
	

	

	

Fall	
 2014	

School of
Computer Science

© 2012-14 C Kästner, C Garrod, J Aldrich, and W Scherlis

Principles of Software Construction:
Objects, Design, and Concurrency

Distributed System Design, Part 1

 Charlie Garrod Jonathan Aldrich

toad 2 15-­‐214

Administrivia

• Homework 5b Thursday
§  Finish by Friday (14 Nov) 10 a.m. if you want to be
considered as a "Best Framework" for Homework 5c

• Homework grading status
§ 5a almost done being graded
§ 4c almost done, two graders remaining

• Homework 3 arena winners in class Thursday?

toad 3 15-­‐214

Key concepts from last Thursday

toad 4 15-­‐214

Concurrency at the language level

• Consider:
int	
 sum	
 =	
 0;	

Iterator	
 i	
 =	
 coll.iterator();	

while	
 (i.hasNext())	
 {	

	
 	
 	
 	
 sum	
 +=	
 i.next();	

}	

• In python:
sum	
 =	
 0;	

for	
 item	
 in	
 coll:	

	
 	
 	
 	
 sum	
 +=	
 item	

!

toad 5 15-­‐214

Parallel prefix sums algorithm, winding

• Computes the partial sums in a more useful manner!

[13, 9, -4, 19, -6, 2, 6, 3]!

!

[13, 22, -4, 15, -6, -4, 6, 9]

[13, 22, -4, 37, -6, -4, 6, 5]

[13, 22, -4, 37, -6, -4, 6, 42]

 …

toad 6 15-­‐214

Parallel prefix sums algorithm, unwinding

• Now unwinds to calculate the other sums

[13, 22, -4, 37, -6, -4, 6, 42]

[13, 22, -4, 37, -6, 33, 6, 42]

[13, 22, 18, 37, 31, 33, 39, 42]

• Recall, we started with:!

[13, 9, -4, 19, -6, 2, 6, 3]!

toad 7 15-­‐214

A framework for asynchronous computation

• The java.util.concurrent.Future<V> interface
V	
 	
 	
 	
 	
 	
 	
 get();	

V	
 	
 	
 	
 	
 	
 	
 get(long	
 timeout,	
 TimeUnit	
 unit);	

boolean	
 isDone();	

boolean	
 cancel(boolean	
 mayInterruptIfRunning);	

boolean	
 isCancelled();	

• The java.util.concurrent.ExecutorService	
 interface
Future	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 submit(Runnable	
 task);	

Future<V>	
 	
 	
 	
 	
 	
 	
 submit(Callable<V>	
 task);	

List<Future<V>>	
 invokeAll(Collection<Callable<V>>	
 tasks);	

Future<V>	
 	
 	
 	
 	
 	
 	
 invokeAny(Collection<Callable<V>>	
 tasks);	

toad 8 15-­‐214

Fork/Join: another common computational pattern

• In a long computation:
§  Fork a thread (or more) to do some work
§  Join the thread(s) to obtain the result of the work

• The java.util.concurrent.ForkJoinPool class
§  Implements ExecutorService	
 	

§ Executes java.util.concurrent.ForkJoinTask<V> or

 java.util.concurrent.RecursiveTask<V> or
 java.util.concurrent.RecursiveAction	

toad 9 15-­‐214

Today: Distributed system design

• Java networking fundamentals

• Introduction to distributed systems
§ Motivation: reliability and scalability
§  Failure models
§  Techniques for:

• Reliability (availability)
• Scalability
• Consistency

toad 10 15-­‐214

Our destination: Distributed systems

• Multiple system components (computers)
communicating via some medium (the network)

• Challenges:
§ Heterogeneity
§ Scale
§ Geography
§ Security
§ Concurrency
§  Failures

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf

toad 11 15-­‐214

Communication protocols

• Agreement between parties
for how communication
should take place
§  e.g., buying an airline ticket
through a travel agent

Friendly greeting.

Muttered reply.

Destination?

Pittsburgh.

Thank you.

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf

toad 12 15-­‐214

Abstractions of a network connection

IP

TCP | UDP | …

HTTP | FTP | …

HTML | Text | JPG | GIF | PDF | …

data link layer

physical layer

toad 13 15-­‐214

Packet-oriented and stream-oriented connections

• UDP: User Datagram Protocol
§ Unreliable, discrete packets of data

• TCP: Transmission Control Protocol
§ Reliable data stream

toad 14 15-­‐214

Internet addresses and sockets

• For IP version 4 (IPv4) host address is a 4-byte
number
§  e.g. 127.0.0.1
§ Hostnames mapped to host IP addresses via DNS
§ ~4 billion distinct addresses

• Port is a 16-bit number (0-65535)
§ Assigned conventionally

• e.g., port 80 is the standard port for web servers

toad 15 15-­‐214

Networking in Java

• The java.net.InetAddress:
static InetAddress getByName(String host);!
static InetAddress getByAddress(byte[] b);!
static InetAddress getLocalHost();

• The java.net.Socket:
Socket(InetAddress addr, int port);!
boolean isConnected();!
boolean isClosed();!
void close();!
InputStream getInputStream();!
OutputStream getOutputStream();

• The java.net.ServerSocket:
ServerSocket(int port);!
Socket accept();!
void close();!
…!

toad 16 15-­‐214

Simple sockets demos

• NetworkServer.java

• A basic chat system:
§  TransferThread.java
§  TextSocketClient.java
§  TextSocketServer.java

toad 17 15-­‐214

Higher levels of abstraction

• Application-level communication protocols

• Frameworks for simple distributed computation
§ Remote Procedure Call (RPC)
§  Java Remote Method Invocation (RMI)

• Common patterns of distributed system design

• Complex computational frameworks
§  e.g., distributed map-reduce

toad 18 15-­‐214

Today

• Java networking fundamentals

• Introduction to distributed systems
§ Motivation: reliability and scalability
§  Failure models
§  Techniques for:

• Reliability (availability)
• Scalability
• Consistency

toad 19 15-­‐214

toad 20 15-­‐214

Aside: The robustness vs. redundancy curve

? redundancy
robustness

toad 21 15-­‐214

Metrics of success

• Reliability
§ Often in terms of availability: fraction of time system is
working
• 99.999% available is "5 nines of availability"

• Scalability
§ Ability to handle workload growth

toad 22 15-­‐214

A case study: Passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

toad 23 15-­‐214

A case study: Passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

• Solution: Replicate data onto multiple servers

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end {alice:90,
 bob:42,
 …} client front-end

primary:

{alice:90,
 bob:42,
 …}

backup:

{alice:90,
 bob:42,
 …}

backup:

toad 24 15-­‐214

Passive primary-backup replication protocol

1.  Front-end issues request with unique ID to
primary DB

2.  Primary checks request ID
§  If already executed request, re-send response and exit
protocol

3.  Primary executes request and stores response

4.  If request is an update, primary DB sends
updated state, ID, and response to all backups

§ Each backup sends an acknowledgement

5.  After receiving all acknowledgements, primary
DB sends response to front-end

toad 25 15-­‐214

Issues with passive primary-backup replication

• If primary DB crashes, front-ends need to agree
upon which unique backup is new primary DB
§  Primary failure vs. network failure?

• If backup DB becomes new primary, surviving
replicas must agree on current DB state

• If backup DB crashes, primary must detect failure
to remove the backup from the cluster
§ Backup failure vs. network failure?

• If replica fails* and recovers, it must detect that it
previously failed

• Many subtle issues with partial failures

• …

toad 26 15-­‐214

More issues…

• Concurrency problems?
§ Out of order message delivery?

• Time…

• Performance problems?
§ 2n messages for n replicas
§  Failure of any replica can delay response
§ Routine network problems can delay response

• Scalability problems?
§ All replicas are written for each update
§  Primary DB responds to every request

toad 27 15-­‐214

Types of failure behaviors

• Fail-stop

• Other halting failures

• Communication failures
§ Send/receive omissions
§ Network partitions
§ Message corruption

• Data corruption

• Performance failures
§ High packet loss rate
§  Low throughput
§ High latency

• Byzantine failures

toad 28 15-­‐214

Common assumptions about failures

• Behavior of others is fail-stop (ugh)

• Network is reliable (ugh)

• Network is semi-reliable but asynchronous

• Network is lossy but messages are not corrupt

• Network failures are transitive

• Failures are independent

• Local data is not corrupt

• Failures are reliably detectable

• Failures are unreliably detectable

toad 29 15-­‐214

Some distributed system design goals

• The end-to-end principle
§ When possible, implement functionality at the end nodes
(rather than the middle nodes) of a distributed system

• The robustness principle
§ Be strict in what you send, but be liberal in what you
accept from others
• Protocols
• Failure behaviors

• Benefit from incremental changes

• Be redundant
§ Data replication
§ Checks for correctness

toad 30 15-­‐214

Replication for scalability: Client-side caching

• Architecture before replication:

§  Problem: Server throughput is too low

• Solution: Cache responses at (or near) the client
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

toad 31 15-­‐214

Replication for scalability: Client-side caching

• Hierarchical client-side caches:

client

front-end

client

front-end

{alice:90,
 bob:42,
 …}

database server:

cache

cache

cache

client

client

cache

cache

cache

toad 32 15-­‐214

Replication for scalability: Server-side caching

• Architecture before replication:

§  Problem: Database server throughput is too low

• Solution: Cache responses on multiple servers
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

cache

toad 33 15-­‐214

Cache invalidation

• Time-based invalidation (a.k.a. expiration)
§ Read-any, write-one
§ Old cache entries automatically discarded
§ No expiration date needed for read-only data

• Update-based invalidation
§ Read-any, write-all
§ DB server broadcasts invalidation message to all caches
when the DB is updated

toad 34 15-­‐214

Cache replacement policies

• Problem: caches have finite size

• Common* replacement policies
§ Optimal (Belady's) policy

• Discard item not needed for longest time in future
§  Least Recently Used (LRU)

• Track time of previous access, discard item accessed
least recently

§  Least Frequently Used (LFU)
• Count # times item is accessed, discard item accessed
least frequently

§ Random
• Discard a random item from the cache

toad 35 15-­‐214

Partitioning for scalability

• Partition data based on some property, put each
partition on a different server

client front-end
{cohen:9,
 bob:42,
 …}

client front-end

CMU server:

{alice:90,
 pete:12,
 …}

Yale server: {deb:16,
 reif:40,
 …}

MIT server:

toad 36 15-­‐214

Horizontal partitioning

• a.k.a. "sharding"

• A table of data:
username school value
cohen CMU 9
bob CMU 42
alice Yale 90
pete Yale 12
deb MIT 16
reif MIT 40

toad 37 15-­‐214

Recall: Basic hash tables

• For n-size hash table, put each item X in the
bucket: X.hashCode() % n!

0
1
2
3
4
5
6
7
8
9
10
11
12

{reif:40}

{bob:42}

{pete:12}

{deb:16}

{alice:90}

{cohen:9}

toad 38 15-­‐214

Partitioning with a distributed hash table

• Each server stores data for one bucket

• To store or retrieve an item, front-end server
hashes the key, contacts the server storing that
bucket

client front-end
{reif:40}

client front-end

Server 0:

{bob:42}
Server 3: {pete:12,

 alice:90}

Server 5:

{ }
Server 1:

…

toad 39 15-­‐214

Consistent hashing

• Goal: Benefit from incremental changes
§ Resizing the hash table (i.e., adding or removing a
server) should not require moving many objects

• E.g., Interpret the range of hash codes as a ring
§ Each bucket stores data for a range of the ring

• Assign each bucket an ID in the range of hash codes
• To store item X don't compute X.hashCode() % n.
Instead, place X in bucket with the same ID as or next
higher ID than X.hashCode()!

toad 40 15-­‐214

Problems with hash-based partitioning

• Front-ends need to determine server for each
bucket
§ Each front-end stores look-up table?
§ Master server storing look-up table?
§ Routing-based approaches?

• Places related content on different servers
§ Consider range queries:
 SELECT * FROM users WHERE lastname STARTSWITH 'G'!

toad 41 15-­‐214

Master/tablet-based systems

• Dynamically allocate range-based partitions
§ Master server maintains tablet-to-server assignments
§  Tablet servers store actual data
§  Front-ends cache tablet-to-server assignments

client front-end

k-z:
{pete:12,
 reif:42}

client front-end

Tablet server 1:

a-c:
{alice:90,
 bob:42,
 cohen:9}

Tablet server 2: d-g:
{deb:16}
h-j:{ }

Tablet server 3:

{a-c:[2],
 d-g:[3,4],
 h-j:[3],
 k-z:[1]}

Master:

d-g:
{deb:16}

Tablet server 4:

toad 42 15-­‐214

Coming next…

• More distributed systems
§ MapReduce

