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Administrivia 

• Homework 4c due tonight 
§ Remember to add an ant	
  run target 

• 2nd midterm exam Thursday 
§ Review session tonight, 5-7 p.m. in PH 100 

• Homework 5 released by tomorrow 
§ Must select partner(s) by Thursday (30 Oct) 
§ 5a due next Wednesday morning (05 Nov) 
§ 5b due the following Thursday (13 Nov) 
§ 5c due the following Thursday (20 Nov) 
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Key concepts from last Thursday 
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API:  Application Programming Interface 

• An API defines the boundary between 
components/modules in a programmatic system 
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An API design process 

• Define the scope of the API 
§ Collect use-case stories, define requirements 
§ Be skeptical 

• Distinguish true requirements from so-called solutions 
• "When in doubt, leave it out." 

• Draft a specification, gather feedback, revise, and 
repeat 
§ Keep it simple, short 

• Code early, code often 
§ Write client code before you implement the API 
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Key design principle:  Information hiding 

• "When in doubt, leave it out." 
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Minimize mutability 

• Immutable objects are: 
§  Inherently thread-safe 
§  Freely shared without concern for side effects 
§ Convenient building blocks for other objects 
§ Can share internal implementation among instances 

• See java.lang.String	
  

• Mutable objects require careful management of 
visibility and side effects 
§  e.g. Component.getSize() returns a mutable Dimension	
  

• Document mutability 
§ Carefully describe state space 
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The four course themes 

• Threads and concurrency 
§  Concurrency is a crucial system abstraction 
§  E.g., background computing while responding to users 
§  Concurrency is necessary for performance  
§  Multicore processors and distributed computing 
§  Our focus: application-level concurrency 
§  Cf. functional parallelism (150, 210) and systems concurrency (213) 

• Object-oriented programming 
§  For flexible designs and reusable code 
§  A primary paradigm in industry – basis for modern frameworks  
§  Focus on Java – used in industry, some upper-division courses 

• Analysis and modeling 
§  Practical specification techniques and verification tools 
§  Address challenges of threading, correct library usage, etc. 

• Design 
§  Proposing and evaluating alternatives 
§  Modularity, information hiding, and planning for change 
§  Patterns: well-known solutions to design problems 
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Today:  Concurrency, part 1 

• The backstory 
§ Motivation, goals, problems, … 

• Basic concurrency in Java 
§ Synchronization 

• Coming soon (but not today): 
§ Higher-level abstractions for concurrency 

• Data structures 
• Computational frameworks 
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Learning goals 

• Understand concurrency as a source of complexity 
in software 

• Know common abstractions for parallelism and 
concurrency, and the trade-offs among them 
§ Explicit concurrency 

• Write thread-safe concurrent programs in Java 
• Recognize data race conditions 

§ Know common thread-safe data structures, including 
high-level details of their implementation 

§ Understand trade-offs between mutable and immutable 
data structures 

§ Know common uses of concurrency in software design 
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Processor speeds over time 
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Power requirements of a CPU 

• Approx.:  Capacitance * Voltage2 * Frequency 

• To increase performance: 
§ More transistors, thinner wires:  more C 

• More power leakage:  increase V 
§  Increase clock frequency F 

• Change electrical state faster:  increase V 

• Problem:  Power requirements are super-linear to 
performance 
§ Heat output is proportional to power input 
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One option:  fix the symptom 

• Dissipate the heat 
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One option:  fix the symptom 

• Better:  Dissipate the heat with liquid nitrogen 
§ Overclocking by Tom's Hardware's 5 GHz project 

http://www.tomshardware.com/reviews/5-ghz-project,731-8.html 
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Another option:  fix the underlying problem 

• Reduce heat by limiting power input 
§ Adding processors increases power requirements linearly 
with performance 
• Reduce power requirement by reducing the frequency 
and voltage 

• Problem:  requires concurrent processing 
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Aside:  Three sources of disruptive innovation 

• Growth crosses some threshold 
§  e.g., Concurrency: ability to add transistors exceeded 
ability to dissipate heat 

• Colliding growth curves 
§ Rapid design change forced by jump from one curve onto 
another 

• Network effects 
§ Amplification of small triggers leads to rapid change 
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Aside:  The threshold for distributed computing 

• Too big for a single computer? 
§  Forces use of distributed architecture 

• Shifts responsibility for reliability from hardware to 
software 
• Allows you to buy larger cluster of cheap flaky 
machines instead of expensive slightly-less-flaky 
machines 
– Revolutionizes data center design 
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Aside:  Colliding growth curves 

• From http://www.genome.gov/sequencingcosts/ 
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Aside:  Network effects  

• Metcalfe's rule:  network value grows 
quadratically in the number of nodes 
§  a.k.a. Why my mom has a Facebook account 
§  n(n-1)/2 potential connections for n nodes 

§ Creates a strong imperative to merge networks 
• Communication standards, USB, media formats, ... 
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Concurrency 

• Simply:  doing more than one thing at a time 
§  In software: more than one point of control 

• Threads, processes 

• Resources simultaneously accessed by more than 
one thread or process 
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Concurrency then and now 

• In the past multi-threading was just a 
convenient abstraction 
§ GUI design:  event threads 
§ Server design: isolate each client's work 
§ Workflow design:  producers and consumers 

• Now:  must use concurrency for 
scalability and performance 
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Problems of concurrency 

• Realizing the potential 
§ Keeping all threads busy doing useful work 

• Delivering the right language abstractions 
§ How do programmers think about concurrency? 
§ Aside:  parallelism vs. concurrency 

• Non-determinism 
§ Repeating the same input can yield different results 
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Realizing the potential 

• Possible metrics of success 
§ Breadth:  extent of simultaneous activity 

• width of the shape 
§ Depth (or span):  length of longest computation 

• height of the shape 
§ Work:  total effort required 

• area of the shape 

• Typical goals in parallel algorithm design? 

tim
e 

concurrency 
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Amdahl’s law: How good can the depth get?   

• Ideal parallelism with N processors: 
§ Speedup = N!

• In reality, some work is always 
inherently sequential 
§  Let F be the portion of the total  
  task time that is inherently  
  sequential 

§ Speedup = 

§ Suppose F = 10%.  What is the max speedup? (you choose N) 
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Amdahl’s law: How good can the depth get?   

• Ideal parallelism with N processors: 
§ Speedup = N!

• In reality, some work is always 
inherently sequential 
§  Let F be the portion of the total  
  task time that is inherently  
  sequential 

§ Speedup = 

§ Suppose F = 10%.  What is the max speedup? (you choose N) 
• As N approaches ∞,  1/(0.1 + 0.9/N) approaches 10. 
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Using Amdahl’s law as a design guide 

• For a given algorithm, suppose 
§  N processors 
§  Problem size M!
§ Sequential portion F!

• An obvious question: 
§ What happens to speedup as N scales? 

• A less obvious, important question: 
§ What happens to F as problem size M scales? 

 

"For the past 30 years, computer performance has been driven by Moore’s 
Law; from now on, it will be driven by Amdahl’s Law." 

                   — Doron Rajwan, Intel Corp 
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Abstractions of concurrency 

• Processes 
§ Execution environment is isolated 

• Processor, in-memory state, files, … 
§  Inter-process communication typically slow, via message 
passing 
• Sockets, pipes, … 

• Threads 
§ Execution environment is shared 
§  Inter-thread communication typically fast, via shared state 

Process 

Thread 

State 

Thread 

Process 

Thread 

State 

Thread 
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Aside:  Abstractions of concurrency 

• What you see: 
§ State is all shared 

 

• A (slightly) more accurate view of the hardware: 
§ Separate state stored in 
  registers and caches 
§ Shared state stored in 
  caches and memory 

Process 

Thread 

State 

Thread 

Process 

Thread 

State1 

Thread 

State2 

State 
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Basic concurrency in Java 

• The java.lang.Runnable interface 
void          run();!

• The java.lang.Thread class 
Thread(Runnable r);!
void          start();!
static void   sleep(long millis);!
void          join();!
boolean       isAlive();!
static Thread currentThread(); 

• See IncrementTest.java 
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Atomicity 

• An action is atomic if it is indivisible 
§ Effectively, it happens all at once 

• No effects of the action are visible until it is complete 
• No other actions have an effect during the action 

• In Java, integer increment is not atomic 

i++;!

1. Load data from variable i!

2. Increment data by 1!

3. Store data to variable i!

is actually 
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One concurrency problem:  race conditions 

• A race condition is when multiple threads access 
shared data and unexpected results occur 
depending on the order of their actions 

• E.g., from IncrementTest.java: 
§ Suppose classData starts with the value 41: 

classData++;!
Thread A: 

classData++;!
Thread B: 

1A. Load data(41) from classData!

1B. Load data(41) from classData!

2A. Increment data(41) by 1 -> 42 

2B. Increment data(41) by 1 -> 42!

3A. Store data(42) to classData!

3B. Store data(42) to classData!

One possible interleaving of actions: 
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Race conditions in real life 

• E.g., check-then-act on the highway 

R L C 
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Race conditions in real life 

• E.g., check-then-act at the bank 
§  The "debit-credit problem" 

Alice, Bob, Bill, and the Bank 

•  A. Alice to pay Bob $30 
§  Bank actions 

1.   Does Alice have $30 ? 
2.   Give $30 to Bob 
3.   Take $30 from Alice 

•  B. Alice to pay Bill $30 
§  Bank actions 

1.   Does Alice have $30 ? 
2.   Give $30 to Bill 
3.   Take $30 from Alice 

•  If Alice starts with $40, can 
Bob and Bill both get $30? 
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Race conditions in real life 

• E.g., check-then-act at the bank 
§  The "debit-credit problem" 

Alice, Bob, Bill, and the Bank 

•  A. Alice to pay Bob $30 
§  Bank actions 

1.   Does Alice have $30 ? 
2.   Give $30 to Bob 
3.   Take $30 from Alice 

•  B. Alice to pay Bill $30 
§  Bank actions 

1.   Does Alice have $30 ? 
2.   Give $30 to Bill 
3.   Take $30 from Alice 

•  If Alice starts with $40, can 
Bob and Bill both get $30? 

A.1 
A.2 
B.1 
B.2 
A.3 
B.3! 
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Race conditions in your real life 

• E.g., check-then-act in simple code 

§ See StringConverter.java, Getter.java, Setter.java 

public class StringConverter { !
    private Object o;!
    public void set(Object o) {!
        this.o = o;!
    }!
    public String get() {!
        if (o == null) return "null";!
        return o.toString();!
    }!
}!
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Some actions are atomic 

 

• What are the possible values for ans? 

Thread A: 
ans = i;!

Thread B: 
int i = 7;!

Precondition: 
i = 42;!
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Some actions are atomic 

 

 

• What are the possible values for ans? 

Thread A: 
ans = i;!

Thread B: 

00000…00000111 i:!

00000…00101010 i:!

…
 

int i = 7;!
Precondition: 

i = 42;!
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Some actions are atomic 

 

 

• What are the possible values for ans? 

• In Java: 
§ Reading an int variable is atomic 
§ Writing an int variable is atomic 

§  Thankfully,                                                   is not possible 

00000…00000111 i:!

00000…00101010 i:!

…
 

00000…00101111 ans:!

Thread A: 
ans = i;!

Thread B: 
int i = 7;!

Precondition: 
i = 42;!
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Bad news: some simple actions are not atomic 

• Consider a single 64-bit long value 

§ Concurrently: 
• Thread A writing high bits and low bits 
• Thread B reading high bits and low bits 

high bits low bits 

Thread A: 
ans = i;!

Thread B: 
long i = 10000000000;!

Precondition: 
i = 42;!

01001…00000000 ans:!

00000…00101010 ans:!

01001…00101010 ans:!

(10000000000) 

(42) 

(10000000042 or …) 
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Thursday: 

• Midterm exam… 

• Next week:  
§  Primitive concurrency control 
§ …then higher abstractions 


