
Information Hiding

15-214:

Principles of Software Construction

Jonathan Aldrich

Related Reading: D. L. Parnas. On the Criteria
To Be Used in Decomposing Systems into
Modules. CACM 15(12):1053-1058, Dec 1972.

Some ideas from David Notkin’s CSE 503 class

29 September 2014 1

29 September 2014

What makes one design better than
another?

• Not what result is produced, or whether it is right
• Instead, quality attributes

• How the result is produced
• Characteristics of the code

• Examples:
• Evolvability– ability to easily add and change

capabilities
• Local reasoning– ability to reason about parts

separately
• Reuse – avoid duplicating functionality
• Robustness – operates under stress or invalid input
• Performance – yields results at a high rate or with

low latency
• Testability, security, fault-tolerance,

2

29 September 2014

Design Case Study:
Key Word In Context (KWIC)

• “The KWIC [Key Word In Context] index system accepts an
ordered set of lines, each line is an ordered set of words, and
each word is an ordered set of characters. Any line may be
"circularly shifted" by repeatedly removing the first word and
appending it at the end of the line. The KWIC index system
outputs a listing of all circular shifts of all lines in alphabetical
order.”
- Parnas, 1972

• Consider KWIC applied to the title of this slide

Design Case Study:
Case Study: Design
Study: Design Case
Key Word In Context (KWIC)
Word In Context (KWIC) Key
In Context (KWIC) Key Word
Context (KWIC) Key Word In
(KWIC) Key Word In Context

(KWIC) Key Word In Context
Case Study: Design
Context (KWIC) Key Word In
Design Case Study:
In Context (KWIC) Key Word
Key Word In Context (KWIC)
Study: Design Case
Word In Context (KWIC) Key

3

29 September 2014

KWIC Modularization #1

Master Control

Input OutputCircular
Shift

Alphabetize

Lines

Shifts Shifts

memory
access

function
call

4

29 September 2014

KWIC Modularization #2

Master Control

Input Output

Circular
Shift

cschar(i,w,c)

Alphabetize
ith(i)

Line
Storage

getChar(r,w,c)
setChar(r,w,c,d)

function
call

function
call

5

29 September 2014

KWIC Observations

• Similar at run time
• May have identical data representations,

algorithms, even compiled code

• Different in code
• Understanding
• Documenting
• Evolving

6

29 September 2014

Software Change

• …accept the fact of change as a way of life,
rather than an untoward and annoying
exception.
—Brooks, 1974

• Software that does not change becomes
useless over time.
—Belady and Lehman

• For successful software projects, most of
the cost is spent evolving the system, not
in initial development
• Therefore, reducing the cost of change is one of

the most important principles of software design

7

29 September 2014

Exercise (paper): Effect of Change?

• Change input
format

• Don’t store all lines
in memory at once

• Use an encoding to
save line storage
space

• Store the shifts
directly instead of
indexing

• Amortize
alphabetization
over searches

Master Control

Input OutputCircular
Shift

Alphabetize

Lines

Shifts Shifts

Master Control

Input Output

Circular
Shift

cschar(l,w,c)

Alphabetize
ith(i)

Line
Storage

getChar(r,w,c)
setChar(r,w,c,l)

8

29 September 2014

Effect of Change?

• Change input format
• Input module only

• Don’t store all lines in memory at once
• Design #1: all modules
• Design #2: Line Storage only

• Use an encoding to save line storage space
• Design #1: all modules
• Design #2: Line Storage only

• Store the shifts directly instead of indexing
• Design #1: Circular Shift, Alphabetizer, Output
• Design #2: Circular Shift only

• Amortize alphabetization over searches
• Design #1: Alphabetizer, Output, and maybe Master

Control
• Design #2: Alphabetizer only

9

29 September 2014

Other Factors

• Independent Development
• Data formats (#1) more complex than

data access interfaces (#2)
• Easier to agree on interfaces in #2

because they are more abstract
• More work is independent, less is shared

• Comprehensibility
• Design of data formats in #1 depends on

details of each module
• More difficult to understand each module

in isolation for #1

10

29 September 2014

A Note on Performance

• Parnas says that if we are not careful,
decomposition #2 will run slower

• He points out that a compiler can
replace the function calls with inlined,
efficient operations

• Lesson: don’t prematurely optimize
• Smart compilers enable smart designs
• Evolvability usually trumps the overhead

of a function call anyway

11

29 September 2014

Decomposition Criteria

• Functional decomposition
• Break down by major processing steps

• Information hiding decomposition
• Each module is characterized by a design

decision it hides from others
• Interfaces chosen to reveal as little as

possible about this

12

29 September 2014

Information Hiding
Derived from definition by Edward Berard – concept due to Parnas

• Decide what design decisions are likely to change
and which are likely to be stable

• Put each design decision likely to change into a
module

• Assign each module an interface that hides the
decision likely to change, and exposes only stable
design decisions

• Ensure that the clients of a module depend only on
the stable interface, not the implementation

• Benefit: if you correctly predict what may change,
and hide information properly, then each change
will only affect one module
• That’s a big if…do you believe it?

13

29 September 2014

Hiding design decisions

Information hiding is NOT just about data representation

Decision Mechanism

• Data representation

• Platform

• I/O format

• User Interface

• Algorithm

14

29 September 2014

Hiding design decisions

• Algorithms – procedure

• Data representation – abstract data type

• Platform – virtual machine, hardware
abstraction layer

• Input/output data format – I/O library

• User interface – model-view pattern

15

29 September 2014

What is an Interface?

• Function signatures?
• Performance?
• Ordering of function calls?
• Resource use?
• Locking policies?

• Conceptually, an interface is
everything clients are allowed to
depend on
• May not be expressible in your favorite

programming language

16

29 September 2014

Coupling and Information Hiding

• Coupling
• How many dependencies?
• Proxy for cost of interface change

• Information hiding
• Depend only on stable design decisions
• Incorporates likelihood of interface change

• Thus a more direct measurement of a design’s
value

• Sometimes coupling is OK!
• High coupling between framework and client
• Framework interface captures assumptions that

don’t change between applications
• Also hides framework implementation decisions

that are likely to change
• Client encapsulates code specific to an

application

17

Design Analysis:
Design Structure Matrices

K.J. Sullivan, W.G. Griswold, Y. Cai, and B. Hallen.
The Structure and Value of Modularity in Software
Design. Foundations of Software Engineering, 2001.

Carliss Baldwin and Kim Clark. Design Rules: The
Power of Modularity. MIT Press.

15-214: Principles of Software Construction

Jonathan Aldrich

29 September 2014 18

Module Dependencies

• Ideal: changes restricted to within a
module
• Goal of information hiding
• Need to know which decisions may change

• Reality: some changes are surprises
• These may affect module interfaces
• Changes propagate to dependent modules

• How bad is this propagation?
• It depends on coupling

29 September 2014 19

Design Dependencies in Hadoop

Credit: Rick Kazman

29 September 2014 20

The Design Structure Matrix
(DSM)

• A DSM is an alternative to a directed
graph

• An N by N matrix
• Each row is a module in the system
• Columns also labeled with modules, in same

order

• Dependencies are marked with X’s
• Marking row A, column B means A depends

on B
• The diagonal is ignored (self-dependence)

• Makes it easy to see common patterns
Credit: Rick Kazman

29 September 2014 21

Design Structure Matrix (DSM)
Example

Model GUI

Model 0

GUI X 0

Credit: Rick Kazman

29 September 2014 1-1

Varying Degrees of Complexity:
Fully Connected DSM

A B C D E

A O X X X X

B X O X X X

C X X O X X

D X X X O X

E X X X X O

Credit: Rick Kazman

29 September 2014 1-1

Varying Degrees of Complexity:
Fully Disconnected DSM

A B C D E

A O

B O

C O

D O

E O

Credit: Rick Kazman

29 September 2014 1-1

Varying Degrees of Complexity:
A Layered Architecture

Kernel Ring 1 Ring 2 Ring 3 Ring 4

Kernel O

Ring 1 X O

Ring 2 X X O

Ring 3 X X X O

Ring 4 X X X X O

Credit: Rick Kazman

29 September 2014 1-1

Varying Degrees of Complexity:
A Strictly Layered Architecture

OS VM I/O lib Middle
ware

App

OS O

VM X O

I/O lib X O

Middle
ware

X O

App X O
Credit: Rick Kazman

29 September 2014 1-1

29 September 2014

Design Structure Matrices

More terminology
• B is hierarchically dependent on A

• If you change A, you might have to change B as
well

• Suggests you should implement A first

• B and C are interdependent
• C and A are independent

Meaning of the Matrix

A depends on nothing

B depends on A and C

C depends on B

27

29 September 2014

Design Structure Matrices

• Lines show clustering into proto-
modules
• Indicates several design decisions will be

managed together

• True modules should be independent
• i.e., no marks outside of its cluster
• Not true here because B (in the B-C cluster)

depends on A

28

Varying Degrees of Complexity:
Layered Modules

A B C D E

A O

B O X

C X X O

D X O

E X X X O

Credit: Rick Kazman

29 September 2014 1-1

29 September 2014

Design Structure Matrices

• Interface reifies the dependence as a
separate entity
• Instead of B depending on A, now A and

B both depend on I
• Serves to decouple A and B
• Think of I as the interface of A

30

29 September 2014

Value of Modularity

• Information Hiding
• If you can anticipate which design decisions

are likely to change and hide them in a
module, then evolving the system when
these changes occur will cost less

• Reduces maintenance cost and time to
market

• Frees resources to invest in quality, features

31

29 September 2014

Value of Modularity

• Option value of modules
• The best design choice for A, B, and C may be uncertain

and require experiments
• Original design: B and C were dependent on A.

Therefore if we build new A, B, C implementations, we
must use all or reject all

• New design: A and B,C decoupled through interface.
We can build new A, B, and C implementations, and
choose independently to use A and B,C
• If one experiment fails we can still benefit from the others

• Connection to economics: a portfolio of options is more
valuable than an option on a portfolio

32

29 September 2014

KWIC Design #1

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data .
E - Circ Data .
H - Alph Data .
K - Out Data .
C - Input Alg .
F - Circ Alg .
I - Alph Alg .
L - Out Alg .
M - Master .

33

29 September 2014

KWIC Design #1

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .

Interdependence
of data formats

True modules

Many
dependences

on data format;
problematic

because
data formats
are unstable

Interface
dependences

follow calls

34

29 September 2014

KWIC Design #2
N A D G J O P B C E F H I K L M

N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data .
P - Line Alg .
B - In Data .
C - Input Alg .
E - Circ Data .
F - Circ Alg .
H - Alph Data .
I - Alph Alg .
K - Out Data .
L - Out Alg .
M - Master .

35

29 September 2014

KWIC Design #2
N A D G J O P B C E F H I K L M

N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

True modules
Dependence
on interfaces

36

29 September 2014

Which Design is Better?
N A D G J O P B C E F H I K L M

N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .

37

29 September 2014

Comparing the Designs

• Both designs allow changes within modules
• However, in the first design the modules do not hide much

• Many dependencies (2-4 per module) on data structures
• Data structure dependencies are strong: they restrict algorithms used
• Furthermore, data structures are likely to change

• The second design is much less constrained
• Fewer dependencies (1-2 per module)
• Interfaces are more abstract, do not restrict code as much
• Interfaces are more stable in the face of likely changes

• Result: design 2 minimizes re-engineering in response to change

N A D G J O P B C E F H I K L M
N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .

38

29 September 2014

EDSMs: Considering Possible Changes

• Environment and Design Structure Matrices
• Sullivan et al., ESEC/FSE 2001

• Add changes as environmental parameters
• Note: slightly more concrete than what Sullivan et al. propose

• Only partially controlled by designer
• May affect each other
• May affect design decisions in code

• What interfaces are affected?
• Information hiding: interfaces should be stable

• What implementations are affected?
• Information hiding hypothesis: should be local to

a module

39

29 September 2014

Effect of Change – Design #1
V W X Y Z A D G J B E H K C F I L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .

40

29 September 2014

Effect of Change – Design #1
V W X Y Z A D G J B E H K C F I L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data X X . X X
E - Circ Data X X . X
H - Alph Data X X X X .
K - Out Data .
C - Input Alg X X X X X .
F - Circ Alg X X X X X X .
I - Alph Alg X X X X X X X X .
L - Out Alg X X X X X X X X .
M - Master X X X X X .

Unstable
data interfaces

depend on changes

Algorithms
depend on

data

41

29 September 2014

Effect of Change – Design #2
V W X Y Z N A D G J O P B C E F H I K L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

42

29 September 2014

Effect of Change – Design #2
V W X Y Z N A D G J O P B C E F H I K L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X X X . X
P - Line Alg X X X X .
B - In Data X X . X
C - Input Alg X X X X .
E - Circ Data X X X . X
F - Circ Alg X X X X .
H - Alph Data X X . X
I - Alph Alg X X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

Interfaces
are stable

Effect of
change is
localized

43

29 September 2014

Comparison

• Design 2 hides information better
• Interfaces are unaffected by likely

change scenarios
• Changes required to implement likely

change scenarios are local

44

29 September 2014

Summary

• DSMs are a structured way of thinking about
the value of design
• Are design decisions isolated to a module, or do they

affect several modules?
• How do modules depend on interfaces?
• On which parts of the system can I experiment

independently?
• How much value is there in the experiments?

• Technical potential of the module

• EDSMs incorporate change scenarios
• How are interfaces and code affected by change?

• More to explore
• Baldwin and Clark – discuss value of modularity
• Sullivan and Griswold – apply B&C to S/W, introduce

EDSMs
• Lattix LDM tool – derives DSMs from code

45

