
	

	

	

Fall	
 2014	

School of
Computer Science

© 2012-14 C Kästner, C Garrod, J Aldrich, and W Scherlis

Principles of Software Construction:
Objects, Design, and Concurrency

Distributed System Design, Part 2

 Charlie Garrod Jonathan Aldrich

toad 2 15-­‐214

Administrivia

• Homework 5b due tonight
§  Finish by tomorrow (14 Nov) 10 a.m. if you want to be
considered as a "Best Framework" for Homework 5c

• 15-413: Software Engineering Practicum

• Homework 3 arena winners in class next week…

toad 3 15-­‐214

Key concepts from Tuesday

toad 4 15-­‐214

Networking in Java

• The java.net.InetAddress:
static InetAddress getByName(String host);!
static InetAddress getByAddress(byte[] b);!
static InetAddress getLocalHost();

• The java.net.Socket:
Socket(InetAddress addr, int port);!
boolean isConnected();!
boolean isClosed();!
void close();!
InputStream getInputStream();!
OutputStream getOutputStream();

• The java.net.ServerSocket:
ServerSocket(int port);!
Socket accept();!
void close();!
…!

toad 5 15-­‐214

Aside: The robustness vs. redundancy curve

? redundancy
robustness

toad 6 15-­‐214

Metrics of success

• Reliability
§ Often in terms of availability: fraction of time system is
working
• 99.999% available is "5 nines of availability"

• Scalability
§ Ability to handle workload growth

toad 7 15-­‐214

Today: Distributed system design

• Introduction to distributed systems, continued
§ Motivation: reliability and scalability
§  Failure models
§  Techniques for:

• Reliability (availability)
• Scalability
• Consistency

• MapReduce: A robust, scalable framework for
distributed computation…
§ …on replicated, partitioned data

toad 8 15-­‐214

Types of failure behaviors

• Fail-stop

• Other halting failures

• Communication failures
§ Send/receive omissions
§ Network partitions
§ Message corruption

• Data corruption

• Performance failures
§ High packet loss rate
§  Low throughput
§ High latency

• Byzantine failures

toad 9 15-­‐214

Common assumptions about failures

• Behavior of others is fail-stop (ugh)

• Network is reliable (ugh)

• Network is semi-reliable but asynchronous

• Network is lossy but messages are not corrupt

• Network failures are transitive

• Failures are independent

• Local data is not corrupt

• Failures are reliably detectable

• Failures are unreliably detectable

toad 10 15-­‐214

Some distributed system design goals

• The end-to-end principle
§ When possible, implement functionality at the ends
(rather than the middle) of a distributed system

• The robustness principle
§ Be strict in what you send, but be liberal in what you
accept from others
• Protocols
• Failure behaviors

• Benefit from incremental changes

• Be redundant
§ Data replication
§ Checks for correctness

toad 11 15-­‐214

Replication for scalability: Client-side caching

• Architecture before replication:

§  Problem: Server throughput is too low

• Solution: Cache responses at (or near) the client
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

toad 12 15-­‐214

Replication for scalability: Client-side caching

• Hierarchical client-side caches:

client

front-end

client

front-end

{alice:90,
 bob:42,
 …}

database server:

cache

cache

cache

client

client

cache

cache

cache

toad 13 15-­‐214

Replication for scalability: Server-side caching

• Architecture before replication:

§  Problem: Database server throughput is too low

• Solution: Cache responses on multiple servers
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

cache

toad 14 15-­‐214

Cache invalidation

• Time-based invalidation (a.k.a. expiration)
§ Read-any, write-one
§ Old cache entries automatically discarded
§ No expiration date needed for read-only data

• Update-based invalidation
§ Read-any, write-all
§ DB server broadcasts invalidation message to all caches
when the DB is updated

toad 15 15-­‐214

Cache replacement policies

• Problem: caches have finite size

• Common* replacement policies
§ Optimal (Belady's) policy

• Discard item not needed for longest time in future
§  Least Recently Used (LRU)

• Track time of previous access, discard item accessed
least recently

§  Least Frequently Used (LFU)
• Count # times item is accessed, discard item accessed
least frequently

§ Random
• Discard a random item from the cache

toad 16 15-­‐214

Partitioning for scalability

• Partition data based on some property, put each
partition on a different server

client front-end
{cohen:9,
 bob:42,
 …}

client front-end

CMU server:

{alice:90,
 pete:12,
 …}

Yale server: {deb:16,
 reif:40,
 …}

MIT server:

toad 17 15-­‐214

Horizontal partitioning

• a.k.a. "sharding"

• A table of data:
username school value
cohen CMU 9
bob CMU 42
alice Yale 90
pete Yale 12
deb MIT 16
reif MIT 40

toad 18 15-­‐214

Recall: Basic hash tables

• For n-size hash table, put each item X in the
bucket: X.hashCode() % n!

0
1
2
3
4
5
6
7
8
9
10
11
12

{reif:40}

{bob:42}

{pete:12}

{deb:16}

{alice:90}

{cohen:9}

toad 19 15-­‐214

Partitioning with a distributed hash table

• Each server stores data for one bucket

• To store or retrieve an item, front-end server
hashes the key, contacts the server storing that
bucket

client front-end
{reif:40}

client front-end

Server 0:

{bob:42}
Server 3: {pete:12,

 alice:90}

Server 5:

{ }
Server 1:

…

toad 20 15-­‐214

Consistent hashing

• Goal: Benefit from incremental changes
§ Resizing the hash table (i.e., adding or removing a
server) should not require moving many objects

• E.g., Interpret the range of hash codes as a ring
§ Each bucket stores data for a range of the ring

• Assign each bucket an ID in the range of hash codes
• To store item X don't compute X.hashCode() % n.
Instead, place X in bucket with the same ID as or next
higher ID than X.hashCode()!

toad 21 15-­‐214

Problems with hash-based partitioning

• Front-ends need to determine server for each
bucket
§ Each front-end stores look-up table?
§ Master server storing look-up table?
§ Routing-based approaches?

• Places related content on different servers
§ Consider range queries:
 SELECT * FROM users WHERE lastname STARTSWITH 'G'!

toad 22 15-­‐214

Master/tablet-based systems

• Dynamically allocate range-based partitions
§ Master server maintains tablet-to-server assignments
§  Tablet servers store actual data
§  Front-ends cache tablet-to-server assignments

client front-end

k-z:
{pete:12,
 reif:42}

client front-end

Tablet server 1:

a-c:
{alice:90,
 bob:42,
 cohen:9}

Tablet server 2: d-g:
{deb:16}
h-j:{ }

Tablet server 3:

{a-c:[2],
 d-g:[3,4],
 h-j:[3],
 k-z:[1]}

Master:

d-g:
{deb:16}

Tablet server 4:

toad 23 15-­‐214

Today: Distributed system design

• Introduction to distributed systems, continued
§ Motivation: reliability and scalability
§  Failure models
§  Techniques for:

• Reliability (availability)
• Scalability
• Consistency

• MapReduce: A robust, scalable framework for
distributed computation…
§ …on replicated, partitioned data

toad 24 15-­‐214

Map from a functional perspective

• map(f, x[0…n-1])!
•  Apply the function f to each element of list x!

• E.g., in Python:
def square(x): return x*x !
map(square, [1, 2, 3, 4]) would return [1, 4, 9, 16]

• Parallel map implementation is trivial
§ What is the work? What is the depth?

map/reduce images src: Apache Hadoop tutorials

toad 25 15-­‐214

Reduce from a functional perspective

• reduce(f, x[0…n-1])!
§ Repeatedly apply binary function f to pairs of items in x,
replacing the pair of items with the result until only one
item remains

§ One sequential Python implementation:
 def reduce(f, x):!
 if len(x) == 1: return x[0]!
 return reduce(f, [f(x[0],x[1])] + x[2:])!

§  e.g., in Python:
 def add(x,y): return x+y!
 reduce(add, [1,2,3,4]) !
 would return 10 as
 reduce(add, [1,2,3,4])!
 reduce(add, [3,3,4])!
 reduce(add, [6,4])!
 reduce(add, [10]) -> 10!

toad 26 15-­‐214

Reduce with an associative binary function

• If the function f is associative, the order f is
applied does not affect the result

 1 + ((2+3) + 4) 1 + (2 + (3+4)) (1+2) + (3+4)

• Parallel reduce implementation is also easy
§ What is the work? What is the depth?

toad 27 15-­‐214

Distributed MapReduce

• The distributed MapReduce idea is similar to (but
not the same as!):

! !reduce(f2, map(f1, x))

• Key idea: a "data-centric" architecture
§ Send function f1 directly to the data

• Execute it concurrently
§  Then merge results with reduce

• Also concurrently

• Programmer can focus on the data processing
rather than the challenges of distributed systems

toad 28 15-­‐214

MapReduce with key/value pairs (Google style)

• Master
§ Assign tasks to workers
§  Ping workers to test for
failures

• Map workers
§ Map for each key/value pair
§ Emit intermediate key/value
pairs

• Reduce workers
§ Sort data by intermediate
key and aggregate by key

§ Reduce for each key

the shuffle:

toad 29 15-­‐214

• E.g., for each word on the Web, count the number
of times that word occurs
§  For Map: key1 is a document name, value is the
contents of that document

§  For Reduce: key2 is a word, values is a list of the
number of counts of that word

MapReduce with key/value pairs (Google style)

f1(String key1, String value): !

 for each word w in value: !

 EmitIntermediate(w, 1); !

!

f2(String key2, Iterator values):!

 int result = 0;!

 for each v in values:!

 result += v;!

 Emit(key2, result);!

Map: (key1, v1) à (key2, v2)* Reduce: (key2, v2*) à (key3, v3)*

MapReduce: (key1, v1)* à (key3, v3)*

MapReduce: (docName, docText)* à (word, wordCount)*

toad 30 15-­‐214

MapReduce architectural details

• Usually integrated with a
distributed storage system
§ Map worker executes function
on its share of the data

• Map output usually written
to worker's local disk
§ Shuffle: reduce worker often
pulls intermediate data from
map worker's local disk

• Reduce output usually
written back to distributed
storage system

1:

3: 2:

toad 31 15-­‐214

Handling server failures with MapReduce

• Map worker failure:
§ Re-map using replica of the
storage system data

• Reduce worker failure:
§ New reduce worker can pull
intermediate data from map
worker's local disk, re-reduce

• Master failure:
§ Options:

• Restart system using
new master

• Replicate master
• …

1:

3: 2:

toad 32 15-­‐214

The beauty of MapReduce

• Low communication costs (usually)
§  The shuffle (between map and reduce) is expensive

• MapReduce can be iterated
§  Input to MapReduce: key/value pairs in the distributed
storage system

§ Output from MapReduce: key/value pairs in the
distributed storage system

toad 33 15-­‐214

• E.g., for person in a social network graph, output
the number of mutual friends they have
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is ???, values is a list of ???

Another MapReduce example

f1(String key1, String value): !

 !

!

f2(String key2, Iterator values):!

MapReduce: (person, friends)* à (pair of people, count of mutual friends)*

toad 34 15-­‐214

• E.g., for person in a social network graph, output
the number of mutual friends they have
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is a pair of people, values is a list of
1s, for each mutual friend that pair has

Another MapReduce example

f1(String key1, String value): !

 for each pair of friends
!in value: !

 EmitIntermediate(pair, 1); !

!

f2(String key2, Iterator values):!

 int result = 0;!

 for each v in values:!

 result += v;!

 Emit(key2, result);!

MapReduce: (person, friends)* à (pair of people, count of mutual friends)*

toad 35 15-­‐214

• E.g., for each page on the Web, create a list of
the pages that link to it
§  For Map: key1 is a document name, value is the
contents of that document

§  For Reduce: key2 is ???, values is a list of ???

And another MapReduce example

f1(String key1, String value): !

 !

!

f2(String key2, Iterator values):!

MapReduce: (docName, docText)* à (docName, list of incoming links)*

toad 36 15-­‐214

Coming next…

• More distributed systems
§ MapReduce

