
toad

Spring 2014

© 2012-13 C Kästner, C Garrod, J Aldrich, and W Sc herlis

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design and Concurrency

Design Patterns

Jonathan Aldrich Charlie Garrod

15-214

toad 215-214 Aldrich

Exercise (paper): System Sequence Diagram for Scrabble

photo credit: Antrikshy (at Wikipedia)

toad 315-214 Aldrich

Learning Goals

• Understand the nature of design patterns
� Parts of a design pattern
� Applicability and benefits of design patterns
� Limitations and pitfalls of design patterns

• Apply several design patterns:
� Composite, Template Method, Decorator, …

toad 415-214 Aldrich

Example: Composite Windows

• Problem
� Express a part-whole hierarchy of shapes
� Allow treating a group of shapes just like shapes

• Consequences
� Makes clients simple; they can ignore the difference
� Easy to add new kinds of shapes

Shape

draw()

Rectangle

draw()

components

*

for s in components:
s.draw()ShapeGroup

draw()

toad 515-214 Aldrich

We have seen this before!

interface IntSet {
boolean contains(int element);
boolean isSubsetOf(IntSet otherSet);
IntSet union(IntSet otherSet);

}
class UnionSet implements IntSet {

private IntSet set1;
private IntSet set2;
public UnionSet(IntSet s1, IntSet s2) {

this.set1 = s1; this.set2 = s2; }
public boolean contains(int elem) {

return set1.contains(elem) || this.set2.contains(elem); }
public boolean isSubsetOf(IntSet otherSet) {

return set1.isSubsetOf(elem) && set2.isSubsetOf(elem);}
public IntSet union(IntSet otherSet) {

return new UnionSet(this, otherSet); }
}

• Our designs for composite figures, grouped packages, and union
sets solve similar problems in similar ways

• We call this problem-solution pair a design pattern

toad 615-214 Aldrich

Design Patterns

• "Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a
million times over, without ever doing it the same
way twice”
– Christopher Alexander

• Every Composite has its own domain-specific
interface
� But they share a common problem and solution

toad 715-214 Aldrich

Example: Composite Windows

• Problem
� Express a part-whole hierarchy of shapes
� Allow treating a group of shapes just like shapes

• Consequences
� Makes clients simple; they can ignore the difference
� Easy to add new kinds of shapes

Shape

draw()

Rectangle

draw()

components

*

for s in components:
s.draw()ShapeGroup

draw()

toad 815-214 Aldrich

Composite Pattern

• Problem (generic)
� Express a part-whole hierarchy of components
� Allow treating a composite just like a component

• Consequences (generic)
� Makes clients simple; they can ignore the difference
� Easy to add new kinds of components
� Can be overly general – uniformity is not always good

Component

operation()

Leaf

operation()

components

*

for c in components:
c.operation()Composite

operation()

toad 915-214 Aldrich

History

• Christopher Alexander, The Timeless Way of
Building (and other books)
� Proposes patterns as a way of capturing design
knowledge in architecture

� Each pattern represents a tried-and-true solution to a
design problem

� Typically an engineering compromise that resolves
conflicting forces in an advantageous way
•Composite: you have a part-whole relationship, but
want to treat individual objects and object
compositions uniformly

toad 1015-214 Aldrich

Patterns in Physical Architecture

• When a room has a window with a view, the
window becomes a focal point: people are
attracted to the window and want to look through
it. The furniture in the room creates a second
focal point: everyone is attracted toward
whatever point the furniture aims them at
(usually the center of the room or a TV). This
makes people feel uncomfortable. They want to
look out the window, and toward the other focus
at the same time. If you rearrange the furniture,
so that its focal point becomes the window, then
everyone will suddenly notice that the room is
much more “comfortable”.
– Leonard Budney, Amazon.com review of The
Timeless Way of Building

toad 1115-214 Aldrich

Benefits of Patterns

•Shared language of design
� Increases communication bandwidth
�Decreases misunderstandings

•Learn from experience
�Becoming a good designer is hard

•Understanding good designs is a first step

�Tested solutions to common problems
•Where is the solution applicable?
•What are the tradeoffs?

toad 1215-214 Aldrich

Illustration [Shalloway and Trott]

• Carpenter 1: How do you think we should build
these drawers?

• Carpenter 2: Well, I think we should make the
joint by cutting straight down into the wood, and
then cut back up 45 degrees, and then going
straight back down, and then back up the other
way 45 degrees, and then going straight down,
and repeating…

toad 1315-214 Aldrich

Illustration [Shalloway and Trott]

• Carpenter 1: How do you think we should build
these drawers?

• Carpenter 2: Well, I think we should make the
joint by cutting straight down into the wood, and
then cut back up 45 degrees, and then going
straight back down, and then back up the other
way 45 degrees, and then going straight down,
and repeating…

• SE example: “I wrote this if statement to handle
… followed by a while loop … with a break
statement so that…”

toad 1415-214 Aldrich

A Better Way

•Carpenter 1: Should we use a
dovetail joint or a miter joint?

•Subtext:
�miter joint: cheap, invisible, breaks easily
�dovetail joint: expensive, beautiful, durable

•Shared terminology and knowledge of
consequences raises level of abstraction
�CS: Should we use a Composite?
�Subtext

• Is there a part-whole relationship here?
•Might there be advantages to treating compositions
and individuals uniformly?

toad 1515-214 Aldrich

Elements of a Pattern

• Name
� Important because it becomes part of a design
vocabulary

� Raises level of communication

• Problem
� When the pattern is applicable

• Solution
� Design elements and their relationships
� Abstract: must be specialized

• Consequences
� Tradeoffs of applying the pattern

• Each pattern has costs as well as benefits
• Issues include flexibility, extensibility, etc.
• There may be variations in the pattern with different

consequences

toad 1615-214 Aldrich

History: Design Patterns Book

• Brought Design Patterns into
the mainstream

• Authors known as the Gang
of Four (GoF)

• Focuses on descriptions of
communicating objects and
classes that are customized
to solve a general design
problem in a particular
context

• Great as a reference text

• Uses C++, Smalltalk

toad 1715-214 Aldrich

A More Recent Patterns Text

• Uses Java
� The GoF text was written
before Java went
mainstream

• Good pedagogically
� General design
information

� Lots of examples and
explanation

� GoF is really more a
reference text

•Mandatory reading

•Helpful for HW4 and 5

toad 1815-214 Aldrich

Fundamental OO Design Principles

• Patterns emerge from
fundamental principles
applied to recurring
problems
� Design to interfaces
� Favor composition over
inheritance

� Find what varies and hide
(encapsulate) it

• Patterns are discovered,
not invented
� Best practices by
experienced developers

� Shared experience

Composite: uses a
common interface for leaf
and composite objects

Composite: uses
composition to represent a
group of objects

Composite: hides the
difference between an
object and a group

toad 1915-214 Aldrich

Introduction to Patterns

• Categories
� Structural – vary object structure
� Behavioral – vary the behavior you want
� Creational – vary object creation

• Some UML diagrams by Pekka Nikander
� http://www.tml.tkk.fi/~pnr/GoF-models/html/

19

toad 2015-214 Aldrich

Recall a Structural pattern: Decorator

addBehaviorBefore()
component.operation()
addBehaviorAfter()

Component

+ operation()

1

Decorator

+ operation()

ConcreteComponent

+ operation()

component

• Applicability
� To add responsibilities to

individual objects dynamically
and transparently

� For responsibilities that can
be withdrawn

� When extension by
subclassing is impractical

• Consequences
� More flexible than static

inheritance
� Avoids monolithic classes
� Breaks object identity
� Lots of little objects

Examples: adding
scrollbars. What
else?

toad 2115-214 Aldrich

Fundamental OO Design Principles

• Patterns emerge from
fundamental principles
applied to recurring
problems
� Design to interfaces
� Favor composition over
inheritance

� Find what varies and hide
(encapsulate) it

• Patterns are discovered,
not invented
� Best practices by
experienced developers

� Shared experience

Decorator: uses a
common interface for basic
and decorated objects

Decorator: uses
composition to modify an
object’s behavior

Decorator: hides the
difference between the
base object and decorator

toad 2215-214 Aldrich

Patterns to Know

• Façade*, Adapter*, Composite, Iterator,
Strategy*, Abstract Factory*, Factory Method*,
Decorator*, Observer*, Template Method*,
Singleton*, Command, Proxy, and Model-View-
Controller

• Know pattern name, problem, solution, and
consequences

• Know when to use them and when not

* explained in:

toad 2315-214 Aldrich

Back to the Motivating Problem…

toad 2415-214 Aldrich

Example: Shape Change Notification

• Problem
� Moving changes from shape to shape, but updating
doesn’t - want to reuse updating code

� Future shape implementations should not forget to update

• Consequences
� Code reuse
� Authors of subclasses will not unintentionally forget to do
the update

AbstractShape

+move()
#doUpdate()
#doMove()

doMove();

doUpdate();

Rectangle

#doMove()

«final»

ShapeGroup

#doUpdate()
#doMove()

toad 2515-214 Aldrich

Template Method Pattern

• Problem (generic)
� Express an algorithm with varying and invariant parts
� When common behavior should be factored and localized
� When subclass extensions should be limited

• Consequences (generic)
� Code reuse
� Inverted “Hollywood” control: don’t call us, we’ll call you
� Invariant algorithm parts are not changed by subclasses

AbstractClass

+templateMethod()
#primitiveOperation1()
#primitiveOperation2()

…
primitiveOperation1();
…
primitiveOperation2();
…

ConcreteClass1

#primitiveOperation2()

«final»

ConcreteClass2

#primitiveOperation1()
#primitiveOperation2()

toad 2615-214 Aldrich

Problem: Line Breaking Implementations

• Context: document editor

• Many ways to break a paragraph into lines
� Blind: just cut off at 80 columns
� Greedy: fit as many words in this line, then wrap
� Global (e.g. TeX): minimize badness in entire paragraph

•Might move a small word to next line if it reduces extra
spaces there

• Option 1: We could put this in class Paragraph
� But this is not Paragraph’s main function
� Putting many algorithms into Paragraph makes it too big
� Other classes might need line breaking, too
� Adding new line breaking algorithms is difficult

• Option 2?

toad 2715-214 Aldrich

Option 2: Encapsulate the Line Breaking Strategy

• Problem
� Paragraphs needs to break lines in different ways
� Want to easily change or extend line breaking algorithm
� Want to reuse algorithm in new places

• Consequences
� Easy to add new line breaking strategies
� Separates strategy � vary strategy, paragraph independently
� Adds objects and dynamism � code harder to understand

Paragraph

draw()

LineBreakStrategy

computeBreaks(text)

SimpleLineBreaker

computeBreaks(text)

TeXLineBreaker

computeBreaks(text)

strategy

1

toad 2815-214 Aldrich

Strategy Pattern

• Problem (generic)
� Behavior varies among instances of an abstraction
� An abstraction needs different variants of an algorithm

• Consequences (generic)
� Easy to add new strategies (e.g. compared to conditionals)
� Separates algorithm � vary algorithm, context independently
� Adds objects and dynamism � code harder to understand
� Fixed strategy interface � high overhead for some impls.

Context

contextInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB

algorithmInterface()

strategy

1

toad 2915-214 Aldrich

Specific Patterns

• Facade

• Adapter

• Strategy

• Template Method

• Factory Method

• Abstract Factory

• Decorator

• Observer

• Command

• State

• Composite

• Bridge

• Singleton

• Proxy

• Visitor

toad 3015-214 Aldrich

Scenario

• You need to load and print
pictures in your application

• You found a library that
provides far more than you
need
� Many classes
� Different representations
� Sophisticated image

manipulation routines

• You may want to switch to
a different library later

• What’s the right design?

toad 3115-214 Aldrich

Façade (Structural)

• Applicability
� You want to provide a simple

interface to a complex
subsystem

� You want to decouple clients
from the implementation of a
subsystem

� You want to layer your
subsystems

• Consequences
� It shields clients from the

complexity of the subsystem,
making it easier to use

� Decouples the subsystem and
its clients, making each
easier to change

� Clients that need to can still
access subsystem classes

toad 3215-214 Aldrich

Scenario

• You have an application
that processes data with an
Iterator. Methods are:
� boolean hasNext();
� Object next();

• You need to read that data
from a database using
JDBC. Methods are:
� boolean next();
� Object getObject(int

column);

• You might have to get the
information from other
sources in the future.

toad 3315-214 Aldrich

Structural: Adapter

• Applicability
� You want to use an existing

class, and its interface does
not match the one you need

� You want to create a
reusable class that
cooperates with unrelated
classes that don’t necessarily
have compatible interfaces

� You need to use several
subclasses, but it’s
impractical to adapt their
interface by subclassing each
one

•Consequences
• Exposes the functionality of an

object in another form
• Unifies the interfaces of multiple

incompatible adaptee objects
• Lets a single adapter work with

multiple adaptees in a hierarchy

toad 3415-214 Aldrich

Back to Fundamental Principles

• Design to interfaces
� Façade – a new interface for a library
� Adapter – design application to a common interface,
adapt other libraries to that

• Favor composition over inheritance
� Façade – library is composed within Façade
� Adapter – adapter object interposed between client and
implementation

• Find what varies and encapsulate it
� Both Façade and Adapter – shields variations in the
implementation from the client

toad 3515-214 Aldrich

Façade vs. Adapter

•Motivation
� Façade: simplify the interface
�Adapter: match an existing interface

•Adapter: interface is given
�Not typically true in Façade

•Adapter: polymorphic
�Dispatch dynamically to multiple
implementations

� Façade: typically choose the implementation
statically

toad 3615-214 Aldrich

Scenario

• Context: eCommerce
application
� Cart object holds Items

• Problem: how to compute
taxes?
� State sales tax
� Local sales tax
� Differing exemptions
� …

• How can we make the
taxation algorithm easy to
change?

toad 3715-214 Aldrich

Behavioral: Strategy

• Applicability
� Many classes differ in

only their behavior
� Client needs different

variants of an algorithm

• Consequences
� Code is more extensible

with new strategies
• Compare to conditionals

� Separates algorithm
from context
• each can vary

independently

� Adds objects and
dynamism
• code harder to understand

� Common strategy
interface
• may not be needed for all

Strategy implementations –
may be extra overhead

toad 3815-214 Aldrich

Tradeoffs

void sort(int[] list, String order) {
…

boolean mustswap;
if (order.equals("up")) {

mustswap = list[i] < list[j];
} else if (order.equals("down")) {

mustswap = list[i] > list[j];
}
…

}

void sort(int[] list, Comparator cmp) {
…

boolean mustswap;
mustswap = cmp.compare(list[i], list[j]);
…

}
interface Comparator {

boolean compare(int i, int j);
}
class UpComparator implements Comparator {

boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {
boolean compare(int I, int j) { return i>j; }}

toad 3915-214 Aldrich

Back to Fundamental Principles

• Design to interfaces
� Strategy: the algorithm interface

• Favor composition over inheritance
� Strategy could be implemented with inheritance

• Multiple subclasses of Context, each with an algorithm
• Drawback: couples Context to algorithm, both become harder

to change
• Drawback: can’t change algorithm dynamically

• Find what varies and encapsulate it
� Strategy: the algorithm used

• Side note: how do you implement the Strategy
pattern in functional languages?

toad 4015-214 Aldrich

Behavioral: Command

• Applicability
� Parameterize objects by an

action to perform
� Specify, queue and execute

requests at different times
� Support undo
� Support logging changes that

can be reapplied after a crash
� Structure a system around

high-level operations built
out of primitives

• Consequences
� Decouples the object that

invokes the operation from
the one that performs it

� Since commands are objects
they can be explicitly
manipulated

� Can group commands into
composite commands

� Easy to add new commands
without changing existing
code

toad 4115-214 Aldrich

Behavioral: Template Method

• Applicability
� When an algorithm consists

of varying and invariant parts
that must be customized

� When common behavior in
subclasses should be factored
and localized to avoid code
duplication

� To control subclass
extensions to specific
operations

• Consequences
� Code reuse
� Inverted “Hollywood” control:

don’t call us, we’ll call you
� Ensures the invariant parts of

the algorithm are not
changed by subclasses

toad 4215-214 Aldrich

Creational: Factory Method

• Applicability
� A class can’t anticipate

the class of objects it
must create

� A class wants its
subclasses to specify
the objects it creates

• Consequences
� Provides hooks for
subclasses to
customize creation
behavior

� Connects parallel class
hierarchies

toad 4315-214 Aldrich

Scenario

• Context: Window library
� Multiple kinds of windows
� Multiple implementation

families (by library, OS,
etc.)

� Bridge pattern

• Problem: how to create the
implementation objects?
� Avoid tying window

interface to particular back
ends

� Back ends must work
together (no mixing Swing
and SWT components)

toad 4415-214 Aldrich

Creational: Abstract factory

• Applicability
� System should be

independent of product
creation

� Want to configure with
multiple families of
products

� Want to ensure that a
product family is used
together

• Consequences
� Isolates concrete classes
� Makes it easy to change

product families
� Helps ensure consistent

use of family
� Hard to support new

kinds of products

toad 4515-214 Aldrich

Behavioral: Observer

• Applicability
� When an abstraction has two

aspects, one dependent on
the other, and you want to
reuse each

� When change to one object
requires changing others,
and you don’t know how
many objects need to be
changed

� When an object should be
able to notify others without
knowing who they are

• Consequences
� Loose coupling between

subject and observer,
enhancing reuse

� Support for broadcast
communication

� Notification can lead to
further updates, causing a
cascade effect

toad 4615-214 Aldrich

Scenario

• Shape graphics library
� rectangles, circles, squares
� extensible to more shapes

• Need flexible
implementation
� Java Swing
� Eclipse SWT
� Printing libraries, etc.

• How can we allow both:
� extension with new
shapes

� adaptation to new back
ends?

toad 4715-214 Aldrich

Structural: Bridge

• Applicability
� Want to define

multiple abstractions
� Need to implement in

multiple ways

• Consequences
� Avoid blow-up in

number of classes
� Decouples abstraction

from implementation
• Choose each separately,

even at run time
• Extend each

independently
� Hide implementation

from clients
� Requires fixed

implementation
interface

toad 4815-214 Aldrich

Scenario

• You have global data &
operations
� Must be used consistently

within the app
� Might be changed later
� Don’t want to pass around

explicitly

• No good existing place to
create and store the object

toad 4915-214 Aldrich

Creational: Singleton

• Applicability
� There must be exactly one

instance of a class
� When it must be accessible to

clients from a well-known
place

� When the sole instance
should be extensible by
subclassing, with unmodified
clients using the subclass

• Consequences
� Controlled access to sole

instance
� Reduced name space (vs.

global variables)
� Can be refined in subclass or

changed to allow multiple
instances

� More flexible than class
operations
• Can change later if you need to

• Implementation
� Constructor is protected
� Instance variable is private
� Public operation returns

singleton
• May lazily create singleton

• Subclassing
� Instance() method can look

up subclass to create in
environment

toad 5015-214 Aldrich

Structural: Proxy

• Applicability
� Whenever you need a

more sophisticated
object reference than a
simple pointer
• Local representative for a

remote object
• Create or load expensive

object on demand
• Control access to an object
• Reference count an object

• Consequences
� Introduces a level of

indirection
• Hides distribution from

client
• Hides optimizations from

client
• Adds housekeeping tasks

toad 5115-214 Aldrich

Behavioral: Mediator

• Applicability
� A set of objects that

communicate in well-defined
but complex ways

� Reusing an object is difficult
because it communicates
with others

� A behavior distributed
between several classes
should be customizable
without a lot of subclassing

• Consequences
� Avoids excessive subclassing

to customize behavior
� Decouples colleagues,

enhancing reuse
� Simplifies object protocols:

many-to-many to one-to-
many

� Abstracts how objects
cooperate into the mediator

� Centralizes control
• Danger of mediator monolith

51

toad 5215-214 Aldrich

Behavioral: Visitor

• Applicability
� Structure with many

classes
� Want to perform

operations that depend
on classes

� Set of classes is stable
� Want to define new

operations

• Consequences
� Easy to add new

operations
� Groups related behavior

in Visitor
� Adding new elements is

hard
� Visitor can store state
� Elements must expose

interface

toad 5315-214 Aldrich

Other GoF Patterns

• Creational
� Builder – separate creation from representation
� Prototype – create objects by copying

• Structural
� Flyweight – use sharing for fine-grained objects

• Behavioral
� Chain of Responsibility – sequence of objects can respond
to a request

� Interpreter – canonical implementation technique
� Memento – externalize/restore an object’s state
� Mediator - a set of objects that communicate in well-
defined but complex ways

� State – allow object to alter behavior when state changes

