Object§ Analysis

B e
A 3 / o
LR N, e
) - T

Principles of Software Construction:
Objects, Design, and Concurrency

Threa_ds

The Perils of Concurrency

Can't live with it
Can't live without it.

Fall 2014

Charlie Garrod Jonathan Aldrich

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

© 2012-14 C Kastner, C Garrod, J Aldrich, and W Scherlis

Administrivia

e Homework 4c due tonight
« Remember to add an ant run target

e 2"d midterm exam Thursday
= Review session tonight, 5-7 p.m. in PH 100

e Homework 5 released by tomorrow
= Must select partner(s) by Thursday (30 Oct)
= 5a due next Wednesday morning (05 Nov)
= 5b due the following Thursday (13 Nov)
= 5¢ due the following Thursday (20 Nov)

(((((((((
UUUUUU

nnnnnnnnnnnnn
UUUUUU

* 500
’ Apr May Jun Jul Aug Sep Oct Nov Jan Feb Mar
Date
Refresh thomyorke ==AndroidPolice ~ Fazrulz
- SOFTWARE
15-214 toad 2 M RESEARCH

Key concepts from last Thursday

15-214 toad

API. Application Programming Interface

e An API defines the boundary between

components/modules in a programmatic system

‘ Packages |

SO 1AL
ibm.rmi.
ibm.rmi.
HiDI S
ibm.rmi.
ibm.rmi.
ibm.ejs.

at com.
at com.
at com.
at com.
at com.
at com.
at com.
at com.
at com.
at com.
at com.

io.ValueHandlerImpl.
iiop.CDRInputStream.
io.ValueHandlerImpl.
io.ValueHandlerImpl.
io.ValueHandlerImpl.
iiop.CDRInputStream.

o c

1 httos://developer.aithub.com/v3/repnos/

org.omg.CORBA.MARSHAL: com.ibm.ws.pmi.server.DataDescriptor; IllegalAccessException minor code: 4942F23E
readValue (ValueHandlerImpl.java:199)
read value (CDRInputStream.java:1429)

Feach S reyiiVe SRSHEREREE <?xml version="1.0" encoding="UTF-8"?>

readValuelnterna
readValue (ValueH

1(Value
andlerI

read_value (CDRInputStre <plugin>
sm.beans. EJSRemoteStatelessPmiService Tie.

ibm.CORBA.iiop.ExtendedServerDelegate.dispatch (Exte
ibm.CORBA.iiop.ORB.process (ORB.java:2377)
ibm.CORBA.iiop.OrbWorker.run (OrbWorker.java:186)

ibm.ejs.oa.pool.ThreadPool$PooledWorker.run (ThreadP

<extension

<?eclipse version="3.2"?>

comj

el

point="gra.eclipse.ui.editors" >

<editor

at com.ibm.ws.util.CachedThread.run (ThreadPool.java:137)

int

baolean

Object[]
E[]

S>>t >> >

size();
isEmpty();
Iterator<E> iterator();
toArray()
toArrayv(E[] a);

AbstractCayoutCache NodeDimensions
AbstractList

AbstractListModel

AbstractMap

AbstractMap.SimpleEntry
AbstractMap.SimplelmmutableEntry
AbstractMarshallerimpl
AbstractMethodError

AbstractOwnableSvnchronizer

15-214

java.awt.im
java.awt.im.spi

java.awt.image
java.awt.image.renderable

iava awt nrint

direction

List user repositori

List public

GET /usel|

Parameters

Name

type

sort

Dravidae alaseas and inta

toad

string (
«

extensions="
icon="icons/sample.gif*

n

name="Sample XML Editor" -

yal

contributorClass="ora.eclipse.ui.text

editor.BasicTextEditorActionContributer:

repositories for tl

or"

rs/:username/rept

class="myveditor.editors.XMLEditor"

id="mveditor.editors.XMLEditor"> ‘™

</editor>
Type

string (

string (

SortedMap<K, < /plugin>

</extension>

4

orti
1ty
oce
dic

institute for
i S SOFTWARE
RESEARCH

An API design process

e Define the scope of the API
= Collect use-case stories, define requirements
= Be skeptical
e Distinguish true requirements from so-called solutions
e "When in doubt, leave it out.”

e Draft a specification, gather feedback, revise, and

repeat
« Keep it simple, short

e Code early, code often
= Write client code before you implement the API

institute for

15-214 toad 5 sorua

Key design principle: Information hiding

e "WWhen in doubt, leave it out."

f

= Institute for
15-214 toad 6 sorTva

Minimize mutability

e Immutable objects are:
= Inherently thread-safe
= Freely shared without concern for side effects
= Convenient building blocks for other objects
= Can share internal implementation among instances
e See java.lang.String

e Mutable objects require careful management of

visibility and side effects
= €.g. Component.getSize() returns a mutable Dimension

e Document mutability
= Carefully describe state space

15-214 toad - g

RESEARCH

The four course themes

» Threads and concurrency

= Concurrency is a crucial system abstraction

= E.g., background computing while responding to users

= Concurrency is necessary for performance

= Multicore processors and distributed computing

= Our focus: application-level concurrency

= Cf. functional parallelism (150, 210) and systems concurrency (213)

e Object-oriented programming
= For flexible designs and reusable code
= A primary paradigm in industry - basis for modern frameworks
= Focus on Java - used in industry, some upper-division courses

e Analysis and modeling

= Practical specification techniques and verification tools
= Address challenges of threading, correct library usage, etc.

* Design
= Proposing and evaluating alternatives
= Modularity, information hiding, and planning for change
= Patterns: well-known solutions to design problems

15-214 toad 8 S o

RESEARCH

Today: Concurrency, part 1

e The backstory
= Motivation, goals, problems, ...

e Basic concurrency in Java
= Synchronization

e Coming soon (but not today):
« Higher-level abstractions for concurrency
e Data structures
e Computational frameworks

15-214 toad

9

institute for
SOFTWARE
RESEARCH

Learning goals

e Understand concurrency as a source of complexity
in software

e Know common abstractions for parallelism and

concurrency, and the trade-offs among them
= Explicit concurrency

e Write thread-safe concurrent programs in Java

e Recognize data race conditions

« Know common thread-safe data structures, including
high-level details of their implementation

= Understand trade-offs between mutable and immutable
data structures

« Know common uses of concurrency in software design

15-214 toad 10 S o

RESEARCH

Processor speeds over time

Intel Processor Clock Speed (MHz)

Historical CPU Clock Rates

10000
Pentium 4 Prescott
Core 2 Extreme
1000
PentiumIil
Celeron Multicore Crisis
. isHere!
Pentium
100
80486
80386
10
80286
8080
1 T T T T T T T
1968 1973 1979 1984 1990 1995 2001 2006
0.1
IC ¥ Ra for R] P
/./.
1996 198e 2000
15-214 toad

/ ’_.&.\. e

20086 2008

institute tor
I S SOFTWARE
i RESEARCH

Power requirements of a CPU

e Approx.: Capacitance * Voltage? * Frequency

e To increase performance:
= More transistors, thinner wires: more C
e More power leakage: increase V
= Increase clock frequency F
e Change electrical state faster: increase V

e Problem: Power requirements are super-linear to

performance
= Heat output is proportional to power input

15-214 toad 12 e b

RESEARCH

One option: fix the symptom

e Dissipate the heat

o institute for
15-214 toad 13 SOFTWARE

RESEARCH

One option: fix the symptom

e Better: Dissipate the heat with liquid nitrogen

= Overclocking by Tom's Hardware's 5 GHz project

—
http://www.tomshardware.com/reviews/5-ghz-project,731-8.html
15-214 toad 14

L]
institute for
l S SOFTWARE
RESEARCH

Another option: fix the underlying problem

e Reduce heat by limiting power input
= Adding processors increases power requirements linearly
with performance
e Reduce power requirement by reducing the frequency
and voltage
e Problem: requires concurrent processing

= Institute for
15-214 toad 15 sormue

Aside: Three sources of disruptive innovation

e Growth crosses some threshold
= e.g., Concurrency: ability to add transistors exceeded
ability to dissipate heat

e Colliding growth curves

= Rapid design change forced by jump from one curve onto
another

e Network effects
« Amplification of small triggers leads to rapid change

= Institute for
15-214 toad 16 sorTva

Aside: The threshold for distributed computing

e Too big for a single computer?
= Forces use of distributed architecture
e Shifts responsibility for reliability from hardware to
software
e Allows you to buy larger cluster of cheap flaky

machines instead of expensive slightly-less-flaky
machines

—Revolutionizes data center design

= Institute tor
15-214 toad 17 sors

Aside: Colliding growth curves

e From http://www.genome.gov/sequencingcosts/

Cost per Genome

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

15-214 toad 18 o

RESEARCH

Aside: Network effects

e Metcalfe's rule: network value grows

quadratically in the number of nodes
= a.k.a. Why my mom has a Facebook account
= n(n-1)/2 potential connections for n nodes

= Creates a strong imperative to merge networks
e Communication standards, USB, media formats, ...

15-214 toad 19 S o

RESEARCH

Concurrency

e Simply: doing more than one thing at a time
= In software: more than one point of control
e Threads, processes

e Resources simultaneously accessed by more than
one thread or process

= institute for
15-214 toad 20 sormvase

Concurrency then and now

e In the past multi-threading was just a

convenient abstraction
= GUI design: event threads
= Server design: isolate each client's work
« Workflow design: producers and consumers

e Now: must use concurrency for
scalability and performance

15-214 toad

Image Name |J Threads | Q

IPSSVC.EXE 86
svchost.exe 82
System 30 (
afsd_service.exe 51
Rtvscan.exe 47 |
winlogon.exe 39
explorer.exe 20
ccEvtMar.exe 19 (
svchost.exe 18
Isass.exe 18
tabtip.exe 17
svchost.exe 17
firefox.exe 16
services.exe 16 (
csrss.exe 13 (
tcserver.exe 10 (
KeyboardSurroga... 10
spoolsv.exe 10
tvt_reg_monitor_... 10
svchost.exe 10
POWERPNT.EXE 9 (
taskmar.exe 8
VPTray.exe 8
524EvMon.exe 8 (
EvtEng.exe 3
emacs.exe 7
tvtsched.exe 7
ibmpmsvc.exe 7
AcroRd32.exe 7
vpngui.exe 6 (
cvpnd.exe 6
AluSchedulerSve.... 6
ccSetMar.exe 6 (
svchost.exe 6
wisptis.exe 5 (
alg.exe 5
TPHKMGR.exe 5 (
ASRSVC.exe 5 (

institute tor
SOFTWARE
2 1 RESEARCH

Problems of concurrency

e Realizing the potential
= Keeping all threads busy doing useful work

e Delivering the right language abstractions
= How do programmers think about concurrency?
= Aside: parallelism vs. concurrency

e Non-determinism
= Repeating the same input can yield different results

= Institute for
15-214 toad 22 sorTva

Realizing the potential

A A A A

> > > \ >
concurrency

time

e Possible metrics of success
= Breadth: extent of simultaneous activity
e width of the shape
=« Depth (or span): length of longest computation
e height of the shape
= Work: total effort required
e area of the shape

e Typical goals in parallel algorithm design?

= Institute For
15-214 toad 23 sorTiAgt

Amdahl’s law: How good can the depth get?

e [deal parallelism with N processors:
- Speedup = N Speedup by Amdahl's Law (P=1024)

1,200.00

e In reality, some work is always
inherently sequential

- Let F be the portion of the total S
task time that is inherently 60000 -
sequential |

1 200.00

*Speedup = LTI BN

-3 -3
6 ¢ 8
o o o
Serial Percent

0.00%
0.05%
0.15% +
0.25% 4
0.65% 4+
0.75% 4
0.85% 4
0.95% 4
1.05%

= Suppose F = 10%. What is the max speedup? (you choose N)

15-214 toad 24 e b

RESEARCH

Amdahl’s law: How good can the depth get?

e [deal parallelism with N processors:
- Speedup = N Speedup by Amdahl's Law (P=1024)

1,200.00

e In reality, some work is always
inherently sequential

= Let F be the portion of the total e

task time that is inherently 60000 -

sequential

J‘ 200.00

*Speedup = TIA_F)N

065% 4
0.75% 4
0.85% 4
0.95% 4
1.05%

-3 -3
6 ¢ 8
o o o
Serial Percent

0.00%
0.05%
0.15% 4
0.25% 4

= Suppose F = 10%. What is the max speedup? (you choose N)
e As N approaches co, 1/(0.1 + 0.9/N) approaches 10.

15-214 toad 25 S o

RESEARCH

Using Amdahl’s law as a design guide

20.00

- , | AT
e For a given algorithm, suppose .. [s orion || ‘
- N processors - 4 =% 1
- Problem size M AL
- Sequential portion F e
T
e An obvious question: I —

= What happens to speedup as N scales?

e A less obvious, important question:
« What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore’s
Law; from now on, it will be driven by Amdahl’s Law."
— Doron Rajwan, Intel Corp

= institute for
15-214 toad 26 sormvase

Abstractions of concurrency

e Processes
= Execution environment is isolated
e Processor, in-memory state, files, ...
« Inter-process communication typically slow, via message
passing
e Sockets, pipes, ...

e Threads

= Execution environment is shared
= Inter-thread communication typically fast, via shared state

Process Process
Thread Thread Thread Thread

El Stte]

15-214 toad - s

RESEARCH

Aside: Abstractions of concurrency

e What you see: Process
= State is all shared Thread Thread

Stte]

e A (slightly) more accurate view of the hardware:
= Separate state stored in

registers and caches Process
= Shared state stored in
caches and memory Thread Thread

f

= institute for
15-214 toad 28 sor s

Basic concurrency in Java

e The java.lang.Runnable interface
void run();

e The java.lang.Thread class
Thread (Runnable r);

void start();

static void sleep(long millis);
void join();

boolean isAlive();

static Thread currentThread();

e See IncrementTest.java

15-214 toad 29 Sorviant

RESEARCH

Atomicity

e An action is atomic if it is indivisible
= Effectively, it happens all at once
e No effects of the action are visible until it is complete
e No other actions have an effect during the action

e In Java, integer increment is not atomic

1. Load data from variable i
? is actually 2. Increment data by 1

3. Store data to variable i

al=rr

o institute for
15-214 toad 30 sorua

One concurrency problem: race conditions

e A race condition is when multiple threads access
shared data and unexpected results occur
depending on the order of their actions

e E.g., from IncrementTest.java:
= Suppose classbData starts with the value 41.:

Thread A: One possible interleaving of actions:
classData++; 1A. Load data(41) from classData
Thread B: 1B. Load data(41) from classData
classData++; 2A. Increment data(41) by 1 -> 42

2B. Increment data(41) by 1 -> 42
3A. Store data(42) to classbData
3B. Store data(42) to classbData

= institute for
15-214 toad 31 sormvase

Race conditions in real life

e E.g., check-then-act on the highway

15-214 toad 32

Race conditions in real life

e E.g., check-then-act at the bank
= The "debit-credit problem"”

Alice, Bob, Bill, and the Bank

e A. Alice to pay Bob $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bob
3. Take $30 from Alice

o B. Alice to pay Bill $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bill
3. Take $30 from Alice

o If Alice starts with $40, can
Bob and Bill both get $30?

= institute for
15-214 toad 33 sorua

Race conditions in real life

e E.g., check-then-act at the bank
= The "debit-credit problem"”

Alice, Bob, Bill, and the Bank

e A. Alice to pay Bob $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bob
3. Take $30 from Alice

o B. Alice to pay Bill $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bill
3. Take $30 from Alice

w>wm > >
WWN RN~

o If Alice starts with $40, can
Bob and Bill both get $30?

o institute for
15-214 toad 34 SOFTWARE

RESEARCH

Race conditions in your real life

e E.g., check-then-act in simple code

public class StringConverter {
private Object o;
public void set(Object o) {
this.o = o;

}

public String get() {
if (o == null) return "null”;
return o.toString();

}

= See StringConverter.java, Getter.java, Setter.java

= institute for
15-214 toad 35 sormvase

Some actions are atomic
Precondition: Thread A: Thread B:

int i = 7; 1 = 42; ans = 1;

e What are the possible values for ans?

institute for

15-214 toad 36 sorua

Some actions are atomic
Precondition: Thread A: Thread B:

int 1 = 7; 1 = 42; ans = 1i;

e What are the possible values for ans?

i: 00000...00000111 |

= institute for
15-214 toad 37 sorTunte

RESEARCH

Some actions are atomic
Precondition: Thread A: Thread B:

int i = 7; 1 = 42; ans = 1;

e What are the possible values for ans?

i: 00000...00000111 |

iz

e In Java:
= Reading an int variable is atomic
= Writing an int variable is atomic

= Thankfully, ans:_ IS not possible

= institute for
15-214 toad 38 sormvase

Bad news: some simple actions are not atomic

e Consider a single 64-bit 1ong value

« Concurrently:

e Thread A writing high bits and low bits
e Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long i = 10000000000; i = 42; ans = 1i;
ans: (10000000000)
(42)

ans.:

(10000000042 or ...)

ans.:

= institute for
15-214 toad 39 sorTinge

Thursday:

e Midterm exam...

e Next week:
= Primitive concurrency control
« ...then higher abstractions

= institute for
15-214 toad 40 SOFTWARE

RESEARCH

