new grammar should adhere to your decisions in part (c). You do not need
to be concerned about whether one can parse left-to-right, just whether the grammar
ambiguous.

ASSIGNMENT 2 THURSDAY, SEPTEMBER 25, 2014 (11:59PM)

http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/07-lex.pdf

