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Administrivia 

• Homework 5b Thursday 
§  Finish by Friday (14 Nov) 10 a.m. if you want to be 
considered as a "Best Framework" for Homework 5c 

• Homework grading status 
§ 5a almost done being graded 
§ 4c almost done, two graders remaining 

• Homework 3 arena winners in class Thursday? 
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Key concepts from last Thursday 
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Concurrency at the language level 

• Consider: 
int	
  sum	
  =	
  0;	
  
Iterator	
  i	
  =	
  coll.iterator();	
  
while	
  (i.hasNext())	
  {	
  
	
  	
  	
  	
  sum	
  +=	
  i.next();	
  
}	
  

• In python: 
sum	
  =	
  0;	
  
for	
  item	
  in	
  coll:	
  
	
  	
  	
  	
  sum	
  +=	
  item	
  
!
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Parallel prefix sums algorithm, winding 

• Computes the partial sums in a more useful manner!

[13,    9,   -4,   19,   -6,    2,    6,    3]!

!

[13,   22,   -4,   15,   -6,   -4,    6,    9] 

 

[13,   22,   -4,   37,   -6,   -4,    6,    5] 

 

[13,   22,   -4,   37,   -6,   -4,    6,   42] 

 …
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Parallel prefix sums algorithm, unwinding 

• Now unwinds to calculate the other sums 

[13,   22,   -4,   37,   -6,   -4,    6,   42] 

 

[13,   22,   -4,   37,   -6,   33,    6,   42] 

 

[13,   22,   18,   37,   31,   33,   39,   42] 

• Recall, we started with:!

[13,    9,   -4,   19,   -6,    2,    6,    3]!
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A framework for asynchronous computation 

• The java.util.concurrent.Future<V> interface 
V	
  	
  	
  	
  	
  	
  	
  get();	
  
V	
  	
  	
  	
  	
  	
  	
  get(long	
  timeout,	
  TimeUnit	
  unit);	
  
boolean	
  isDone();	
  
boolean	
  cancel(boolean	
  mayInterruptIfRunning);	
  
boolean	
  isCancelled();	
  

• The java.util.concurrent.ExecutorService	
  interface 
Future	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  submit(Runnable	
  task);	
  
Future<V>	
  	
  	
  	
  	
  	
  	
  submit(Callable<V>	
  task);	
  
List<Future<V>>	
  invokeAll(Collection<Callable<V>>	
  tasks);	
  
Future<V>	
  	
  	
  	
  	
  	
  	
  invokeAny(Collection<Callable<V>>	
  tasks);	
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Fork/Join: another common computational pattern 

• In a long computation: 
§  Fork a thread (or more) to do some work 
§  Join the thread(s) to obtain the result of the work 

• The java.util.concurrent.ForkJoinPool class 
§  Implements ExecutorService	
  	
  
§ Executes   java.util.concurrent.ForkJoinTask<V> or  

   java.util.concurrent.RecursiveTask<V> or  
   java.util.concurrent.RecursiveAction	
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Today:  Distributed system design 

• Java networking fundamentals 

• Introduction to distributed systems 
§ Motivation: reliability and scalability 
§  Failure models 
§  Techniques for: 

• Reliability (availability) 
• Scalability 
• Consistency 
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Our destination:  Distributed systems 

• Multiple system components (computers) 
communicating via some medium (the network) 

• Challenges: 
§ Heterogeneity 
§ Scale 
§ Geography 
§ Security 
§ Concurrency 
§  Failures 

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf 
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Communication protocols 

• Agreement between parties 
for how communication 
should take place 
§  e.g., buying an airline ticket 
through a travel agent 

Friendly greeting. 

Muttered reply. 

Destination? 

Pittsburgh. 

Thank you. 

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf 
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Abstractions of a network connection 

IP 

TCP | UDP | … 

HTTP | FTP | … 

HTML | Text | JPG | GIF | PDF | … 

data link layer 

physical layer 
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Packet-oriented and stream-oriented connections 

• UDP:  User Datagram Protocol 
§ Unreliable, discrete packets of data 

• TCP:  Transmission Control Protocol 
§ Reliable data stream 
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Internet addresses and sockets 

• For IP version 4 (IPv4) host address is a 4-byte 
number 
§  e.g. 127.0.0.1 
§ Hostnames mapped to host IP addresses via DNS 
§ ~4 billion distinct addresses 

• Port is a 16-bit number (0-65535) 
§ Assigned conventionally 

• e.g., port 80 is the standard port for web servers 
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Networking in Java 

• The java.net.InetAddress: 
static InetAddress getByName(String host);!
static InetAddress getByAddress(byte[] b);!
static InetAddress getLocalHost(); 

• The java.net.Socket: 
Socket(InetAddress addr, int port);!
boolean      isConnected();!
boolean      isClosed();!
void         close();!
InputStream  getInputStream();!
OutputStream getOutputStream(); 

• The java.net.ServerSocket: 
ServerSocket(int port);!
Socket       accept();!
void         close();!
…!
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Simple sockets demos 

• NetworkServer.java 

• A basic chat system: 
§  TransferThread.java 
§  TextSocketClient.java 
§  TextSocketServer.java 
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Higher levels of abstraction 

• Application-level communication protocols 

• Frameworks for simple distributed computation 
§ Remote Procedure Call (RPC) 
§  Java Remote Method Invocation (RMI) 

• Common patterns of distributed system design 

• Complex computational frameworks 
§  e.g., distributed map-reduce 
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Today 

• Java networking fundamentals 

• Introduction to distributed systems 
§ Motivation: reliability and scalability 
§  Failure models 
§  Techniques for: 

• Reliability (availability) 
• Scalability 
• Consistency 
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toad 20 15-­‐214 

Aside:  The robustness vs. redundancy curve 

? redundancy 
robustness 
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Metrics of success 

• Reliability 
§ Often in terms of availability:  fraction of time system is 
working 
• 99.999% available is "5 nines of availability" 

• Scalability 
§ Ability to handle workload growth 
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A case study:  Passive primary-backup replication 

• Architecture before replication:   

§  Problem:  Database server might fail 

client front-end {alice:90, 
  bob:42, 
  …} client front-end 

database server: 
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A case study:  Passive primary-backup replication 

• Architecture before replication:   

§  Problem:  Database server might fail 

• Solution:  Replicate data onto multiple servers 

client front-end {alice:90, 
  bob:42, 
  …} client front-end 

database server: 

client front-end {alice:90, 
  bob:42, 
  …} client front-end 

primary: 

{alice:90, 
  bob:42, 
  …} 

backup: 

{alice:90, 
  bob:42, 
  …} 

backup: 
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Passive primary-backup replication protocol 

1.  Front-end issues request with unique ID to 
primary DB 

2.  Primary checks request ID 
§  If already executed request, re-send response and exit 
protocol 

3.  Primary executes request and stores response 

4.  If request is an update, primary DB sends 
updated state, ID, and response to all backups 

§ Each backup sends an acknowledgement 

5.  After receiving all acknowledgements, primary 
DB sends response to front-end 



toad 25 15-­‐214 

Issues with passive primary-backup replication 

• If primary DB crashes, front-ends need to agree 
upon which unique backup is new primary DB 
§  Primary failure vs. network failure? 

• If backup DB becomes new primary, surviving 
replicas must agree on current DB state 

• If backup DB crashes, primary must detect failure 
to remove the backup from the cluster 
§ Backup failure vs. network failure? 

• If replica fails* and recovers, it must detect that it 
previously failed 

• Many subtle issues with partial failures 

• … 
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More issues… 

• Concurrency problems? 
§ Out of order message delivery? 

• Time… 

• Performance problems? 
§ 2n messages for n replicas 
§  Failure of any replica can delay response 
§ Routine network problems can delay response 

• Scalability problems? 
§ All replicas are written for each update 
§  Primary DB responds to every request 
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Types of failure behaviors 

• Fail-stop 

• Other halting failures 

• Communication failures 
§ Send/receive omissions 
§ Network partitions 
§ Message corruption 

• Data corruption 

• Performance failures 
§ High packet loss rate 
§  Low throughput 
§ High latency 

• Byzantine failures 
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Common assumptions about failures 

• Behavior of others is fail-stop (ugh) 

• Network is reliable (ugh) 

• Network is semi-reliable but asynchronous 

• Network is lossy but messages are not corrupt 

• Network failures are transitive 

• Failures are independent 

• Local data is not corrupt 

• Failures are reliably detectable 

• Failures are unreliably detectable 
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Some distributed system design goals 

• The end-to-end principle 
§ When possible, implement functionality at the end nodes 
(rather than the middle nodes) of a distributed system 

• The robustness principle 
§ Be strict in what you send, but be liberal in what you 
accept from others 
• Protocols 
• Failure behaviors 

• Benefit from incremental changes 

• Be redundant 
§ Data replication 
§ Checks for correctness 
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Replication for scalability:  Client-side caching 

• Architecture before replication: 

§  Problem:  Server throughput is too low 

• Solution:  Cache responses at (or near) the client 
§ Cache can respond to repeated read requests 

client front-end {alice:90, 
  bob:42, 
  …} client front-end 

database server: 

client front-end 

client front-end 

{alice:90, 
  bob:42, 
  …} 

database server: cache 

cache 
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Replication for scalability:  Client-side caching 

• Hierarchical client-side caches: 

client 

front-end 

client 

front-end 

{alice:90, 
  bob:42, 
  …} 

database server: 

cache 

cache 

cache 

client 

client 

cache 

cache 

cache 
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Replication for scalability:  Server-side caching 

• Architecture before replication: 

§  Problem:  Database server throughput is too low 

• Solution:  Cache responses on multiple servers 
§ Cache can respond to repeated read requests 

client front-end {alice:90, 
  bob:42, 
  …} client front-end 

database server: 

client front-end 

client front-end 

{alice:90, 
  bob:42, 
  …} 

database server: cache 

cache 

cache 
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Cache invalidation 

• Time-based invalidation  (a.k.a. expiration) 
§ Read-any, write-one 
§ Old cache entries automatically discarded 
§ No expiration date needed for read-only data 

• Update-based invalidation 
§ Read-any, write-all 
§ DB server broadcasts invalidation message to all caches 
when the DB is updated 
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Cache replacement policies 

• Problem:  caches have finite size 

• Common* replacement policies 
§ Optimal (Belady's) policy 

• Discard item not needed for longest time in future 
§  Least Recently Used (LRU) 

• Track time of previous access, discard item accessed 
least recently 

§  Least Frequently Used (LFU) 
• Count # times item is accessed, discard item accessed 
least frequently 

§ Random 
• Discard a random item from the cache 
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Partitioning for scalability 

• Partition data based on some property, put each 
partition on a different server 

client front-end 
{cohen:9, 
  bob:42, 
  …} 

client front-end 

CMU server: 

{alice:90, 
  pete:12, 
  …} 

Yale server: {deb:16, 
  reif:40, 
  …} 

MIT server: 
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Horizontal partitioning 

• a.k.a. "sharding" 

• A table of data: 
username school value 
cohen CMU 9 
bob CMU 42 
alice Yale 90 
pete Yale 12 
deb MIT 16 
reif MIT 40 
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Recall:  Basic hash tables 

• For n-size hash table, put each item X in the  
bucket: X.hashCode() % n!

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

{reif:40} 
 
 
{bob:42} 
 
{pete:12} 
 
 
 
 
 
{deb:16} 
 

 
  
  
 
{alice:90} 
  
 
 
 
 
{cohen:9}  
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Partitioning with a distributed hash table 

• Each server stores data for one bucket 

• To store or retrieve an item, front-end server 
hashes the key, contacts the server storing that 
bucket 

client front-end 
{reif:40} 

client front-end 

Server 0: 

{bob:42} 
Server 3: {pete:12, 

  alice:90} 

Server 5: 

{         } 
Server 1: 

… 
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Consistent hashing 

• Goal:  Benefit from incremental changes 
§ Resizing the hash table (i.e., adding or removing a 
server) should not require moving many objects 

• E.g., Interpret the range of hash codes as a ring 
§ Each bucket stores data for a range of the ring 

• Assign each bucket an ID in the range of hash codes 
• To store item X don't compute X.hashCode() % n.  
Instead, place X in bucket with the same ID as or next 
higher ID than X.hashCode()!
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Problems with hash-based partitioning 

• Front-ends need to determine server for each 
bucket 
§ Each front-end stores look-up table? 
§ Master server storing look-up table? 
§ Routing-based approaches? 

• Places related content on different servers 
§ Consider range queries:   
 SELECT * FROM users WHERE lastname STARTSWITH 'G'!
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Master/tablet-based systems 

• Dynamically allocate range-based partitions 
§ Master server maintains tablet-to-server assignments 
§  Tablet servers store actual data 
§  Front-ends cache tablet-to-server assignments 

client front-end 

k-z: 
{pete:12, 
  reif:42} 

client front-end 

Tablet server 1: 

a-c: 
{alice:90, 
  bob:42, 
  cohen:9} 

Tablet server 2: d-g: 
{deb:16} 
h-j:{      } 

Tablet server 3: 

{a-c:[2], 
 d-g:[3,4], 
 h-j:[3], 
 k-z:[1]} 

Master: 

d-g: 
{deb:16} 

Tablet server 4: 
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Coming next… 

• More distributed systems 
§ MapReduce 


