
	

	

	

Fall	
 2014	

School of
Computer Science

© 2012-14 C Kästner, C Garrod, J Aldrich, and W Scherlis

Principles of Software Construction:
Objects, Design, and Concurrency

The Perils of Concurrency
Can't live with it.
Can't live without it.

 Charlie Garrod Jonathan Aldrich

toad 2 15-­‐214

Administrivia

• Homework 4c due tonight
§ Remember to add an ant	
 run target

• 2nd midterm exam Thursday
§ Review session tonight, 5-7 p.m. in PH 100

• Homework 5 released by tomorrow
§ Must select partner(s) by Thursday (30 Oct)
§ 5a due next Wednesday morning (05 Nov)
§ 5b due the following Thursday (13 Nov)
§ 5c due the following Thursday (20 Nov)

toad 3 15-­‐214

Key concepts from last Thursday

toad 4 15-­‐214

API: Application Programming Interface

• An API defines the boundary between
components/modules in a programmatic system

toad 5 15-­‐214

An API design process

• Define the scope of the API
§ Collect use-case stories, define requirements
§ Be skeptical

• Distinguish true requirements from so-called solutions
• "When in doubt, leave it out."

• Draft a specification, gather feedback, revise, and
repeat
§ Keep it simple, short

• Code early, code often
§ Write client code before you implement the API

toad 6 15-­‐214

Key design principle: Information hiding

• "When in doubt, leave it out."

toad 7 15-­‐214

Minimize mutability

• Immutable objects are:
§  Inherently thread-safe
§  Freely shared without concern for side effects
§ Convenient building blocks for other objects
§ Can share internal implementation among instances

• See java.lang.String	

• Mutable objects require careful management of
visibility and side effects
§  e.g. Component.getSize() returns a mutable Dimension	

• Document mutability
§ Carefully describe state space

toad 8 15-­‐214

The four course themes

• Threads and concurrency
§  Concurrency is a crucial system abstraction
§  E.g., background computing while responding to users
§  Concurrency is necessary for performance
§  Multicore processors and distributed computing
§  Our focus: application-level concurrency
§  Cf. functional parallelism (150, 210) and systems concurrency (213)

• Object-oriented programming
§  For flexible designs and reusable code
§  A primary paradigm in industry – basis for modern frameworks
§  Focus on Java – used in industry, some upper-division courses

• Analysis and modeling
§  Practical specification techniques and verification tools
§  Address challenges of threading, correct library usage, etc.

• Design
§  Proposing and evaluating alternatives
§  Modularity, information hiding, and planning for change
§  Patterns: well-known solutions to design problems

toad 9 15-­‐214

Today: Concurrency, part 1

• The backstory
§ Motivation, goals, problems, …

• Basic concurrency in Java
§ Synchronization

• Coming soon (but not today):
§ Higher-level abstractions for concurrency

• Data structures
• Computational frameworks

toad 10 15-­‐214

Learning goals

• Understand concurrency as a source of complexity
in software

• Know common abstractions for parallelism and
concurrency, and the trade-offs among them
§ Explicit concurrency

• Write thread-safe concurrent programs in Java
• Recognize data race conditions

§ Know common thread-safe data structures, including
high-level details of their implementation

§ Understand trade-offs between mutable and immutable
data structures

§ Know common uses of concurrency in software design

toad 11 15-­‐214

Processor speeds over time

toad 12 15-­‐214

Power requirements of a CPU

• Approx.: Capacitance * Voltage2 * Frequency

• To increase performance:
§ More transistors, thinner wires: more C

• More power leakage: increase V
§  Increase clock frequency F

• Change electrical state faster: increase V

• Problem: Power requirements are super-linear to
performance
§ Heat output is proportional to power input

toad 13 15-­‐214

One option: fix the symptom

• Dissipate the heat

toad 14 15-­‐214

One option: fix the symptom

• Better: Dissipate the heat with liquid nitrogen
§ Overclocking by Tom's Hardware's 5 GHz project

http://www.tomshardware.com/reviews/5-ghz-project,731-8.html

toad 15 15-­‐214

Another option: fix the underlying problem

• Reduce heat by limiting power input
§ Adding processors increases power requirements linearly
with performance
• Reduce power requirement by reducing the frequency
and voltage

• Problem: requires concurrent processing

toad 16 15-­‐214

Aside: Three sources of disruptive innovation

• Growth crosses some threshold
§  e.g., Concurrency: ability to add transistors exceeded
ability to dissipate heat

• Colliding growth curves
§ Rapid design change forced by jump from one curve onto
another

• Network effects
§ Amplification of small triggers leads to rapid change

toad 17 15-­‐214

Aside: The threshold for distributed computing

• Too big for a single computer?
§  Forces use of distributed architecture

• Shifts responsibility for reliability from hardware to
software
• Allows you to buy larger cluster of cheap flaky
machines instead of expensive slightly-less-flaky
machines
– Revolutionizes data center design

toad 18 15-­‐214

Aside: Colliding growth curves

• From http://www.genome.gov/sequencingcosts/

toad 19 15-­‐214

Aside: Network effects

• Metcalfe's rule: network value grows
quadratically in the number of nodes
§  a.k.a. Why my mom has a Facebook account
§  n(n-1)/2 potential connections for n nodes

§ Creates a strong imperative to merge networks
• Communication standards, USB, media formats, ...

toad 20 15-­‐214

Concurrency

• Simply: doing more than one thing at a time
§  In software: more than one point of control

• Threads, processes

• Resources simultaneously accessed by more than
one thread or process

toad 21 15-­‐214

Concurrency then and now

• In the past multi-threading was just a
convenient abstraction
§ GUI design: event threads
§ Server design: isolate each client's work
§ Workflow design: producers and consumers

• Now: must use concurrency for
scalability and performance

toad 22 15-­‐214

Problems of concurrency

• Realizing the potential
§ Keeping all threads busy doing useful work

• Delivering the right language abstractions
§ How do programmers think about concurrency?
§ Aside: parallelism vs. concurrency

• Non-determinism
§ Repeating the same input can yield different results

toad 23 15-­‐214

Realizing the potential

• Possible metrics of success
§ Breadth: extent of simultaneous activity

• width of the shape
§ Depth (or span): length of longest computation

• height of the shape
§ Work: total effort required

• area of the shape

• Typical goals in parallel algorithm design?

tim
e

concurrency

toad 24 15-­‐214

Amdahl’s law: How good can the depth get?

• Ideal parallelism with N processors:
§ Speedup = N!

• In reality, some work is always
inherently sequential
§  Let F be the portion of the total
 task time that is inherently
 sequential

§ Speedup =

§ Suppose F = 10%. What is the max speedup? (you choose N)

toad 25 15-­‐214

Amdahl’s law: How good can the depth get?

• Ideal parallelism with N processors:
§ Speedup = N!

• In reality, some work is always
inherently sequential
§  Let F be the portion of the total
 task time that is inherently
 sequential

§ Speedup =

§ Suppose F = 10%. What is the max speedup? (you choose N)
• As N approaches ∞, 1/(0.1 + 0.9/N) approaches 10.

toad 26 15-­‐214

Using Amdahl’s law as a design guide

• For a given algorithm, suppose
§  N processors
§  Problem size M!
§ Sequential portion F!

• An obvious question:
§ What happens to speedup as N scales?

• A less obvious, important question:
§ What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore’s
Law; from now on, it will be driven by Amdahl’s Law."

 — Doron Rajwan, Intel Corp

toad 27 15-­‐214

Abstractions of concurrency

• Processes
§ Execution environment is isolated

• Processor, in-memory state, files, …
§  Inter-process communication typically slow, via message
passing
• Sockets, pipes, …

• Threads
§ Execution environment is shared
§  Inter-thread communication typically fast, via shared state

Process

Thread

State

Thread

Process

Thread

State

Thread

toad 28 15-­‐214

Aside: Abstractions of concurrency

• What you see:
§ State is all shared

• A (slightly) more accurate view of the hardware:
§ Separate state stored in
 registers and caches
§ Shared state stored in
 caches and memory

Process

Thread

State

Thread

Process

Thread

State1

Thread

State2

State

toad 29 15-­‐214

Basic concurrency in Java

• The java.lang.Runnable interface
void run();!

• The java.lang.Thread class
Thread(Runnable r);!
void start();!
static void sleep(long millis);!
void join();!
boolean isAlive();!
static Thread currentThread();

• See IncrementTest.java

toad 30 15-­‐214

Atomicity

• An action is atomic if it is indivisible
§ Effectively, it happens all at once

• No effects of the action are visible until it is complete
• No other actions have an effect during the action

• In Java, integer increment is not atomic

i++;!

1. Load data from variable i!

2. Increment data by 1!

3. Store data to variable i!

is actually

toad 31 15-­‐214

One concurrency problem: race conditions

• A race condition is when multiple threads access
shared data and unexpected results occur
depending on the order of their actions

• E.g., from IncrementTest.java:
§ Suppose classData starts with the value 41:

classData++;!
Thread A:

classData++;!
Thread B:

1A. Load data(41) from classData!

1B. Load data(41) from classData!

2A. Increment data(41) by 1 -> 42

2B. Increment data(41) by 1 -> 42!

3A. Store data(42) to classData!

3B. Store data(42) to classData!

One possible interleaving of actions:

toad 32 15-­‐214

Race conditions in real life

• E.g., check-then-act on the highway

R L C

toad 33 15-­‐214

Race conditions in real life

• E.g., check-then-act at the bank
§  The "debit-credit problem"

Alice, Bob, Bill, and the Bank

•  A. Alice to pay Bob $30
§  Bank actions

1.   Does Alice have $30 ?
2.   Give $30 to Bob
3.   Take $30 from Alice

•  B. Alice to pay Bill $30
§  Bank actions

1.   Does Alice have $30 ?
2.   Give $30 to Bill
3.   Take $30 from Alice

•  If Alice starts with $40, can
Bob and Bill both get $30?

toad 34 15-­‐214

Race conditions in real life

• E.g., check-then-act at the bank
§  The "debit-credit problem"

Alice, Bob, Bill, and the Bank

•  A. Alice to pay Bob $30
§  Bank actions

1.   Does Alice have $30 ?
2.   Give $30 to Bob
3.   Take $30 from Alice

•  B. Alice to pay Bill $30
§  Bank actions

1.   Does Alice have $30 ?
2.   Give $30 to Bill
3.   Take $30 from Alice

•  If Alice starts with $40, can
Bob and Bill both get $30?

A.1
A.2
B.1
B.2
A.3
B.3!

toad 35 15-­‐214

Race conditions in your real life

• E.g., check-then-act in simple code

§ See StringConverter.java, Getter.java, Setter.java

public class StringConverter { !
 private Object o;!
 public void set(Object o) {!
 this.o = o;!
 }!
 public String get() {!
 if (o == null) return "null";!
 return o.toString();!
 }!
}!

toad 36 15-­‐214

Some actions are atomic

• What are the possible values for ans?

Thread A:
ans = i;!

Thread B:
int i = 7;!

Precondition:
i = 42;!

toad 37 15-­‐214

Some actions are atomic

• What are the possible values for ans?

Thread A:
ans = i;!

Thread B:

00000…00000111 i:!

00000…00101010 i:!

…

int i = 7;!
Precondition:

i = 42;!

toad 38 15-­‐214

Some actions are atomic

• What are the possible values for ans?

• In Java:
§ Reading an int variable is atomic
§ Writing an int variable is atomic

§  Thankfully, is not possible

00000…00000111 i:!

00000…00101010 i:!

…

00000…00101111 ans:!

Thread A:
ans = i;!

Thread B:
int i = 7;!

Precondition:
i = 42;!

toad 39 15-­‐214

Bad news: some simple actions are not atomic

• Consider a single 64-bit long value

§ Concurrently:
• Thread A writing high bits and low bits
• Thread B reading high bits and low bits

high bits low bits

Thread A:
ans = i;!

Thread B:
long i = 10000000000;!

Precondition:
i = 42;!

01001…00000000 ans:!

00000…00101010 ans:!

01001…00101010 ans:!

(10000000000)

(42)

(10000000042 or …)

toad 40 15-­‐214

Thursday:

• Midterm exam…

• Next week:
§  Primitive concurrency control
§ …then higher abstractions

