
OO History: Simula and Smalltalk

Principles of Software System Construction

Jonathan Aldrich and Charlie Garrod

Fall 2014

Learning Goals

• Know the motivation for, precursors of, and history of objects

• Understand the design of a pure object-oriented language

• Recognize key design patterns used in Smalltalk

– Including the double dispatch pattern (new)

• Understand the key benefits of objects that drove adoption

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
2

Outline

• The beginnings of objects

– Simulation in Simula 67

– Demonstration: the first OO language

• Pure OO in Smalltalk

– Historical context and goals

– Demonstration: a pure object model

– Design patterns in Smalltalk

• The benefits and adoption of objects

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
3

Simulation at the NCC in 1961

• Context: Operations research
– Goal: to improve decision-

making by simulating complex
systems

• Discrete-event simulations like
Rabbit world, but in domains
like traffic analysis

– Kristin Nygaard and Ole-Johan
Dahl at the Norwegian
Computing Center

• Development of SIMULA I
– Goal: SIMULA "should be problem-oriented and not computer-oriented, even if

this implies an appreciable increase in the amount of work which has to be done
by the computer.“

– Modeled simulations “as a variable collection of interacting processes"

– Design approach: "Instead of deriving language constructs from discussions of the
described systems combined with implementation considerations, we developed
model system properties suitable for portraying discrete event systems,
considered the implementation possibilities, and then settled the language
constructs."

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
4

SIMULA: a Motivating Problem

• Need to store vehicles in a toll booth queue.

• Want to store vehicles in a linked list to represent the queue

• Each vehicle is either a car, a truck, or a bus.

• Different kinds of vehicles interact with the toll booth in

different ways

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
5

Needs Motivating OOP

• Issues with SIMULA I

– Since each object in a simulation was a process, it was awkward to get

attributes of other objects

– "We had seen many useful applications of the process concept to

represent collections of variables and procedures, which functioned as

natural units of programming” motivating more direct support for this

– "When writing simulation programs we had observed that processes often

shared a number of common properties, both in data attributes and

actions, but were structurally different in other respects so that they had

to be described by separate declarations.”

– “memory space [was] our most serious bottleneck for large scale

simulation.”

[source: Kristen Nygaard and Ole-Johan Dahl, The Development of the SIMULA Languages, History of

Programming Languages Conference, 1978]

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
6

Needs Motivating OOP

• Issues with SIMULA I

– Since each object in a simulation was a process, it was awkward to get

attributes of other objects

– "We had seen many useful applications of the process concept to

represent collections of variables and procedures, which functioned as

natural units of programming” motivating more direct support for this

– "When writing simulation programs we had observed that processes often

shared a number of common properties, both in data attributes and

actions, but were structurally different in other respects so that they had

to be described by separate declarations.”

– “memory space [was] our most serious bottleneck for large scale

simulation.”

[source: Kristen Nygaard and Ole-Johan Dahl, The Development of the SIMULA Languages, History of

Programming Languages Conference, 1978]

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
7

Garbage collection was a good technology for the memory problem. The

others required new ideas.

Hoare’s Record Classes

• C. A. R. Hoare proposed Record Classes in 1966
– Goal: capture similarity and variation in data structures

record class Expression (

subclasses

Constant(real value),

Variable(string name),

BinaryExpr(reference(Expression) left, right;

subclasses Sum, Difference, Product, Quotient));

• Each class described a particular record structure

• A subclass shared fields from its parent

• Variables could take any type in the subclass hierarchy

• A record class discriminator provided case analysis on the record type

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
8

Expression

Constant

value: real

Variable

name: string

BinaryExpr

left: reference(Expression)

right: reference(Expression)

Sum

Product Quotient

Difference

Hoare’s Record Classes

• C. A. R. Hoare proposed Record Classes in 1966
– Goal: capture similarity and variation in data structures

record class Expression (

subclasses

Constant(real value),

Variable(string name),

BinaryExpr(reference(Expression) left, right;

subclasses Sum, Difference, Product, Quotient));

• Each class described a particular record structure

• A subclass shared fields from its parent

• Variables could take any type in the subclass hierarchy

• A record class discriminator provided case analysis on the record type

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
9

Expression

Constant

value: real

Variable

name: string

BinaryExpr

left: reference(Expression)

right: reference(Expression)

Sum

Product Quotient

Difference

Dahl and Nygaard’s observations on record classes:

• "We needed subclasses of processes with...actions...not only of pure

data records"

• "We also needed to group together common process properties in such

a way that they could be applied later, in a variety of different situations

not necessarily known in advance"

SIMULA 67’s Class Prefix Idea

• Create a Link class to represent the linked list

• Add the Link class as a prefix to vehicles, which are subclasses
– Today we would say this is not a good design—but it nevertheless was

enough to motivate a good idea

• As in Hoare’s design, subclassing is hierarchical
– Car, Truck, etc. are subclasses of Vehicle

• Unlike Hoare’s classes, Simula classes can have virtual procedures
– Allows subclasses to override behavior for the toll booth

• Unlike in Hoare’s design, each class was declared separately
– Link could be reused for other linked lists, not just lists of vehicles

– Supports extensibility: can add RVs later as a subclass of Vehicle

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
10

Hello World in Simula (Demo)
begin

OutText("Hello, world!");

OutImage

end

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
11

writes text to the current

image (line) being created

writes the current image

to standard output

Simulating Vehicles (Demo)
begin

class Vehicle;

virtual: procedure sound is procedure sound;;

begin

end;

Vehicle class Car;

begin

procedure sound;

begin

OutText("Beep beep!");

OutImage;

end;

end;

Vehicle class Bike;

begin

procedure sound;

begin

OutText("Ding ding!");

OutImage;

end;

end;

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
12

ref (Vehicle) array vehicles (1 : 2);

Integer i;

vehicles (1) :- new Car;

vehicles (2) :- new Bike;

for i := 1 step 1 until 2 do

vehicles(i).sound

end;

virtual methods can be

overridden in subclasses

(equiv. of non-final in Java)

overriding the sound

method in a subclass

A size 2 array of

references to

Vehicles

Car and Bike are

subtypes of Vehicle

Dispatches to code in

the car and bike

Co-routines (Demo)
begin

ref (Car) aCar;

ref (Truck) aTruck;

class Car;

begin

Integer N;

detach;

for N := 1 step 1 until 10 do

begin

OutText("Driving me insane!");

OutImage;

resume(aTruck);

end;

end;

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
13

class Truck;

begin

Integer N;

detach;

for N := 1 step 1 until 10 do

begin

OutText("Keep on truckin'!");

OutImage;

resume(aCar);

end;

end;

aCar :- new Car;

aTruck :- new Truck;

resume(aCar);

end;

each class has code that runs

when objects are created

we immediately suspend

execution until set up is done

let the truck take a step

in the simulation start the simulation

with the car

create the

car and truck

continue the care

simulation

Smalltalk Context: Personal Computing

• The Dynabook at Xerox PARC:

“A Personal Computer for

Children of All Ages”

• Funded by US Govt (ARPA, the folks

who brought you the internet) to

facilitate portable maintenance

documentation

• Alan Kay’s goal

– Amplify human reach

– Bring new ways of thinking to

civilization

(Still a goal of CS research – e.g. see

computational thinking work at CMU)

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
14

Alan Kay with a Dynabook

prototype

Smalltalk and Simula

“What I got from Simula was that you could now replace

bindings and assignment with goals. The last thing you wanted

any programmer to do is mess with internal state even if

presented figuratively. Instead, the objects should be presented

as sites of higher level behaviors more appropriate for use as

dynamic components.”

- Alan Kay, The early history of Smalltalk. In History of

programming languages—II, 1993.

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
15

Smalltalk

• The name

– “Children should program in…”

– “Programming should be a matter of…”

• Pure OO language

– Everything is an object (including true, “hello”, and 17)

– All computation is done via sending messages

• 3 + 4 sends the “+” message to 3, with 4 as an argument

• To create a Point, send the “new” message to the Point class

– Naturally, classes are objects too!

• Garbage collected

– Following Lisp and Simula 67

• Reflective

– Smalltalk is implemented (mostly) in Smalltalk

• A few primitives in C or assembler

– Classes, methods, objects, stack frames, etc. are all objects

• You can look at them in the debugger, which (naturally) is itself implemented in Smalltalk

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
16

Smalltalk Demo

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
17

The Double Dispatch Pattern

• Problem: behavior depends on two different classes

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
18

Integer Fraction Float Complex

Integer Integer Fraction Float Complex

Fraction Fraction Fraction Float Complex

Float Float Float Float Complex

Complex Complex Complex Complex Complex

Right Operand

Left

Operand

Result Type for Addition Operation

The Double Dispatch Pattern

• Problem: behavior depends on two different classes

• Solution: dispatch twice

class Fraction

method + aNumber

| n d d1 d2 |

aNumber isFraction ifTrue:

[d := denominator gcd: aNumber denominator…].

^ aNumber adaptToFraction: self andSend: #+

class Integer

method adaptToFraction: rcvr andSend: selector

^ rcvr perform: selector with: (Fraction numerator: self denominator: 1)

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
19

First dispatch to Fraction’s + method:

if both numbers are fractions, we

compute the greatest common

denominator (GCD) and proceed…

otherwise we ask the other

number to turn itself into a

fraction, and then add self to it

Second dispatch to Integer’s adaptToFraction:andSend method

Integer does so by creating a fraction with itself as the

numerator and a denominator of 1. perform is a reflective

method that calls ‘+’ (the selector) in this case

The Double Dispatch Pattern

• Problem: behavior depends on two different classes

• Solution: dispatch twice

class Fraction

method + aNumber

| n d d1 d2 |

aNumber isFraction ifTrue:

[d := denominator gcd: aNumber denominator…].

^ aNumber adaptToFraction: self andSend: #+

class Float

method adaptToFraction: rcvr andSend: selector

^ rcvr asFloat perform: selector with: self

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
20

if both numbers are fractions, we

compute the greatest common

denominator (GCD) and proceed…

otherwise we ask the other

number to turn itself into a

fraction, and then add self to it

On the other hand, Float says “no, actually a

fraction should adapt to me before addition.”

Smalltalk: Classes as Factories

“Creating different kinds of collections with a factory method”

OrderedCollection newFrom: #(3 2 2 1).

SortedCollection newFrom: #(3 2 2 1).

Set newFrom: #(3 2 2 1).

“Classes – and thus the factories – are first-class. We can assign
them to a factory object and then use it to create different kinds
of collections.”

factoryObj := Set.

factoryObj newFrom: #(3 2 2 1).

factoryObj := OrderedCollection.

factoryObj newFrom: #(3 2 2 1).

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
21

Smalltalk, according to Alan Kay

• “In computer terms, Smalltalk is a recursion on the notion of
computer itself. Instead of dividing “computer stuff” into
things each less strong than the whole—like data structures,
procedures, and functions which are the usual paraphernalia
of programming languages—each Smalltalk object is a

recursion of the entire possibilities of the computer.

• “…everything we describe can be represented by the
recursive composition of a single kind of behavioral building
block that hides its combination of state and process inside
itself and can be dealt with only through the exchange of
messages.

• “Thus [Smalltalk’s] semantics are a bit like having thousands
and thousands of computers all hooked together in a very fast
network.”

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
22

Dan Ingalls’ perspective

• Computing should be viewed as an intrinsic capability of

objects that can be uniformly invoked by sending messages...

Instead of a bit-grinding processor raping and plundering data

structures, we have a universe of well-behaved objects that

courteously ask each other to carry out their various desires.

– Daniel Ingalls, Design Principles Behind Smalltalk (1981)

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
23

Impact of Smalltalk and Simula

• Mac (and later Windows): inspired by Smalltalk GUI

• GUI frameworks

– Smalltalk MVC � MacApp � Cocoa, MFC, AWT/Swing, …

• C++: inspired by Simula 67 concepts

• Objective C: borrows Smalltalk concepts, syntax

• Java: garbage collection, bytecode from Smalltalk

• Ruby: pure OO model almost identical to Smalltalk

– All dynamic OO languages draw from Smalltalk to some extent

• Design and process ideas impacted by Smalltalk

– Patterns, Refactoring, Extreme programming/Agile movement

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
24

Why has OOP been successful?

• Discuss your answer with your neighbors and write it down

25

Material from “The Power of Interoperability: Why Objects Are Inevitable”

by Jonathan Aldrich, Onward! Essay, 2013.

Why has OOP been successful?

“the object-oriented paradigm...is

consistent with the natural way of

human thinking”

- [Schwill, 1994]

OOP may have psychological benefits.

But is there a technical characteristic of

OOP that is critical for modern software?

26

What Makes OOP Unique?

Candidates: key features of OOP

• Encapsulation?

– Abstract data types (ADTs) also provide

encapsulation

• Inheritance?

Not all OO Languages Have Inheritance

• A Modern Example: Go

– Provides encapsulation, interfaces, dynamic dispatch

– But no inheritance of code from a superclass

• An Alternative: Delegation

– Supported in Self, JavaScript, others

– There are no classes, only objects. To get a new object:

• Create an empty object

– Add things to it

– Optionally, delegate to an existing object via a parent field

» If you call method m on an object, and m is not defined, the system will

look for it in the parent object

• Clone an existing object

28

Inheritance vs. Delegation, Graphically

Source: Ungar and Smith. Self:

The Power of Simplicity. Lisp and

Symbolic Computation, 1991.

29

The Self project also had a big impact on

optimization of dynamic compilers
• E.g. [Chambers & Ungar, 1989]

• Used in Java, JavaScript, etc.

Inheritance has Benefits, Drawbacks

• Benefits

– No easier way to reuse a partial implementation of an abstraction

– Alternative requires forwarding each method individually

– Especially useful when subclass and superclass call each other

• E.g. a class with both super calls and a template method

• Implementing Template Method, Factory is awkward in Go
[Schmager, Cameron, and Noble 2010]

• Drawbacks

– Tight coupling between subclass and superclass

• E.g. fragile base class problem

– Drawbacks mitigated by careful methodology

30

Fragile Base Class Problem

class List {

private Link head;

public void add(int i) {…}

public void addAll(List l) {…}

public int size() {

… // traverses the list

}

}

class CachedSizeList extends List {

private int cachedSize;

public int size() { return cachedSize; }

public void add(int i) {

cachedSize++;

super.add(i);

}

// do we need to override addAll?

}

• Correct impl of subclass depends on the
base class implementation

– Couples classes, breaks modularity

• Worse: if the base class changes, the
subclass will be broken

• What causes this coupling is also what
makes the template method pattern
work!

• Some solutions
– Document internal method calls that can

be intercepted
• Document whether addAll() calls add()

– Only make self-calls to abstract or final
methods

– Selective open recursion – language
feature describes which methods are used
for downcalls [Aldrich and Donnelly, 2004]

31

What Makes OOP Unique?

Candidates: key features of OOP

• Encapsulation?

– Abstract data types (ADTs) also provide

encapsulation

• Inheritance?

– Neither universal nor unique in OOPLs

– Worth studying, but not our focus

• Polymorphism/Dynamic dispatch?

– Every OOPL has dynamic dispatch

– Distinguishes objects from ADTs

animal.speak()

“meow”
“woof”

Dynamic Dispatch as Central to OOP

Significant grounding in the OO literature

• Cook’s 2009 Onward! essay

– Object: “value exporting a procedural interface to data or behavior”

– Objects are self-knowing (autognostic), carrying their own behavior

– Equivalent to Reynolds’ [1975] procedural data structures

• Historical language designs

– “the big idea [of Smalltalk] is messaging” [Kay, 1998 email]

• Design guidance

– “favor object composition over class inheritance” [Gamma et al. ’94]

– “black-box relationships [based on dispatch, not inheritance] are an ideal

towards which a system should evolve” [Johnson & Foote, 1988]

33

Interoperability of Widgets
• Consider a Widget-based GUI

– Concept notably developed in Smalltalk

interface Widget {

Dimension getSize();

Dimension getPreferredSize();

void setSize(Dimension size);

void paint(Display display);

… /* more here */ } // based on ConstrainedVisual from Apache Pivot UI framework

• Nontrivial abstraction – not just paint()

– A single first-class function is not enough

34

Source: http://www.for-a.com/products/hvs300hs/hvs300hs.html

Interoperability of Composite Widgets

• Consider a Composite GUI

– Concept notably developed in Smalltalk

class CompositeWidget implements Widget {

Dimension getSize();

Dimension getPreferredSize();

void setSize(Dimension size);

void paint(Display display);

void add(Widget widget)

… /* more here */ } // based on Container from Apache Pivot UI framework

• Nontrivial abstraction – not just paint()

– A single first-class function is not enough

• Composite needs to store diverse subcomponents in a list

– Can’t do this with type classes, generic programming

• Composite needs to invoke paint() uniformly on all subcomponents

– Also breaks type classes, generic programming
35

Source: http://www.for-a.com/products/hvs300hs/hvs300hs.html

Object-oriented dispatch

supports interoperability

between different Widgets

in a Composite

Software Frameworks

• A framework is “the skeleton of an application that can be

customized by an application developer” [Johnson, 1997]

• Frameworks uniquely provide architectural reuse

– Reuse of “the edifice that ties components together”

[Johnson and Foote, 1988]

– Johnson [1997] argues can reduce development effort by 10x

• As a result, frameworks are ubiquitous

– GUIs: Swing, SWT, .NET, GTK+

– Web: Rails, Django, .NET, Servlets, EJB

– Mobile: Android, Cocoa

– Big data: MapReduce, Hadoop

36

Frameworks need Objects

• Frameworks define abstractions that extensions implement
– The developer “supplies [the framework] with a set of components that provide

the application specific behavior” [Johnson and Foote, 1988]

– Sometimes the application-specific behavior is just a function

– More often, as we will see, these abstractions are nontrivial

• Frameworks require modular extensibility
– Applications extend the framework without modifying its code

• Frameworks are typically distributed as binaries or bytecode

• cf. Meyer’s [1988] open-closed principle

– Framework developers cannot anticipate the details of extensions
• Though they do plan for certain kinds of extensions

• Frameworks require interoperability
– Plugins often must interoperate with each other

– Frameworks must dynamically manage diverse plugins

– We have already seen this for GUI widgets – let’s look at other examples

37

Web Frameworks: Java Servlets

• Nontrivial abstraction

– Lifecycle methods for resource management

– Configuration controls

• Modular extensibility

– Intent is to add new Servlets

• Interoperability required

– Web server has a list of diverse Servlet implementations

– Dispatch is required to allow different Servlets to provide their own behavior

38

interface Servlet {

void service(Request req, Response res);

void init(ServletConfig config);

void destroy();

String getServletInfo();

ServletConfig getServletConfig();

}

Operating Systems: Linux

• Linux is an OO framework!

– In terms of design—not implemented

in an OO language

• File systems as objects

– Interface is a struct of function

pointers

– Allows file systems to interoperate

• E.g. symbolic links between file systems

• Not just file systems

– Many core OS abstractions are extensible

– ~100 object-like abstractions in the kernel

39

ext2

ntfs

fat

Operating Systems: Linux

• Linux is an OO framework!

– In terms of design—not implemented

in an OO language

• File systems as service abstractions

– Interface is a struct of function

pointers

– Allows file systems to interoperate

• E.g. symbolic links between file systems

• Not just file systems

– Many core OS abstractions are extensible

– ~100 Service abstractions in the kernel

40

ext2

ntfs

fat

People often miss this, or even deny it, but there are many examples of object-

oriented programming in the kernel. Although the kernel devel-opers may shun C++

and other explicitly object-oriented languages, thinking in terms of objects is often

useful. The VFS [Virtual File System] is a good example of how to do clean and efficient

OOP in C, which is a language that lacks any OOP constructs.

- Robert Love, Linux Kernel Development (2nd Edition)

Software Ecosystems
• A software ecosystem is a “set of software solutions that

enable, support, and automate the activities...[of] actors in the
associated social or business ecosystem” [Bosch, 2009]

– Examples: iOS, Android, Windows, Microsoft Office, Eclipse, Amazon
Marketplace, …

• Ecosystems have enormous economic impact

– Driven by network effects [Katz and Shapiro, 1985]

– Top 5 tech firms control or dominate an ecosystem

• Apple, Microsft, IBM, Samsung, Google

• Ecosystems require interoperability

– Critical to achieving benefit from network effects

– “the architecture provides a formalization of the rules of interoperability
and hence teams can, to a large extent, operate independently” [Bosch,
2009]

41

Mobile Devices: Android

• Network effects (apps) give Android value

• Apps build on each other

– Example: contact managers

• Smartr Contacts is a drop-in replacement for the default contact

manager

• Phone, email apps can use Smartr Contacts without preplanning

– Enabled by service abstraction interfaces

• Android keeps a list of heterogeneous ContentProvider implementations

42

class ContentProvider {

abstract Cursor query(Uri uri, ...);

abstract int insert(Uri uri, ContentValues vals);

abstract Uri update(Uri uri, ContentValues vals, ...);

abstract int delete(Uri uri, ...);

... // other methods not shown

}

Conclusions: Why Objects Were Successful

• The essence of objects is dispatch

• Dispatch provides interoperability

• First-class interoperability is critical to frameworks and

ecosystems

• Frameworks and ecosystems are economically critical to the

software industry

• Likely a significant factor in objects’ success

– Future study is warranted to validate the story above

– Other factors (psychology, benefits of inheritance) are worth exploring

too

43

Sample Exam Questions

• By making each class an object, Smalltalk supports what design
pattern?

• Name at least one of the designers of Simula or Smalltalk

• Multiple choice: the primary designer of Smalltalk compared
objects to:
– Records

– Functions

– Networked computers

– Cars

• Which of the following ideas were new in Simula 67?
– Subclasses with inherited fields

– The ability to define subclasses separately from the superclass

– Dynamic dispatch

– Multiple inheritance

– Garbage collection

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
44

Sample Exam Questions

• Explain how Smalltalk can add different kinds of numbers

together, always producing the right kind of number as a

result

• What feature of object-oriented programming was likely most

important to its success?

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
45

Takeaways and Next Week

• Today: The Past of Objects

– Origins in simulation and Hoare’s Record Classes

– Inheritance and virtual procedures in Simula 67

– Everything as an object in Smalltalk

– Smalltalk’s impact: GUIs, frameworks

– Role of dispatch, frameworks in adoption of OO technology

• Next Week

– The Present of Objects: Java 8*

– The Future of Objects: Scala*

*these are illustrative examples

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
46

Resources

• Squeak – a modern Smalltalk implementation

– http://www.squeak.org/

– Alan C. Kay. The Early History of Smalltalk. Proc. History of
Programming Languages, 1993.
http://portal.acm.org/citation.cfm?id=155364

• GNU Simula

– https://www.gnu.org/software/cim/

– An Introduction to Programming in Simula. Rob Pooley.
http://www.macs.hw.ac.uk/~rjp/bookhtml/

• The Power of Interoperability: Why Objects Are Inevitable.
Jonathan Aldrich. In Onward! Essays, 2013.

– http://www.cs.cmu.edu/~aldrich/papers/objects-essay.pdf

OO History
Principles of Software System Construction

© 2014 Jonathan Aldrich
47

