Object§ Analysis

B e
A 3 / o
LR N, e
) - T

Principles of Software Construction:
Objects, Design, and Concurrency

Threa_ds

The Perils of Concurrency, Part 3

Can't live with it
Can't live without it.

Fall 2014

Charlie Garrod Jonathan Aldrich

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

© 2012-14 C Kastner, C Garrod, J Aldrich, and W Scherlis

Administrivia

e See Charlie if you still need your midterm exam

e Homework 5b due next Thursday, 11:59 p.m.
« Finish by Friday (14 Nov) 10 a.m. if you want to be
considered as a "Best Framework" for Homework 5c
e Our evaluation considers:
e Novelty
e Functional correctness

e Documentation
. [N]

e Homework 3 arena winners in class next week

15-214 toad 2 sorrons

RESEARCH

Key concepts from Tuesday

15-214 toad

Bad news: some simple actions are not atomic

e Consider a single 64-bit 1ong value

« Concurrently:

e Thread A writing high bits and low bits
e Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long i = 10000000000; i = 42; ans = 1i;
ans: (10000000000)
(42)

ans.:

(10000000042 or ...)

ans.:

= institute for
15-214 toad 4 sorTva

Key concepts from Tuesday

e Basic concurrency in Java
e Atomicity
e Race conditions

e The Java synchronized keyword

f

= Institute for
15-214 toad 5 sorTva

Primitive concurrency control in Java

e Each Java object has an associated intrinsic lock
= All locks are initially unowned

= Each lock is exclusive: it can be owned by at most one
thread at a time

e The synchronized keyword forces the current

thread to obtain an object's intrinsic lock
- E.g.,
synchronized void foo() { .. } // locks "this"

synchronized(fromAcct) {
if (fromAcct.getBalance() >= 30) {
toAcct.deposit(30);
fromAcct.withdrawal(30);

}
e See SynchronizedIncrementTest.java

institute for

15-214 toad 6 sorua

The java.util.concurrent package

e Interfaces and concrete thread-safe data

structure implementations
= ConcurrentHashMap
= BlockingQueue
e ArrayBlockingQueue
e SynchronousQueue
= CopyOnWriteArraylList

e Other tools for high-performance multi-threading
= ThreadPools and Executor services
= Locks and Latches

= institute for
15-214 toad 7 SO

java.util.concurrent.BlockingQueue

e Implements java.util.Queue<E>

e java.util.concurrent.ArrayBlockingQueue
= put blocks if the queue is full
= poll blocks if the queue is empty
« Internally uses wait/notify

e java.util.concurrent.SynchronousQueue
= Each put directly waits for a corresponding poll
= Internally uses wait/notify

15-214 toad 8 S o

RESEARCH

Today: Concurrency, part 3

e The backstory
= Motivation, goals, problems, ...

e Basic concurrency in Java
« Explicit synchronization with threads and shared memory
= More concurrency problems

e Higher-level abstractions for concurrency
e Data structures
e Higher-level languages and frameworks
e Hybrid approaches

e In the trenches of parallelism
= Using the Java concurrency framework
= Prefix-sums implementation

15-214 toad 9 S o

RESEARCH

Concurrency at the language level

e Consider:
int sum = 0;
Iterator i = coll.iterator();
while (i.hasNext()) {
sum += i.next();

}
e In python:
sum = 0;

for item in coll:
sum += item

15-214 toad

10

institute for
SOFTWARE
RESEARCH

The Java happens-before relation

e Java guarantees a transitive, consistent order for

SOme Mmemory aCCesses

= Within a thread, one action happens-before another
action based on the usual program execution order

= Release of a lock happens-before acquisition of the same
lock

= Object.notify happens-before Object.wait returns

 Thread.start happens-before any action of the started
thread

= Write to a volatile field happens-before any subsequent
read of the same field

e Assures ordering of reads and writes

= A race condition can occur when reads and writes are not
ordered by the happens-before relation

15-214 toad o s

RESEARCH

Parallel quicksort in Nesl|

function quicksort(a) =
if (#a < 2) then a

else
let pivot = a[#a/2];
lesser = {e in al| e < pivot};
equal = {e in a| e == pivot};
greater = {e in a| e > pivot};
result = {quicksort(v): v in [lesser,greater]};

in result[@] ++ equal ++ result[1l];

e Operations in {} occur in parallel

e What is the total work? What is the depth?
« What assumptions do you have to make?

= institute for
15-214 toad 12 sorminse

Prefix sums (a.k.a. inclusive scan)

e Goal: given array x[0..n-1], compute array of the

sum of each prefix of x
[sum(x[0..0]),
sum(x[0..1]),
sum(x[0..2]),

;um(x:emn-l])]
ee.g., x = [13, 9, -4, 19, -6, 2, 6, 3]
prefix sums: [13, 22, 18, 37, 31, 33, 39, 42]

= institute for
15-214 toad 13 sorTinge

Parallel prefix sums

e Intuition: If we have already computed the partial
sums sum(x[0..3]) and sum(x[4..7]), then we can
easily compute sum(x[0..7])

ee.g., x = (13, 9, -4, 19, -6, 2, 6, 3]

f

e institute for
15-214 toad 14 sor s

Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[13, 9, -4, 19, -6, 2, 6, 3]
(13, 22, -4, 15, -6, -4, 6, 9]

te for

15-214 toad 15 sorTva

Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[13, 9, -4, 19,
[13, 22, -4, 15,
[13, 22] _41 37’

15-214 toad

-6, 2, 6, 3]
-6, -4, 6, 9]
—6, _4[6[5]

f

-
institute for
SOFTWARE
16 RESEARCH

Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[13, o, -4, 19, -6, 2, 6, 3]
N NJ N N
(13, 22, -4, 15, -6, -4, 6, 91
\\\\\\\\\31 \\\\\\\\\31

(13, 22, -4, 37, -6, -4, 6, 51
|

[13, 22, -4, 37, -6, -4, 6, 42]

te for

15-214 toad 17 sorTva

Parallel prefix sums algorithm, unwinding

e Now unwinds to calculate the other sums

(13, 22, -4, 37, -6, -4, 6,
(13, 22, -4, 37, -6, 33, 6,

bit
SOFTWARE

15-214 toad 18 SO

RESEARCH

421

421

Parallel prefix sums algorithm, unwinding

e Now unwinds to calculate the other sums

(13, 22, -4, 37, -6, -4, 6, 42]
(13, 22, -4, 37, -6, 33, 6, 42]

NN N N

(13, 22, 18, 37, 31, 33, 39, 42]

e Recall, we started with:
[13, 9, -4, 19, -6, 2, 6, 3]

te for

15-214 toad 19 sorTinse

Parallel prefix sums

e Intuition: If we have already computed the partial
sums sum(x[0..3]) and sum(x[4..7]), then we can
easily compute sum(x[0..7])

ee.g., x = (13, 9, -4, 19, -6, 2, 6, 3]

e Pseudocode:
prefix_sums(x):
for d in @ to (lgn)-1: // d 1is depth
parallelfor i in 29-1 to n-1, by 29:
x[i+29] = x[i] + x[i+29]

for d in (lgn)-1 to O:
parallelfor i in 29-1 to n-1-29, by 29+1:
if (i-29 >= 09):
x[i] = x[i] + x[i-29]

15-214 toad 20 sorTiAgt

Parallel prefix sums algorithm, in code

e An iterative Java-esque implementation:
void computePrefixSums(long[] a) {
for (int gap = 1; gap < a.length; gap *= 2) {
parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];
}
}
for (int gap = a.length/2; gap > 0; gap /= 2) {
parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= @) ? a[i-gap] : ©);
}
}

15-214 toad o s

RESEARCH

Parallel prefix sums algorithm, in code

e A recursive Java-esque implementation:
void computePrefixSumsRecursive(long[] a, int gap) {
if (2*gap - 1 >= a.length) {
return;

}

parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];

}

computePrefixSumsRecursive(a, gap*2);

parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= @) ? a[i-gap] : ©);
}
}

= Institute fr_)r
15-214 toad 22 sorTiAgt

Parallel prefix sums algorithm

e How good is this?

f

= institute for
15-214 toad 23 sor s

Parallel prefix sums algorithm

e How good is this?
= Work: O(n)
= Depth: O(lg n)

e See Main.java,
PrefixSumsNonconcurrentParallelWorkImpl.java

f

e institute for
15-214 toad 24 sor s

Goal: parallelize the PrefixSums implementation

e Specifically, parallelize the parallelizable loops
parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
al[i+gap] = a[i] + a[i+gap];
}

e Partition into multiple segments, run in different
threads
for(int i=left+gap-1; i+gap<right; i += 2*gap) {
al[i+gap] = a[i] + a[i+gap];
}

= institute for
15-214 toad 25 sorrvss

Recall the Java primitive concurrency tools

e The java.lang.Runnable interface
void run();

e The java.lang.Thread class
Thread(Runnable r);

void start();

static void sleep(long millis);
void join();

boolean isAlive();

static Thread currentThread();

15-214 toad 26 S o

RESEARCH

Recall the Java primitive concurrency tools

e The java.lang.Runnable interface
void run();

e The java.lang.Thread class
Thread(Runnable r);

void start();

static void sleep(long millis);
void join();

boolean isAlive();

static Thread currentThread();

e The java.util.concurrent.Callable<V> interface

= Like java.lang.Runnable but can return a value
V call();

15-214 toad 27 e b

RESEARCH

A framework for asynchronous computation

e The java.util.concurrent.Future<V> interface
Vv get();
V get(long timeout, TimeUnit unit);
boolean isDone();

boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();

15-214 toad 28 S o

RESEARCH

A framework for asynchronous computation

e The java.util.concurrent.Future<V> interface
Vv get();
V get(long timeout, TimeUnit unit);
boolean isDone();

boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();

e The java.util.concurrent.ExecutorService interface

Future submit(Runnable task);

Future<V> submit(Callable<V> task);

List<Future<V>> invokeAll(Collection<Callable<V>> tasks);
Future<V> invokeAny(Collection<Callable<V>> tasks);

15-214 toad 29 S o

RESEARCH

Executors for common computational patterns

e From the java.util.concurrent.Executors class
static ExecutorService newSingleThreadExecutor();
static ExecutorService newFixedThreadPool(int n);
static ExecutorService newCachedThreadPool();
static ExecutorService newScheduledThreadPool(int n);

e Aside: see NetworkServer.java (later)

15-214 toad 30 S o

RESEARCH

Fork/Join: another common computational pattern

e In a long computation:
= Fork a thread (or more) to do some work
= Join the thread(s) to obtain the result of the work

= Institute for
15-214 toad 31 sorTva

Fork/Join: another common computational pattern

e In a long computation:
= Fork a thread (or more) to do some work
= Join the thread(s) to obtain the result of the work

e The java.util.concurrent.ForkJoinPool class
« Implements ExecutorService
= Executes java.util.concurrent.ForkJoinTask<V> or
java.util.concurrent.RecursiveTask<V> or
java.util.concurrent.RecursiveAction

15-214 toad 32 S o

RESEARCH

The RecursiveAction abstract class

public class MyActionFoo extends RecursiveAction {

public MyActionFoo(..) {
store the data fields we need

¥

@Override
public void compute() {
if (the task is small) {
do the work here;
return;

¥

invokeAll(new MyActionFoo(..),
new MyActionFoo(..),

)

15-214 toad

// smaller
// tasks

/] .

ute f

-
Instit or
33 I S r SOFTWARE
RESEARCH

A ForkdJoin example

e See PrefixSumsParallelImpl.java,
PrefixSumsParallelLoop1.java, and
PrefixSumsParallelLoop2.java

e See the processor go, go go!

15-214 toad

34

institute

bt for
SOFTWARE
RESEARCH

Parallel prefix sums algorithm

e How good is this?
« Work: O(n)
= Depth: O(lg n)

e See PrefixSumsSequentiallmpl.java

15-214 toad

Parallel prefix sums algorithm

e How good is this?
= Work: O(n)
= Depth: O(lg n)

e See PrefixSumsSequentiallmpl.java
= n-1 additions
= Memory access is sequential

e For PrefixSumsNonsequentiallmpl.java

= About 2n useful additions, plus extra additions for the loop
indexes
= Memory access is non-sequential

e The punchline: Constants matter.

Pap—— it -
15-214 toad 36 sorua

Next week...

e Introduction to distributed systems

= institute for
15-214 toad 37 sorTunte

RESEARCH

In-class example for parallel prefix sums

(7, 5, 8, -36, 17, 2, 21, 18]

f

= institute for
15-214 toad 38 sor s

