
toad

Fall 2014

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Lambdas and Streams in Java 8

Jonathan Aldrich Charlie Garrod

toad 215-214

Administrivia

• Homework 6 checkpoint due tonight

• Homework 6 due Thursday

• Review session Sunday noon-3pm in DH 1212

• Final exam Monday at 8:30am in Porter Hall 100 & 125C

toad 315-214

Today’s Lecture: Learning Goals

• Understand the syntax, semantics, and typechecking
of lambdas in Java

• Write code effectively with lambdas in Java

• Use the Java stream library both sequentially and in parallel

• Use default methods to put reusable code in Java interfaces

toad 415-214

Recall Anonymous Inner Classes

final String name = "Charlie";

Runnable greeter = new Runnable() {

public void run() {

System.out.println("Hi " + name);

}

};

// add functionality to the step button.

step.addActionListener(new ActionListener(){

@Override

public void actionPerformed(ActionEvent arg0) {

worldPanel.step();

}

});

• A lot of boilerplate for 1 line of code in each example!

toad 515-214

Lambdas: Convenient Syntax for Single-Function Objects

final String name = "Charlie";

Runnable greeter = new Runnable() {

public void run() {

System.out.println("Hi " + name);

}

};

// with Lambdas, can rewrite the code above like this

String name = "Charlie";

Runnable greeter = () -> System.out.println("Hi " + name);

The function can be
assigned to a Runnable,

because it has the same
signature as run()

The function
body just prints
to standard out

We us a lambda
expression to define
a function that
takes no arguments

The name variable is

used in the
function; need not
be final, but must
be effectively final

The name variable is

used in the
function; need not
be final, but must
be effectively final

toad 615-214

Effectively Final Variables

final String name = "Charlie";

Runnable greeter = new Runnable() {

public void run() {

System.out.println("Hi " + name);

}

};

// with Lambdas, can rewrite the code above like this

String name = "Charlie";

Runnable greeter = () -> System.out.println("Hi " + name);

The name variable is

used in the
function; need not
be final, but must
be effectively final

The name variable is

used in the
function; need not
be final, but must
be effectively final

Lambdas can use local variables in outer scopes only if they
are effectively final. A variable is effectively final if it can
be made final without introducing a compilation error. This
facilitates using lambdas for concurrency, and avoids
problems with lambdas outliving their surrounding scope.

toad 715-214

Replacing For Loops with Lambdas

// Java 7 code to print an array

List<Integer> intList = Arrays.asList(1,2,3);

for (Integer i in intList)

System.out.println(i)

// Java 8 provides a forEach method to do the same thing...

intList.forEach(new Consumer<Integer>() {

public void accept(Integer i) {

System.out.println(i);

}

});

// Java 8’s Lambda’s make forEach beautiful

intList.forEach((Integer i) -> System.out.println(i));

intList.forEach(i -> System.out.println(i));

This lambda expression takes
one argument, i, of type Integer

Even cleaner…since intList.forEach() takes a
Consumer<Integer>, Java infers that i’s
type is Integer

Example
adapted from
Alfred V. Aho

toad 815-214

Lambda Syntax Options

• Lambda Syntax

(parameters) -> expression

or (parameters) -> { statements; }

• Details
� Parameter types may be inferred (all or none)
� Parentheses may be omitted for a single inferred-type parameter

• Examples

(int x, int y) -> x + y // takes two integers and returns their sum

(x, y) -> x - y // takes two numbers and returns their difference

() -> 42 // takes no values and returns 42

(String s) -> System.out.println(s) // takes a string, prints its value

x -> 2 * x // takes a number and returns the result of doubling it

c -> { int s = c.size(); c.clear(); return s; } // takes a collection,
// clears it, and returns its previous size

Examples from
lambdafaq.org

toad 915-214

Functional Interfaces

• There are no function types in Java

• Instead, Java has Functional Interfaces
� interfaces with only one explicitly declared abstract method

• methods inherited from Object, like equals(), don’t count

� Optionally annotated with @FunctionalInterface
• Helps catch errors if you intend to write a functional interface but don’t

• Some Functional Interfaces

java.lang.Runnable: void run()

java.util.function.Consumer<T>: void accept(T t)

java.util.concurrent.Callable<V>: V call()

java.util.function.Function<T,R>: R apply(T t)

java.util.Comparator<T>: int compare(T o1, T o2)

java.awt.event.ActionListener: void actionPerformed(ActionEvent e)

• There are many more, especially in package java.util.function

toad 1015-214

Typechecking and Type Inference Using Expected Types

• A lambda expression must match its expected type
� The type of the variable to which it is assigned or passed

intList.forEach(i -> System.out.println(i));

• Example: forEach
� intList.forEach accepts a parameter of type Consumer<Integer>,

so this is the expected type for the lambda
� Consumer<Integer> has a function void accept(Integer t), so the

lambda’s argument is inferred to be of type Integer

Runnable greeter = () -> System.out.println("Hi " + name);

• Example: Runnable
� We are assigning a lambda to a variable of type Runnable, so that

is the expected type for the lambda
� Runnable has a function void run(), so the lambda expression

must not take any arguments

toad 1115-214

Comparison to Lambdas in a Functional Language

• Discuss: How do lambdas in Java compare to ML?
� (or your other favorite functional programming language)

toad 1215-214

Tradeoffs vs. Lambdas in ML

• Succinctness
� ML’s functions shorter to invoke: aRunnable() vs. aRunnable.run()

� ML’s non-local inference means fewer type annotations
� Java’s expected types promote local reasoning, understandability

• Type structure
� ML’s structural types need not be declared ahead of time
� Java’s nominal types can have associated semantics described in

Javadoc

package java.util;

/** A comparison function, which imposes a total ordering on

* some collection of objects. */

class Comparator<T> {

/** The implementor must ensure that

* sgn(compare(x, y)) == -sgn(compare(y, x)) for all x and y

* The implementor must also ensure that the relation is

* transitive... */

int compare(T o1, T o2);

}

toad 1315-214

Method References

// Recall Java 8 code to print integers in an array

List<Integer> intList = Arrays.asList(1,2,3);

intList.forEach(i -> System.out.println(i));

// We can make the last line even shorter!

intList.forEach(System.out::println);

• System.out::println is a method reference
� Captures the println method of System.out as a function
� The type is Consumer<Integer>, as required by intList.forEach
� The signature of println must match (and it does)

toad 1415-214

Method Reference Syntactic Forms

• Capturing an instance method of a particular object

Syntax: objectReference::methodName

Example: intList.forEach(System.out::println)

• Capturing a static method

Syntax: ClassName::methodName

Example: Arrays.sort(myIntegerArray, Integer::compare)

• Capturing an instance method, without capturing the object
� The resulting function has an extra argument for the receiver

Syntax: ClassName::methodName

Example: Function<Object,String> printer = Object::toString;

• Capturing a constructor

Syntax: ClassName::methodName

Example: Supplier<List<String>> listFactory =

ArrayList::<String>new;

toad 1515-214

Collections Usage in Java

• Bulk operations: common usage pattern for Java collections
� Read from a source collection
� Select certain elements
� Compute collections holding intermediate data
� Summarize the results into a single answer

• Example: how much taxes do student employees pay?

List<PayStub> studentStubs = new ArrayList<PayStub>();

for (Employee e in employees)

if (e.getStatus() == Employee.STUDENT)

studentStubs.addAll(e.payStubs());

double totalTax=0.0;

for (PayStub s in studentStubs)

totalTax += s.getTax();

• Issues
� Inefficient to create temporary collections
� Verbose code
� Hard to do work in parallel

toad 1615-214

Streams: A Better Way

double totalTax =

employees.parallelStream()

.filter(e -> e.getStatus() == Employee.STUDENT)

.flatMap(e -> e.payStubs().stream())

.sum()

• Benefits
� Shorter
� More abstract – describes what is desired
� More efficient – avoids intermediate data structure
� Runs in parallel

toad 1715-214

Streams

• Definition: a possibly-infinite sequence of elements
supporting sequential or parallel aggregate operations
� possibly-infinite: elements are processed lazily
� sequential or parallel: two kinds of streams
� aggregate: operations act on the entire stream

• contrast: iterators

• Some stream sources
� Invoking .stream() or .parallelStream() on any Collection
� Invoking .lines() on a BufferedReader
� Generating from a function: Stream.generate(Supplier<T> s)

• Intermediate operations
� Produce one stream from another
� Examples: map, filter, sorted, …

• Terminal operations
� Extract a value or a collection from a stream
� Examples: reduce, collect, count, findAny

Each stream is used
only once, with an
intermediate or
terminal operation

toad 1815-214

Demonstrations

• GetWords

• ComputeANumber

• ComputeABigNumber

toad 1915-214

Employees and Taxes

double totalTax =

employees.parallelStream()

.filter(e -> e.getStatus() == Employee.STUDENT)

.flatMap(e -> e.payStubs().stream())

.sum()

• Benefits
� Shorter
� More abstract – describes what is desired
� More efficient – avoids intermediate data structure
� Runs in parallel

toad 2015-214

Exercise: minimum age of seniors

• What is the minimum age
of seniors in this course?
� Assume the code opposite
� You may use functions such

as map, filter, reduce, etc.

enum ClassStanding {

FRESHMAN, SOPHOMORE,

JUNIOR, SENIOR

}

class Student {

String name;

int age;

ClassStanding year;

}

List<Student> roster = ...

toad 2115-214

Default Methods

• Java 8 just added several methods to Collection interfaces
Stream<E> stream()

Stream<E> parallelStream()

void forEach(Consumer<E> action)

Spliterator<E> spliterator()

boolean removeIf(Predicate<E> filter)

• If you defined a Collection subclass, did it just break?

• No! These were added as default methods
� Declared in an interface with the default keyword

� Given a body

interface Collection<E> {

default Stream<E> stream() {

return StreamSupport.stream(spliterator(), false);

}

}

toad 2215-214

Default Methods: Semantics and Uses

• Semantics
� A method defined in a class always overrides a default method
� Default methods in sub-interfaces override those in super-

interfaces
� Remaining conflicts must be resolved by overriding
� New syntax for invoking a default method from implementor

A.super.m(...)

• Important because m may be defined in two implemented interfaces,
so can’t use simply super.m(...)

• Benefits of default methods
� Extending an interface without breaking implementors
� Putting reusable code in an interface

• can reuse default methods from several interfaces
• known as traits in other languages (e.g. Scala)

toad 2315-214

Toad’s Take-Home Messages

Java 8 has new features useful in program expression

• Lambdas are a lightweight syntax for defining functions
� Support shorter and more abstract code

• Succinct manipulation of data through streams
� Support for pipelining and parallelism

• Default methods provide code reuse in interfaces

toad 2415-214

Sources and Resources

• Maurice Naftalin's Lambda FAQ
� http://www.lambdafaq.org/

• The Java Tutorials:
� Lambda Expressions

• https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

� Aggregate Operations
• https://docs.oracle.com/javase/tutorial/collections/streams/index.html

• Integer list example is adapted from Alfred Aho
� http://www1.cs.columbia.edu/~aho/cs6998/

