
	

	

	

Fall	
 2014	

School of
Computer Science

© 2012-14 C Kästner, C Garrod, J Aldrich, and W Scherlis

Principles of Software Construction:
Objects, Design, and Concurrency

The Perils of Concurrency, Part 2
Can't live with it.
Can't live without it.

 Charlie Garrod Jonathan Aldrich

toad 2 15-­‐214

Administrivia

• Midterm exam returned at end of class today

• Homework 5a due 8:59 a.m. tomorrow morning

• Do you want to be a Software Engineer?

toad 3 15-­‐214

The foundations of the Software Engineering minor

• Core computer science fundamentals

• Building good software

• Organizing a software project
§ Development teams, customers, and users
§  Process, requirements, estimation, management, and
methods

• The larger context of software
§ Business, society, policy

• Engineering experience

• Communication skills
§ Written and oral

toad 4 15-­‐214

SE minor requirements

• Prerequisite: 15-214

• Two core courses
§ 15-313 Foundations of SE (fall semesters)
§ 15-413 SE Practicum (spring semesters)

• Three electives
§  Technical
§ Engineering
§ Business or policy

• Software engineering internship + reflection
§ 8+ weeks in an industrial setting, then
§ 17-413

toad 5 15-­‐214

To apply to be a Software Engineering minor

• Email aldrich@cs.cmu.edu and
clegoues@cs.cmu.edu
§  Your name, Andrew ID, class year, QPA, and minor/majors
§ Why you want to be a SE minor
§  Proposed schedule of coursework

• Spring applications due by Friday, 7 Nov 2014
§ Only 15 SE minors accepted per graduating class

• More information at:
§ http://isri.cmu.edu/education/undergrad/

toad 6 15-­‐214

Key concepts from last Tuesday

toad 7 15-­‐214

Power requirements of a CPU

• Approx.: Capacitance * Voltage2 * Frequency

• To increase performance:
§ More transistors, thinner wires: more C

• More power leakage: increase V
§  Increase clock frequency F

• Change electrical state faster: increase V

• Problem: Power requirements are super-linear to
performance
§ Heat output is proportional to power input

toad 8 15-­‐214

Problems of concurrency

• Realizing the potential
§ Keeping all threads busy doing useful work

• Delivering the right language abstractions
§ How do programmers think about concurrency?
§ Aside: parallelism vs. concurrency

• Non-determinism
§ Repeating the same input can yield different results

toad 9 15-­‐214

Atomicity

• An action is atomic if it is indivisible
§ Effectively, it happens all at once

• No effects of the action are visible until it is complete
• No other actions have an effect during the action

• In Java, integer increment is not atomic

i++;!

1. Load data from variable i!

2. Increment data by 1!

3. Store data to variable i!

is actually

toad 10 15-­‐214

Race conditions in real life

• E.g., check-then-act on the highway

R L C

toad 11 15-­‐214

Race conditions in your real life

• E.g., check-then-act in simple code

§ See StringConverter.java, Getter.java, Setter.java

public class StringConverter { !
 private Object o;!
 public void set(Object o) {!
 this.o = o;!
 }!
 public String get() {!
 if (o == null) return "null";!
 return o.toString();!
 }!
}!

toad 12 15-­‐214

Some actions are atomic

• What are the possible values for ans?

Thread A:
ans = i;!

Thread B:
int i = 7;!

Precondition:
i = 42;!

toad 13 15-­‐214

Some actions are atomic

• What are the possible values for ans?

Thread A:
ans = i;!

Thread B:

00000…00000111 i:!

00000…00101010 i:!

…

int i = 7;!
Precondition:

i = 42;!

toad 14 15-­‐214

Some actions are atomic

• What are the possible values for ans?

• In Java:
§ Reading an int variable is atomic
§ Writing an int variable is atomic

§  Thankfully, is not possible

00000…00000111 i:!

00000…00101010 i:!

…

00000…00101111 ans:!

Thread A:
ans = i;!

Thread B:
int i = 7;!

Precondition:
i = 42;!

toad 15 15-­‐214

Bad news: some simple actions are not atomic

• Consider a single 64-bit long value

§ Concurrently:
• Thread A writing high bits and low bits
• Thread B reading high bits and low bits

high bits low bits

Thread A:
ans = i;!

Thread B:
long i = 10000000000;!

Precondition:
i = 42;!

01001…00000000 ans:!

00000…00101010 ans:!

01001…00101010 ans:!

(10000000000)

(42)

(10000000042 or …)

toad 16 15-­‐214

Primitive concurrency control in Java

• Each Java object has an associated intrinsic lock
§ All locks are initially unowned
§ Each lock is exclusive: it can be owned by at most one
thread at a time

• The synchronized keyword forces the current
thread to obtain an object's intrinsic lock
§ E.g.,
 synchronized void foo() { … } // locks "this"!
!
 !synchronized(fromAcct) {!
! ! if (fromAcct.getBalance() >= 30) {!
 toAcct.deposit(30);!
 fromAcct.withdrawal(30);!
 }!
 }

• See SynchronizedIncrementTest.java

toad 17 15-­‐214

Primitive concurrency control in Java

• java.lang.Object allows some coordination via
the intrinsic lock:
void wait();!
void wait(long timeout);!
void wait(long timeout, int nanos);!
void notify();!
void notifyAll();!

• See Blocker.java, Notifier.java, NotifyExample.java

toad 18 15-­‐214

Primitive concurrency control in Java

• Each lock can be owned by only one thread at a
time

• Locks are re-entrant: If a thread owns a lock, it
can lock the lock multiple times

• A thread can own multiple locks
synchronized(lock1) {!
 // do stuff that requires lock1!
!
 synchronized(lock2) {!
 // do stuff that requires both locks!
 }!
!
 // …!
}

toad 19 15-­‐214

Another concurrency problem: deadlock

• E.g., Alice and Bob, unaware of each other, both
need file A and network connection B
§ Alice gets lock for file A
§ Bob gets lock for network connection B
§ Alice tries to get lock for network connection B, and waits…
§ Bob tries to get lock for file A, and waits…

• See Counter.java and DeadlockExample.java

toad 20 15-­‐214

Dealing with deadlock (abstractly, not with Java)

• Detect deadlock
§ Statically?
§ Dynamically at run time?

• Avoid deadlock

• Alternative approaches
§ Automatic restarts
§ Optimistic concurrency control

toad 21 15-­‐214

Detecting deadlock with the waits-for graph

• The waits-for graph represents dependencies
between threads
§ Each node in the graph represents a thread
§ A directed edge T1->T2 represents that thread T1 is
waiting for a lock that T2 owns

• Deadlock has occurred iff the waits-for graph
contains a cycle

a
b

c

d

f

e

h

g

i

toad 22 15-­‐214

Deadlock avoidance algorithms

• Prevent deadlock instead of detecting it
§ E.g., impose total order on all locks, require locks
acquisition to satisfy that order
• Thread:
 acquire(lock1)

 acquire(lock2)
 acquire(lock9)
 acquire(lock42) // now can't acquire lock30, etc…

toad 23 15-­‐214

Avoiding deadlock with restarts

• One option: If thread needs a lock out of order,
restart the thread
§ Get the new lock in order this time

• Another option: Arbitrarily kill and restart long-
running threads

toad 24 15-­‐214

Avoiding deadlock with restarts

• One option: If thread needs a lock out of order,
restart the thread
§ Get the new lock in order this time

• Another option: Arbitrarily kill and restart long-
running threads

• Optimistic concurrency control
§  e.g., with a copy-on-write system
§ Don't lock, just detect conflicts later

• Restart a thread if a conflict occurs

toad 25 15-­‐214

Another concurrency problem: livelock

• In systems involving restarts, livelock can occur
§  Lack of progress due to repeated restarts

• Starvation: when some task(s) is(are) repeatedly
restarted because of other tasks

toad 26 15-­‐214

Concurrency control in Java

• Using primitive synchronization, you are
responsible for correctness:
§ Avoiding race conditions
§  Progress (avoiding deadlock)

• Java provides tools to help:
§  volatile fields
§  java.util.concurrent.atomic!
§  java.util.concurrent!

toad 27 15-­‐214

The power of immutability

• Recall: Data is mutable if it can change over time.
Otherwise it is immutable.
§  Primitive data declared as final is always immutable

• After immutable data is initialized, it is immune
from race conditions

toad 28 15-­‐214

The Java happens-before relation

• Java guarantees a transitive, consistent order for
some memory accesses
§ Within a thread, one action happens-before another
action based on the usual program execution order

§ Release of a lock happens-before acquisition of the same
lock

§  Object.notify happens-before Object.wait returns
§  Thread.start happens-before any action of the started
thread

§ Write to a volatile field happens-before any subsequent
read of the same field

§ …

• Assures ordering of reads and writes
§ A race condition can occur when reads and writes are not
ordered by the happens-before relation

toad 29 15-­‐214

The java.util.concurrent.atomic package

• Concrete classes supporting atomic operations
§  AtomicInteger!

!int get();!
!void set(int newValue);!
!int getAndSet(int newValue);!
!int getAndAdd(int delta);!
!boolean compareAndSet(int expectedValue, !
! ! ! ! int newValue);!
!
!…!

§  AtomicIntegerArray!
§  AtomicBoolean!
§  AtomicLong!
§  …!

toad 30 15-­‐214

The java.util.concurrent package

• Interfaces and concrete thread-safe data
structure implementations
§  ConcurrentHashMap!
§  BlockingQueue!

• ArrayBlockingQueue!
• SynchronousQueue!

§  CopyOnWriteArrayList!
§  …

• Other tools for high-performance multi-threading
§  ThreadPools and Executor services!
§  Locks and Latches

toad 31 15-­‐214

java.util.concurrent.ConcurrentHashMap!

• Implements java.util.Map<K,V>!
§ High concurrency lock striping

• Internally uses multiple locks, each dedicated to a
region of the hash table

• Locks just the part of the table you actually use
• You use the ConcurrentHashMap like any other map…

Locks

Hashtable

toad 32 15-­‐214

java.util.concurrent.BlockingQueue!

• Implements java.util.Queue<E>!

• java.util.concurrent.SynchronousQueue
§ Each put directly waits for a corresponding poll!
§  Internally uses wait/notify!

• java.util.concurrent.ArrayBlockingQueue!
§  put blocks if the queue is full
§  poll blocks if the queue is empty
§  Internally uses wait/notify

toad 33 15-­‐214

The CopyOnWriteArrayList!

• Implements java.util.List<E>!

• All writes to the list copy the array storing the list
elements

