
toad

Fall 2014

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Contracts and Exceptions

Jonathan Aldrich Charlie Garrod

toad 215-214

Administrivia

• Homework 2 due at 11:59pm tonight

toad 315-214

Review: In Tuesday’s Lecture…

• What design principles did we discuss?

• What GRASP heuristics were described?

toad 415-214

Today’s Lecture

• 214: managing complexity, from programs to systems
� Threads and concurrency
� Object-oriented programming
� Analysis and modeling
� Design

toad 515-214

Today’s Lecture: Learning Goals

• Use exceptions to write robust programs

• Review formal pre- and post-condition specifications
(from 15-122)

• Use class invariants to reason about object representation

• Apply behavioral subtyping to reason about the behavior of
subclasses and subtypes

• Check programs with assertions and static analysis tools

toad 615-214

What does this code do?

FileInputStream fIn = new FileInputStream(filename);
if (fIN == null) {
switch (errno) {
case _ENOFILE:

System.err.println(“File not found: “ + …);
return -1;

default:
System.err.println(“Something else bad happened: “ + …);
return -1;

}
}
DataInput dataInput = new DataInputStream(fIn);
if (dataInput == null) {
System.err.println(“Unknown internal error.”);
return -1; // errno > 0 set by new DataInputStream

}
int i = dataInput.readInt();
if (errno > 0) {
System.err.println(“Error reading binary data from file”);
return -1;

} // The slide lacks space to close the file. Oh well.
return i;

toad 715-214

Compare to:

try {
FileInputStream fileInput = new FileInputStream(filename);
DataInput dataInput = new DataInputStream(fileInput);
int i = dataInput.readInt();
fileInput.close();
return i;

} catch (FileNotFoundException e) {
System.out.println("Could not open file " + filename);
return -1;

} catch (IOException e) {
System.out.println("Error reading binary data from file "

+ filename);
return -1;

}

toad 815-214

Exceptions

• Exceptions notify the caller of an exceptional circumstance
(usually operation failure)

• Semantics
� An exception propagates up the function-call stack until main()

is reached or until the exception is caught

• Sources of exceptions:
� Programmatically throwing an exception
� Exceptions thrown by the Java Virtual Machine

toad 915-214

Exceptional control-flow

• Prints:
Top
Caught index out of bounds

try {
System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (IndexOutOfBoundsException e) {
System.out.println("Caught index out of bounds");

}

toad 1015-214

Exceptional control-flow, part 2

• Prints:
Top
Caught index out of bounds

public static void test() {
try {

System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (NegativeArraySizeException e) {
System.out.println("Caught negative array size");

}
}

public static void main(String[] args) {
try {

test();
} catch (IndexOutOfBoundsException e) {

System.out.println"("Caught index out of bounds");
}

}

toad 1115-214

The finally keyword

• The finally block always runs after try/catch:

• Prints:
Top
Caught index out of bounds
Finally got here

try {
System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (IndexOutOfBoundsException e) {
System.out.println("Caught index out of bounds");

} finally {
System.out.println("Finally got here");

}

toad 1215-214

The finally keyword, part 2

• The finally block always runs after try/catch:

• Prints:
Top
Bottom
Finally got here

try {
System.out.println("Top");
int[] a = new int[10];
a[2] = 2;
System.out.println("Bottom");

} catch (IndexOutOfBoundsException e) {
System.out.println("Caught index out of bounds");

} finally {
System.out.println("Finally got here");

}

toad 1315-214

The exception hierarchy

Throwable

Exception

RuntimeException IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException
… …

. . .

Object

toad 1415-214

Checked and unchecked exceptions

• Unchecked exception: any subclass of RuntimeException
� Indicates an error which is highly unlikely and/or typically

unrecoverable

• Checked exception: any subclass of Exception that is not a
subclass of RuntimeException
� Indicates an error that every caller should be aware of and

explicitly decide to handle or pass on

toad 1515-214

Creating and throwing your own exceptions

• Methods must declare any checked exceptions they might
throw

• If your class extends java.lang.Throwable you can throw it:
if (someErrorBlahBlahBlah) {

throw new MyCustomException(“Blah blah blah”);
}

toad 1615-214

Benefits of exceptions

• Provide high-level summary of error and stack trace
� Compare: core dumped in C

• Can’t forget to handle common failure modes
� Compare: using a flag or special return value

• Can optionally recover from failure
� Compare: calling System.exit()

• Improve code structure
� Separate routine operations from error-handling

• Allow consistent clean-up in both normal and exceptional
operation

toad 1715-214

Guidelines for using exceptions

• Catch and handle all checked exceptions
� Unless there is no good way to do so…

• Use runtime exceptions for programming errors

• Other good practices
� Do not catch an exception without (at least somewhat) handling

the error
� When you throw an exception, describe the error
� If you re-throw an exception, always include the original

exception as the cause

toad 1815-214

Testing for presence of an exception

import org.junit.*;
import static org.junit.Assert.fail;

public class Tests {

@Test
public void testSanityTest(){

try {
openNonexistingFile();
fail("Expected exception");

} catch(IOException e) { }
}

@Test(expected = IOException.class)
public void testSanityTestAlternative() {

openNonexistingFile();
}

}

toad 1915-214

Formal Specifications

/*@ requires len >= 0 && array != null && array.length >= len;

@ ensures \result ==

@ (\sum int j; 0 <= j && j < len; array[j]);

@*/

int total(int array[], int len);

toad 2015-214

/*@ requires len >= 0 && array != null && array.length >= len;

@ ensures \result ==

@ (\sum int j; 0 <= j && j < len; array[j]);

@*/

int total(int array[], int len) {
assert len >= 0;
assert array != null && array.length >= len;
int sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i]; i = i + 1;
}
assert …;
return sum;

}

Runtime Checking of Specifications with Assertions

java -ea Main

Could write a function to use here,
but it would be the same as total.
In practice, not useful unless the
assertion is simpler than the
function..

toad 2115-214

/*@ requires len >= 0 && array != null && array.length >= len;

@ ensures \result ==

@ (\sum int j; 0 <= j && j < len; array[j]);

@*/

int total(int array[], int len) {
if (len < 0 || array == null || array.length != len)

throw new IllegalArgumentException(…);
int sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i]; i = i + 1;
}

return sum;
}

Runtime Checking with Exceptions

Check arguments
even when assertions
are disabled.
Good for robust
libraries!

toad 2215-214

Example Java I/O Library Specification (abridged)

public int read(byte[] b, int off, int len) throws IOException

� Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

� If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

� The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

� In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:

� IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

� NullPointerException - If b is null.

� IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

toad 2315-214

Example Java I/O Library Specification (abridged)

public int read(byte[] b, int off, int len) throws IOException

� Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

� If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

� The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

� In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:

� IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

� NullPointerException - If b is null.

� IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

• Multiple error cases, each with a
precondition

• Includes “runtime exceptions”
not in throws clause

• Specification of return
• Timing behavior (blocks)
• Case-by-case spec

• len=0 � return 0
• len>0 && eof � return -1
• len>0 && !eof �return >0

• Exactly where the data is stored
• What parts of the array are not

affected

toad 2415-214

Textual Specifications

List:

boolean addAll(int index, Collection<? extends E> c)

Inserts all of the elements in the specified collection into this list at the specified position
(optional operation). Shifts the element currently at that position (if any) and any subsequent
elements to the right (increases their indices). The new elements will appear in this list in the
order that they are returned by the specified collection's iterator. The behavior of this
operation is undefined if the specified collection is modified while the operation is in progress.
(Note that this will occur if the specified collection is this list, and it's nonempty.)

Parameters:
index - index at which to insert the first element from the specified collection
c - collection containing elements to be added to this list

Returns:
true if this list changed as a result of the call

Throws:
UnsupportedOperationException - if the addAll operation is not supported by this

list
ClassCastException - if the class of an element of the specified collection

prevents it from being added to this list
NullPointerException - if the specified collection contains one or more null

elements and this list does not permit null elements, or if the specified
collection is null

IllegalArgumentException - if some property of an element of the specified
collection prevents it from being added to this list

IndexOutOfBoundsException - if the index is out of range (index < 0 || index >
size())

toad 2515-214

Data Structure Invariants (cf. 122)
struct list {

elem data;
struct list* next;

};
struct queue {

list front;
list back;

};

toad 2615-214

Data Structure Invariants (cf. 122)
struct list {

elem data;
struct list* next;

};
struct queue {

list front;
list back;

};
bool is_queue(queue q) {

if (q == NULL) return false;
if (q->front == NULL || q->back == NULL) return false;
return is_segment(q->front, q->back);

}

toad 2715-214

Data Structure Invariants (cf. 122)
struct list {

elem data;
struct list* next;

};
struct queue {

list front;
list back;

};
bool is_queue(queue q) {

if (q == NULL) return false;
if (q->front == NULL || q->back == NULL) return false;
return is_segment(q->front, q->back);

}
void enq(queue q, elem s)
//@requires is_queue(q);
//@ensures is_queue(q);
{

list l = alloc(struct list);
q->back->data = s;
q->back->next = l;
q->back = l; }

toad 2815-214

Data Structure Invariants (cf. 122)

• Properties of the data structure

• Should always hold before and after method execution

• May be invalidated temporarily during method execution

void enq(queue q, elem s)
//@requires is_queue(q);
//@ensures is_queue(q);
{ … }

toad 2915-214

Class Invariants

• Properties about the fields of an object

• Established by the constructor

• Should always hold before and after execution of public
methods

• May be invalidated temporarily during method execution

toad 3015-214

Class Invariants

• Properties about the fields of an object

• Established by the constructor

• Should always hold before and after execution of public
methods

• May be invalidated temporarily during method execution

public class SimpleSet {

int contents[];
int size;

//@ ensures sorted(contents);
SimpleSet(int capacity) { … }

//@ requires sorted(contents);
//@ ensures sorted(contents);
boolean add(int i) { … }

//@ requires sorted(contents);
//@ ensures sorted(contents);
boolean contains(int i) { … }

}

public class SimpleSet {

int contents[];
int size;

//@invariant sorted(contents);

SimpleSet(int capacity) { … }

boolean add(int i) { … }

boolean contains(int i) { … }
}

toad 3115-214

Behavioral Subtyping (Liskov Substitution Principle)

Let q(x) be a property provable about objects x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T.

Barbara Liskov
• An object of a subclass should be substitutable for an object of its

superclass

• Known already from types:

• May use subclass instead of superclass

• Subclass can add, but not remove methods

• Overriding method must return same or subtype

• Overriding method may not throw additional exceptions

• Applies more generally to behavior:

• A subclass must fulfill all contracts that the superclass does

• Same or stronger invariants

• Same or stronger postconditions for all methods

• Same or weaker preconditions for all methods

toad 3215-214

Behavioral Subtyping (Liskov Substitution Principle)

abstract class Vehicle {
int speed, limit;

//@ invariant speed < limit;

//@ requires speed != 0;
//@ ensures speed < \old(speed)
void brake();

}

class Car extends Vehicle {
int fuel;
boolean engineOn;
//@ invariant speed < limit;
//@ invariant fuel >= 0;

//@ requires fuel > 0 && !engineOn;
//@ ensures engineOn;
void start() { … }

void accelerate() { … }

//@ requires speed != 0;
//@ ensures speed < \old(speed)
void brake() { … }

}
Subclass fulfills the same invariants (and additional ones)
Overridden method has the same pre and postconditions

toad 3315-214

Behavioral Subtyping (Liskov Substitution Principle)

class Car extends Vehicle {
int fuel;
boolean engineOn;
//@ invariant fuel >= 0;

//@ requires fuel > 0 && !engineOn;
//@ ensures engineOn;
void start() { … }

void accelerate() { … }

//@ requires speed != 0;
//@ ensures speed < old(speed)
void brake() { … }

}

class Hybrid extends Car {
int charge;
//@ invariant charge >= 0;

//@ requires (charge > 0 || fuel > 0)
&& !engineOn;

//@ ensures engineOn;
void start() { … }

void accelerate() { … }

//@ requires speed != 0;
//@ ensures speed < \old(speed)
//@ ensures charge > \old(charge)
void brake() { … }

}

Subclass fulfills the same invariants (and additional ones)
Overridden method start has weaker precondition
Overridden method break has stronger postcondition

toad 3415-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

//methods
}

class Square extends Rectangle {
Square(int w) {

super(w, w);
}

}

Is Square a behavioral subtype of Rectangle?

toad 3515-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
//@ invariant h>0 && w>0;
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

//methods
}

class Square extends Rectangle {
//@ invariant h==w;
Square(int w) {

super(w, w);
}

}

Is Square a behavioral subtype of Rectangle?

toad 3615-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
//@ invariant h>0 && w>0;
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

void scale(int factor) {
w=w*factor;
h=h*factor;

}
}

class Square extends Rectangle {
//@ invariant h>0 && w>0;
//@ invariant h==w;
Square(int w) {

super(w, w);
}

}

Is Square a behavioral subtype of Rectangle?

toad 3715-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
//@ invariant h>0 && w>0;
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

void scale(int factor) {
w=w*factor;
h=h*factor;

}

void setWidth(int neww) {
w=neww;

}
}

class Square extends Rectangle {
//@ invariant h>0 && w>0;
//@ invariant h==w;
Square(int w) {

super(w, w);
}

}

Is Square a behavioral subtype of Rectangle?

toad 3815-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {
//@ invariant h>0 && w>0;
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}

void scale(int factor) {
w=w*factor;
h=h*factor;

}

void setWidth(int neww) {
w=neww;

}
}

class Square extends Rectangle {
//@ invariant h>0 && w>0;
//@ invariant h==w;
Square(int w) {

super(w, w);
}

}

With these methods, Square is not
a behavioral subtype of Rectangle

← Invalidates stronger
invariant (w==h) in subclass

class GraphicProgram {
void scaleW(Rectangle r, int factor) {

r.setWidth(r.getWidth() * factor);
}

}

toad 3915-214

Static Analysis

toad 4015-214

Stupid Bugs

public class CartesianPoint {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }
public boolean equals(CartesianPoint that) {

return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

}
}

toad 4115-214

F
in

d
B

u
g

s

toad 4215-214

Stupid Subtle Bugs

public class Object {
public boolean equals(Object other) { … }

// other methods…
}

public class CartesianPoint extends Object {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }
public boolean equals(CartesianPoint that) {

return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

}
}

classes with no
explicit superclass
implicitly extend
Object

can’t change
argument type
when overriding

This defines a
different equals
method, rather
than overriding
Object.equals()

toad 4315-214

Method dispatch

Example:

Object o1 = new CartesianPoint(1,2);
Object o2 = new CartesianPoint(1,2);
boolean iAmFalse = o1.equals(o2);

• Step 1 (compile time): determine what type to look in
� Look at the static type (Object) of the receiver (o1)

• Step 2 (compile time): find the method in that type
� Find the methods in the interface/class with the right name

boolean equals(Object other);

� Keep the method only if it is accessible
• e.g. remove private methods

� Keep the method only if the arguments are applicable to the
actual argument types

� Keep the method whose argument types are most specific
� Error if there is no such method

toad 4415-214

Method dispatch

Example:

Object o1 = new CartesianPoint(1,2);
Object o2 = new CartesianPoint(1,2);
boolean iAmFalse = o1.equals(o2);

• Step 3 (run time): Determine the run-time type of the
receiver
� Look at the object in the heap and get its class

• Step 4 (run time): Locate the method implementation to
invoke
� Look in the class for an implementation of the method we found

statically (step 2)
• In this example we get the equals method inherited from Object

• This method checks if they are the identical object: false
• If we had overridden equals properly, we would get the version in
CartesianPoint (and it would hopefully return true)

� Invoke the method

toad 4515-214

Method dispatch

Example:

CartesianPoint o1 = new CartesianPoint(1,2);
CartesianPoint o2 = new CartesianPoint(1,2);
boolean iAmTrue = o1.equals(o2);

• Step 1 (compile time): determine what type to look in
� Look at the static type (CartesianPoint) of the receiver (o1)

• Step 2 (compile time): find the method in that type
� Find the methods in the interface/class with the right name

boolean equals(Object other); // inherited
boolean equals(CartesianPoint other); // most specific

� Keep the method only if it is accessible
• e.g. remove private methods

� Keep the method only if the arguments are applicable to the
actual argument types

� Keep the method whose argument types are most specific
� Error if there is no such method

toad 4615-214

Method dispatch

Example:

CartesianPoint o1 = new CartesianPoint(1,2);
CartesianPoint o2 = new CartesianPoint(1,2);
boolean iAmFalse = o1.equals(o2);

• Step 3 (run time): Determine the run-time type of the
receiver
� Look at the object in the heap and get its class

• Step 4 (run time): Locate the method implementation to
invoke
� Look in the class for an implementation of the method we found

statically (step 2)
• In this example we get the equals method from CartesianPoint

• But this is fragile; it depends on the receiver and argument static
types being right!

� Invoke the method

toad 4715-214

Fixing the Bug

public class CartesianPoint {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }

@Override
public boolean equals(Object o) {

if (!(o instanceof CartesianPoint)
return false;

CartesianPoint that = (CartesianPoint) o;

return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

}
}

Declare our intent
to override;
Eclipse checks
that we did it

Use the same
argument type as
the method we
are overriding

Check if the
argument is a
CartesianPoint

Create a variable
of the right type,
initializing it with
a cast

toad 4815-214

C
h

e
c
k
S

ty
le

toad 4915-214

Static Analysis

• Analyzing code without executing it (automated inspection)

• Looks for bug patterns

• Attempts to formally verify specific aspects

• Point out typical bugs or style violations
� NullPointerExceptions
� Incorrect API use
� Forgetting to close a file/connection
� Concurrency issues
� And many, many more (over 250 in FindBugs)

• Integrated into IDE or build process

• FindBugs and CheckStyle open source, many commercial
products exist

toad 5015-214

Example FindBugs Bug Patterns

•Correct equals()

•Use of ==

•Closing streams

•Illegal casts

•Null pointer dereference

•Infinite loops

•Encapsulation problems

•Inconsistent synchronization

• Inefficient String use

•Dead store to variable

toad 5115-214

Bug finding

toad 5215-214

Abstract Interpretation

• Static program analysis is the systematic examination of
an abstraction of a program’s state space

• Abstraction
� Don’t track everything! (That’s normal interpretation)
� Track an important abstraction

• Systematic
� Ensure everything is checked in the same way

Details on how this works in 15-313

toad 5315-214

Toad’s Take-Home Messages

• Exceptions help with remembering errors, signaling
them across function boundaries

• Class invariants check the representation of a class

• Behavioral subtyping relates the specification of a
subclass to its superclass

• Static analysis tools can help find bugs, check code style

