Object§ Analysis

Threa_ds

Fall 2014

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Distributed System Design, Part 1

Charlie Garrod Jonathan Aldrich

© 2012-14 C Kastner, C Garrod, J Aldrich, and W Scherlis

Administrivia

e Homework 5b Thursday

= Finish by Friday (14 Nov) 10 a.m. if you want to be
considered as a "Best Framework" for Homework 5c

e Homework grading status
= 5a almost done being graded
= 4c almost done, two graders remaining

e Homework 3 arena winners in class Thursday?

institute for

15-214 toad 2 sorTva

Key concepts from last Thursday

15-214 toad

Concurrency at the language level

e Consider:
int sum = 0;
Iterator i = coll.iterator();
while (i.hasNext()) {
sum += i.next();

}
e In python:
sum = 0;

for item in coll:
sum += item

15-214 toad

4

institute for
SOFTWARE
RESEARCH

Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[13, o, -4, 19, -6, 2, 6, 3]
N NJ N N
(13, 22, -4, 15, -6, -4, 6, 91
\\\\\\\\\31 \\\\\\\\\31

(13, 22, -4, 37, -6, -4, 6, 51
|

[13, 22, -4, 37, -6, -4, 6, 42]

f

= institute for
15-214 toad 5 sors

Parallel prefix sums algorithm, unwinding

e Now unwinds to calculate the other sums

(13, 22, -4, 37, -6, -4, 6, 42]
(13, 22, -4, 37, -6, 33, 6, 42]

NN N N

(13, 22, 18, 37, 31, 33, 39, 42]

e Recall, we started with:
[13, 9, -4, 19, -6, 2, 6, 3]

f

= Institute for
15-214 toad 6 sorTinge

A framework for asynchronous computation

e The java.util.concurrent.Future<V> interface
Vv get();
V get(long timeout, TimeUnit unit);
boolean isDone();

boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();

e The java.util.concurrent.ExecutorService interface

Future submit(Runnable task);

Future<V> submit(Callable<V> task);

List<Future<V>> invokeAll(Collection<Callable<V>> tasks);
Future<V> invokeAny(Collection<Callable<V>> tasks);

15-214 toad - e b

RESEARCH

Fork/Join: another common computational pattern

e In a long computation:
= Fork a thread (or more) to do some work
= Join the thread(s) to obtain the result of the work

e The java.util.concurrent.ForkJoinPool class
« Implements ExecutorService
= Executes java.util.concurrent.ForkJoinTask<V> or
java.util.concurrent.RecursiveTask<V> or
java.util.concurrent.RecursiveAction

15-214 toad 8 S o

RESEARCH

Today: Distributed system design

e Java networking fundamentals

e Introduction to distributed systems
= Motivation: reliability and scalability
= Failure models
= Techniques for:
e Reliability (availability)
e Scalability
e Consistency

15-214 toad

9

institute for
SOFTWARE
RESEARCH

Our destination: Distributed systems

e Multiple system components (computers)
communicating via some medium (the network)

e Challenges:
= Heterogeneity
= Scale
= Geography
= Security
= Concurrency
= Failures

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internetl.pdf

= institute for
15-214 toad 10 SO

Communication protocols

e Agreement between parties Friendly greeting.
for how communication

should take place \
= e.g., buying an airline ticket

through a travel agent uttered repl
Desm?\

/@rgh.
Tham

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internetl.pdf

15-214 toad 11 e i

RESEARCH

Abstractions of a network connection

itute FO[

15-214 toad 12 sorram

Packet-oriented and stream-oriented connections

e UDP: User Datagram Protocol
= Unreliable, discrete packets of data

e TCP: Transmission Control Protocol
= Reliable data stream

= Institute for
15-214 toad 13 sorTwase

Internet addresses and sockets

e For IP version 4 (IPv4) host address is a 4-byte

number

=e.g. 127.0.0.1

= Hostnames mapped to host IP addresses via DNS
= ~4 billion distinct addresses

e Port is a 16-bit number (0-65535)

= Assigned conventionally
ee.g., port 80 is the standard port for web servers

= Institute for
15-214 toad 14 sorTva

Networking in Java

e The java.net.InetAddress:

static InetAddress getByName(String host);
static InetAddress getByAddress(byte[] b);
static InetAddress getLocalHost();

e The java.net.Socket:
Socket (InetAddress addr, int port);

boolean isConnected();
boolean isClosed();
void close();

InputStream getInputStream();
OutputStream getOutputStream();

e The java.net.ServerSocket:
ServerSocket (int port);
Socket accept();
void close();

= Institute for
15-214 toad 15 sorTiAgt

Simple sockets demos

e NetworkServer.java

e A basic chat system:
« TransferThread.java
« TextSocketClient.java
= TextSocketServer.java

15-214 toad

institute for

Higher levels of abstraction

e Application-level communication protocols

e Frameworks for simple distributed computation
= Remote Procedure Call (RPC)
= Java Remote Method Invocation (RMI)

e Common patterns of distributed system design

e Complex computational frameworks
= e.g., distributed map-reduce

15-214 toad 17 écEJEETXV'zARE

Today

e Java networking fundamentals

e Introduction to distributed systems
= Motivation: reliability and scalability
= Failure models
= Techniques for:
e Reliability (availability)
e Scalability
e Consistency

15-214 toad

18

institute for
SOFTWARE
RESEARCH

v owerPoint File it View Insert Format Arrange Tools ide Show indow # elp A D = 100% (I Tue 11: arles Garro =
® P P File Edit V | F A Tools Slide Sh Wind Hel 5 G 3 2 4« [0 100%ED Tue 11:38 AM Charles Garrod Q

He
Slides
W

New Slide

etc — bash — 80x24 26-distributed-systems — bash — 80x24
Committed revision 2034. code-draft/ concurrency.pptx svn-commit.tmp
erebus$ vim todo.txt concurrency-whole.pptx concurrency2.pdf
erebus$ svn up . e A R Losnatzaanaiian s
Updating '.': ® 006 distributed-systems1.pptx
svn: E210002: Unable to ¢ ¢ = =1) = T——
ri.cmu.edu/usr@/home/char | Ly H =) | = & a2% =@ (Qr yuted-systems/
svn: E210002: To better ¢
'ssh' in the [tunnels] s
svn: E210002: Network con Slides Font Paragraph Insert
erebus$ svn up (+) . Aslv @

v

- P— . » Hv
A Home Themes Tables Charts SmartArt Transitions Animations Slide Show » A ¥ foncurrency4. pptx

> m ributed-systems
New Slide i N &E' Arrang

You need to restart your computer. Hold down the Power as back
button for several seconds or press the Restart button.

Veuillez redémarrer votre ordinateur. Maintenez la touche
de démarrage enfoncée pendant plusieurs secondes ou bien
appuyez sur le bouton de réinitialisation.

Sie mussen lhren Computer neu starten. Halten Sie dazu
die Einschalttaste einige Sekunden gedruckt oder driicken
Sie die Neustart-Taste.

AVE1—5ZBENT 2UEHNBDET, KNT—RI¥ V%
WML S0, VEYRRZ U EZBLTLEZWN,

dvl=# \q

could not save history to file "/afs/cs/usr/charlie/.psql_history": Permission d
enied

transit$ logout

Connection to transit.apt.ri closed.

garrod-dell$ logout

Connection to garrod.isri.cmu.edu closed.

erebus$

Screen Shot
2012..2 AM

Screen Shot
2012..5AM

Aside: The robustness vs. redundancy curve

robustness
redundancy

= Institute for
15-214 toad 20 sorTva

Metrics of success

e Reliability
= Often in terms of availability: fraction of time system is
working
¢ 99,999% available is "5 nines of availability"

e Scalability
= Ability to handle workload growth

= Institute for
15-214 toad 21 sormue

A case study: Passive primary-backup replication

e Architecture before replication:

database server:

front-end \ {alice:90,

i bob:42,
front-end /)

~
~

= Problem: Database server might fail

= Institute for
15-214 toad 22 sormue

A case study: Passive primary-backup replication

e Architecture before replication:

f database server:
.<—> ront-end \ {alice:90,

i bob:42,
.<—>front-end / L

= Problem: Database server might fail

e Solution: Replicate data onto multiple servers

.<—> front-end primary: backup:
Ni'\{alice:%, {alice:90, |

i bob:42, _
.<—>front-end /) i bo}b.42,
| ,\, backup:

{alice:90,
bob:42, \; [Hj s

15-214 toad

Passive primary-backup replication protocol

1. Front-end issues request with unique ID to
primary DB

2. Primary checks request ID
» If already executed request, re-send response and exit
protocol

3. Primary executes request and stores response

4. If request is an update, primary DB sends

updated state, ID, and response to all backups
« Each backup sends an acknowledgement

5. After receiving all acknowledgements, primary
DB sends response to front-end

= institute for
15-214 toad 24 sorTinge

Issues with passive primary-backup replication

o If primary DB crashes, front-ends need to agree

upon which unique backup is new primary DB
= Primary failure vs. network failure?

o If backup DB becomes new primary, surviving
replicas must agree on current DB state

o If backup DB crashes, primary must detect failure

to remove the backup from the cluster
= Backup failure vs. network failure?

o If replica fails* and recovers, it must detect that it
previously failed

e Many subtle issues with partial failures

= institute ror
15-214 toad 25 |[Yf o

More issues...

e Concurrency problems?
= Out of order message delivery?
e Time...

e Performance problems?
= 2N messages for n replicas
= Failure of any replica can delay response
= Routine network problems can delay response

e Scalability problems?
= All replicas are written for each update
= Primary DB responds to every request

15-214 toad o s

RESEARCH

Types of failure behaviors

e Fail-stop
e Other halting failures

e Communication failures
= Send/receive omissions
= Network partitions
= Message corruption

e Data corruption

e Performance failures

« High packet loss rate
« Low throughput
« High latency

e Byzantine failures

= institute for
15-214 toad 27 SOt

Common assumptions about failures

e Behavior of others is fail-stop (ugh)

e Networ
e Networ
e Networ

e Networ

K is reliable (ugh)
K is semi-reliable but asynchronous

K is lossy but messages are not corrupt

K failures are transitive

e Failures are independent

e Local data is not corrupt

e Failures are reliably detectable

e Failures are unreliably detectable

15-214

f

t d isnétitute or
FTWARE
oa 28 RESEARCH

Some distributed system design goals

e The end-to-end principle
= When possible, implement functionality at the end nodes
(rather than the middle nodes) of a distributed system

e The robustness principle

= Be strict in what you send, but be liberal in what you
accept from others

e Protocols
e Failure behaviors

e Benefit from incremental changes

e Be redundant
= Data replication
= Checks for correctness

= Institute for
15-214 toad 29 sorTva

Replication for scalability: Client-side caching

e Architecture before replication:

front-end

database server:

front-end

= Problem: Server throughput is too low

{alice:90,
bob:42,

~
~

e Solution: Cache responses at (or near) the client
= Cache can respond to repeated read requests

— front-end

— | front-end

15-214 toad

\ {alice:90,

database server:

bob:42,

Replication for scalability: Client-side caching

e Hierarchical client-side caches:

" databa
T |{alice:

. bob::
front-end <> 1

= Institute tor
15-214 toad 31 sor s

Replication for scalability: Server-side caching

e Architecture before replication:

database server:

front-end \ {alice:90,
; bob:42,
front-end / L

~
~

= Problem: Database server throughput is too low

9

e Solution: Cache responses on multiple servers
= Cache can respond to repeated read requests

tront-end database server:
{alice:90,
bob:42,
front-end Y

15-214

Cache invalidation

e Time-based invalidation (a.k.a. expiration)
= Read-any, write-one
= Old cache entries automatically discarded
= No expiration date needed for read-only data

e Update-based invalidation
= Read-any, write-all

= DB server broadcasts invalidation message to all caches
when the DB is updated

15-214 toad 33 S o

RESEARCH

Cache replacement policies

e Problem: caches have finite size

e Common* replacement policies
= Optimal (Belady's) policy
e Discard item not needed for longest time in future
« Least Recently Used (LRU)

e Track time of previous access, discard item accessed
least recently

= Least Frequently Used (LFU)

e Count # times item is accessed, discard item accessed
least frequently

= Random
e Discard a random item from the cache

15-214 toad o s

RESEARCH

Partitioning for scalability

e Partition data based on some property, put each
partition on a different server

CMU server:

{cohen:9,
bob:42,

)

front-end </'/>

Yale server: {feei?_:ig !
{alice:90, R
pete:12,
o)

= institute for
15-214 toad 35 sofwatt

Horizontal partitioning

e a.k.a. "sharding”

e A table of data:

15-214

username school value
cohen CMU 9
bob CMU 42
alice Yale 90
pete Yale 12
deb MIT 16
reif MIT 40

toad

36

institute for
SOFTWARE
RESEARCH

Recall: Basic hash tables

e For n-size hash table, put each item X in the
bucket: X.hashCode() % n

0 o———{reif:40}

1

2

3 o———{bob:42}

4

5 o——— {pete:12} &> | {alice:90}
6

7

8

9

10

11 o———{deb:16} || {cohen:9}
12

= Institute for
15-214 toad 37 sormue

Partitioning with a distributed hash table

e Fach server stores data for one bucket

e To store or retrieve an item, front-end server
hashes the key, contacts the server storing that
bucket T e e

. Server 1.
Server O:

{reif:40} { b

front-end <//>

front-end Server S:

{pete:12,

Server 3: alice:903

{bob:42}

Institute for
15-214 toad 38 soruat

Consistent hashing

e Goal: Benefit from incremental changes

= Resizing the hash table (i.e., adding or removing a
server) should not require moving many objects

e E.g., Interpret the range of hash codes as a ring
= Each bucket stores data for a range of the ring
e Assign each bucket an ID in the range of hash codes
e To store item X don't compute X.hashCode() % n.
Instead, place X in bucket with the same ID as or next
higher ID than X.hashCode()

institute for

15-214 toad 39 sorua

Problems with hash-based partitioning

e Front-ends need to determine server for each

bucket

» Each front-end stores look-up table?
= Master server storing look-up table?
= Routing-based approaches?

e Places related content on different servers
= Consider range queries:
SELECT * FROM users WHERE lastname STARTSWITH 'G'

15-214 toad 40 S o

RESEARCH

Master/tablet-based systems

e Dynamically allocate range-based partitions
= Master server maintains tablet-to-server assignments
= Tablet servers store actual data
= Front-ends cache tablet-to-server assignments

Master: I
fa-ci[2], Tab et.server 1
d-g:[3,4], -z
h-j:[3], i {pe_te:12,
front-end Tl :
Tablet server 3::
front-end Jablet server 2: g;lge:b' 163
a-C. h_:
{alice: 90, At ’ 5
bob:42, Tablet server 4:;
cohen:9} d-a: /
g)
15-214 toad e e

Coming next...

e More distributed systems
« MapReduce

= institute for
15-214 toad a2 sormvase

