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Administrivia 

• Homework 5b due tonight 
§  Finish by tomorrow (14 Nov) 10 a.m. if you want to be 
considered as a "Best Framework" for Homework 5c 

• 15-413: Software Engineering Practicum 

• Homework 3 arena winners in class next week… 
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Key concepts from Tuesday 



toad 4 15-­‐214 

Networking in Java 

• The java.net.InetAddress: 
static InetAddress getByName(String host);!
static InetAddress getByAddress(byte[] b);!
static InetAddress getLocalHost(); 

• The java.net.Socket: 
Socket(InetAddress addr, int port);!
boolean      isConnected();!
boolean      isClosed();!
void         close();!
InputStream  getInputStream();!
OutputStream getOutputStream(); 

• The java.net.ServerSocket: 
ServerSocket(int port);!
Socket       accept();!
void         close();!
…!
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Aside:  The robustness vs. redundancy curve 

? redundancy 
robustness 
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Metrics of success 

• Reliability 
§ Often in terms of availability:  fraction of time system is 
working 
• 99.999% available is "5 nines of availability" 

• Scalability 
§ Ability to handle workload growth 
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Today:  Distributed system design 

• Introduction to distributed systems, continued 
§ Motivation: reliability and scalability 
§  Failure models 
§  Techniques for: 

• Reliability (availability) 
• Scalability 
• Consistency 

• MapReduce:  A robust, scalable framework for 
distributed computation… 
§ …on replicated, partitioned data 
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Types of failure behaviors 

• Fail-stop 

• Other halting failures 

• Communication failures 
§ Send/receive omissions 
§ Network partitions 
§ Message corruption 

• Data corruption 

• Performance failures 
§ High packet loss rate 
§  Low throughput 
§ High latency 

• Byzantine failures 
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Common assumptions about failures 

• Behavior of others is fail-stop (ugh) 

• Network is reliable (ugh) 

• Network is semi-reliable but asynchronous 

• Network is lossy but messages are not corrupt 

• Network failures are transitive 

• Failures are independent 

• Local data is not corrupt 

• Failures are reliably detectable 

• Failures are unreliably detectable 
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Some distributed system design goals 

• The end-to-end principle 
§ When possible, implement functionality at the ends 
(rather than the middle) of a distributed system 

• The robustness principle 
§ Be strict in what you send, but be liberal in what you 
accept from others 
• Protocols 
• Failure behaviors 

• Benefit from incremental changes 

• Be redundant 
§ Data replication 
§ Checks for correctness 
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Replication for scalability:  Client-side caching 

• Architecture before replication: 

§  Problem:  Server throughput is too low 

• Solution:  Cache responses at (or near) the client 
§ Cache can respond to repeated read requests 

client front-end {alice:90, 
  bob:42, 
  …} client front-end 

database server: 

client front-end 

client front-end 

{alice:90, 
  bob:42, 
  …} 

database server: cache 

cache 
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Replication for scalability:  Client-side caching 

• Hierarchical client-side caches: 

client 

front-end 

client 

front-end 

{alice:90, 
  bob:42, 
  …} 

database server: 

cache 

cache 

cache 

client 

client 

cache 

cache 

cache 
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Replication for scalability:  Server-side caching 

• Architecture before replication: 

§  Problem:  Database server throughput is too low 

• Solution:  Cache responses on multiple servers 
§ Cache can respond to repeated read requests 

client front-end {alice:90, 
  bob:42, 
  …} client front-end 

database server: 

client front-end 

client front-end 

{alice:90, 
  bob:42, 
  …} 

database server: cache 

cache 

cache 
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Cache invalidation 

• Time-based invalidation  (a.k.a. expiration) 
§ Read-any, write-one 
§ Old cache entries automatically discarded 
§ No expiration date needed for read-only data 

• Update-based invalidation 
§ Read-any, write-all 
§ DB server broadcasts invalidation message to all caches 
when the DB is updated 
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Cache replacement policies 

• Problem:  caches have finite size 

• Common* replacement policies 
§ Optimal (Belady's) policy 

• Discard item not needed for longest time in future 
§  Least Recently Used (LRU) 

• Track time of previous access, discard item accessed 
least recently 

§  Least Frequently Used (LFU) 
• Count # times item is accessed, discard item accessed 
least frequently 

§ Random 
• Discard a random item from the cache 
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Partitioning for scalability 

• Partition data based on some property, put each 
partition on a different server 

client front-end 
{cohen:9, 
  bob:42, 
  …} 

client front-end 

CMU server: 

{alice:90, 
  pete:12, 
  …} 

Yale server: {deb:16, 
  reif:40, 
  …} 

MIT server: 
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Horizontal partitioning 

• a.k.a. "sharding" 

• A table of data: 
username school value 
cohen CMU 9 
bob CMU 42 
alice Yale 90 
pete Yale 12 
deb MIT 16 
reif MIT 40 
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Recall:  Basic hash tables 

• For n-size hash table, put each item X in the  
bucket: X.hashCode() % n!

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

{reif:40} 
 
 
{bob:42} 
 
{pete:12} 
 
 
 
 
 
{deb:16} 
 

 
  
  
 
{alice:90} 
  
 
 
 
 
{cohen:9}  
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Partitioning with a distributed hash table 

• Each server stores data for one bucket 

• To store or retrieve an item, front-end server 
hashes the key, contacts the server storing that 
bucket 

client front-end 
{reif:40} 

client front-end 

Server 0: 

{bob:42} 
Server 3: {pete:12, 

  alice:90} 

Server 5: 

{         } 
Server 1: 

… 
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Consistent hashing 

• Goal:  Benefit from incremental changes 
§ Resizing the hash table (i.e., adding or removing a 
server) should not require moving many objects 

• E.g., Interpret the range of hash codes as a ring 
§ Each bucket stores data for a range of the ring 

• Assign each bucket an ID in the range of hash codes 
• To store item X don't compute X.hashCode() % n.  
Instead, place X in bucket with the same ID as or next 
higher ID than X.hashCode()!
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Problems with hash-based partitioning 

• Front-ends need to determine server for each 
bucket 
§ Each front-end stores look-up table? 
§ Master server storing look-up table? 
§ Routing-based approaches? 

• Places related content on different servers 
§ Consider range queries:   
 SELECT * FROM users WHERE lastname STARTSWITH 'G'!
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Master/tablet-based systems 

• Dynamically allocate range-based partitions 
§ Master server maintains tablet-to-server assignments 
§  Tablet servers store actual data 
§  Front-ends cache tablet-to-server assignments 

client front-end 

k-z: 
{pete:12, 
  reif:42} 

client front-end 

Tablet server 1: 

a-c: 
{alice:90, 
  bob:42, 
  cohen:9} 

Tablet server 2: d-g: 
{deb:16} 
h-j:{      } 

Tablet server 3: 

{a-c:[2], 
 d-g:[3,4], 
 h-j:[3], 
 k-z:[1]} 

Master: 

d-g: 
{deb:16} 

Tablet server 4: 
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Today:  Distributed system design 

• Introduction to distributed systems, continued 
§ Motivation: reliability and scalability 
§  Failure models 
§  Techniques for: 

• Reliability (availability) 
• Scalability 
• Consistency 

• MapReduce:  A robust, scalable framework for 
distributed computation… 
§ …on replicated, partitioned data 
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Map from a functional perspective 

• map(f, x[0…n-1])!
•  Apply the function f to each element of list x!

• E.g., in Python: 
def square(x): return x*x  !
map(square, [1, 2, 3, 4]) would return [1, 4, 9, 16] 

• Parallel map implementation is trivial 
§ What is the work?  What is the depth? 

map/reduce images src: Apache Hadoop tutorials 
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Reduce from a functional perspective 

• reduce(f, x[0…n-1])!
§ Repeatedly apply binary function f to pairs of items in x, 
replacing the pair of items with the result until only one 
item remains 

§ One sequential Python implementation: 
  def reduce(f, x):!
    if len(x) == 1: return x[0]!
    return reduce(f, [f(x[0],x[1])] + x[2:])!

§  e.g., in Python: 
  def add(x,y): return x+y!
  reduce(add, [1,2,3,4]) !
      would return 10 as 
   reduce(add, [1,2,3,4])!
  reduce(add, [3,3,4])!
  reduce(add, [6,4])!
  reduce(add, [10]) -> 10!
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Reduce with an associative binary function 

• If the function f is associative, the order f is 
applied does not affect the result 

 

 

    1  + ((2+3) + 4)   1 + (2 + (3+4))   (1+2) + (3+4) 

• Parallel reduce implementation is also easy 
§ What is the work?  What is the depth? 
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Distributed MapReduce 

• The distributed MapReduce idea is similar to (but 
not the same as!): 

! !reduce(f2, map(f1, x)) 

• Key idea:  a "data-centric" architecture 
§ Send function f1 directly to the data 

• Execute it concurrently 
§  Then merge results with reduce 

• Also concurrently 

• Programmer can focus on the data processing 
rather than the challenges of distributed systems 
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MapReduce with key/value pairs (Google style) 

• Master 
§ Assign tasks to workers 
§  Ping workers to test for 
failures 

• Map workers 
§ Map for each key/value pair 
§ Emit intermediate key/value 
pairs 

• Reduce workers 
§ Sort data by intermediate 
key and aggregate by key 

§ Reduce for each key 

the shuffle: 
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• E.g., for each word on the Web, count the number 
of times that word occurs 
§  For Map:  key1 is a document name, value is the 
contents of that document 

§  For Reduce:  key2 is a word, values is a list of the 
number of counts of that word 

MapReduce with key/value pairs (Google style) 

f1(String key1, String value): !

  for each word w in value: !

    EmitIntermediate(w, 1); !

!

f2(String key2, Iterator values):!

  int result = 0;!

  for each v in values:!

    result += v;!

  Emit(key2, result);!

Map: (key1, v1) à (key2, v2)* Reduce: (key2, v2*) à (key3, v3)* 

MapReduce: (key1, v1)* à (key3, v3)* 

MapReduce: (docName, docText)* à (word, wordCount)* 
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MapReduce architectural details 

• Usually integrated with a 
distributed storage system 
§ Map worker executes function 
on its share of the data 

• Map output usually written 
to worker's local disk 
§ Shuffle: reduce worker often 
pulls intermediate data from 
map worker's local disk 

• Reduce output usually 
written back to distributed 
storage system 

1: 

3: 2: 
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Handling server failures with MapReduce 

• Map worker failure: 
§ Re-map using replica of the 
storage system data 

• Reduce worker failure: 
§ New reduce worker can pull 
intermediate data from map 
worker's local disk, re-reduce 

• Master failure: 
§ Options: 

• Restart system using      
new master 

• Replicate master 
• … 

1: 

3: 2: 
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The beauty of MapReduce 

• Low communication costs (usually) 
§  The shuffle (between map and reduce) is expensive 

• MapReduce can be iterated 
§  Input to MapReduce:  key/value pairs in the distributed 
storage system 

§ Output from MapReduce:  key/value pairs in the 
distributed storage system 
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• E.g., for person in a social network graph, output 
the number of mutual friends they have 
§  For Map:  key1 is a person, value is the list of her friends 
§  For Reduce:  key2 is ???, values is a list of ??? 

Another MapReduce example 

f1(String key1, String value): !

 !

!

f2(String key2, Iterator values):!

MapReduce: (person, friends)* à (pair of people, count of mutual friends)* 
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• E.g., for person in a social network graph, output 
the number of mutual friends they have 
§  For Map:  key1 is a person, value is the list of her friends 
§  For Reduce:  key2 is a pair of people, values is a list of 
1s, for each mutual friend that pair has 

Another MapReduce example 

f1(String key1, String value): !

  for each pair of friends    
!in value: !

    EmitIntermediate(pair, 1); !

!

f2(String key2, Iterator values):!

  int result = 0;!

  for each v in values:!

    result += v;!

  Emit(key2, result);!

MapReduce: (person, friends)* à (pair of people, count of mutual friends)* 
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• E.g., for each page on the Web, create a list of 
the pages that link to it 
§  For Map:  key1 is a document name, value is the 
contents of that document 

§  For Reduce:  key2 is ???, values is a list of ??? 

And another MapReduce example 

f1(String key1, String value): !

   !

!

f2(String key2, Iterator values):!

MapReduce: (docName, docText)* à (docName, list of incoming links)* 
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Coming next… 

• More distributed systems 
§ MapReduce 


