
toad

Fall 2014

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Design: From Systems to Objects

Jonathan Aldrich Charlie Garrod

toad 215-214

Administrivia

• Homework 1 due at 11:59pm tonight

• Homework 2 coming tomorrow

toad 315-214

Key concepts from Tuesday

toad 415-214

Review: Inheritance Self-Evaluation Questions

1. Concept: what is the purpose of inheritance?

2. Practice: what does the following code print?

class Foo {
public void frob() {

System.out.print(‘A’);
}
public void baz() {

System.out.print(‘E’);
frob();
System.out.print(‘S’);

}
}

public class Bar extends Foo {
public void frob() {

System.out.print(‘U’);
}
public void baz() {

System.out.print(‘R’);
super.baz();
System.out.print(‘E’);

}
public static void main(String args[]) {

Foo foo = new Bar();
foo.baz();

}
}

toad 515-214

Requirements and Design Overview

• Requirements Engineering
� Requirements Elicitation (see 15-313)

• Functional Requirements (often as Use Cases)
• Quality Attributes (often as Quality Attribute Scenarios)

� (Object-Oriented) Requirements Analysis
• Domain Modeling

� System Specification
• System Sequence Diagrams
• Behavioral Contracts

• (Object-Oriented) Software Design
� Architectural Design (mostly in 15-313)
� Responsibility Assignment

• Object sequence diagrams
• Object model (class diagrams)

� Method specifications / code contracts

toad 615-214

Today’s Lecture: Learning Goals

• Know the steps involved in specifying a software system
and refining that system specification into an object design

• Describe the dynamics of a use case with a System
Sequence Diagram

• Specify system operations with behavioral contracts

• Derive interaction diagrams and an object model by
assigning responsibilities

toad 715-214

Requirements and Design Overview

• Requirements Engineering
� Requirements Elicitation (see 15-313)

• Functional Requirements (often as Use Cases)
• Quality Attributes (often as Quality Attribute Scenarios)

� (Object-Oriented) Requirements Analysis
• Domain Modeling

� System Specification
• System Sequence Diagrams
• Behavioral Contracts

• (Object-Oriented) Software Design
� Architectural Design (mostly in 15-313)
� Responsibility Assignment

• Object sequence diagrams
• Object model (class diagrams)

� Method specifications / code contracts

toad 815-214

System Specification

Goal: understand (and specify) what the system should do

• System Sequence Diagram
� What are the operations on the system, performed by the user?

• Examples: “run the program with input I”, “Select menu command C”

� In what order do they occur?
• Must compile a file before running it

• Behavioral Contracts
� Under what conditions can each interaction take place?

• A file must typecheck correctly before you can compile it

� What is the result of the interaction?
• a .class file is created
• The .class file is named after the class in the source code
• …

toad 915-214

System Sequence Diagrams

• A System Sequence Diagram is a picture that shows, for
one scenario of use, who interacts with the system, and the
sequence of events that occur on the system’s boundary

• e.g. use case: A commit and pull request using GitHub
(aside: distributed VCS for large projects)
1. Contributor modifies source code, commits changes to her own
fork of the GitHub repository.
2. GitHub applies commit to the fork's history and acknowledges
the commit.
3. Contributor initiates a pull request, describing the changes she
has committed.
4. GitHub acknowledges the pull request and returns an ID for
the pull request, and notifies the Committer of the pull request.
5. Committer inspects Contributor's work and accepts the pull
request into the main repository, notifying GitHub of the accepted
pull request and any comments associated with the acceptance.
6. GitHub notifies the Contributor that her work was accepted.

toad 1015-214

System Sequence Diagrams

• A System Sequence Diagram is a picture that shows, for
one scenario of use, who interacts with the system, and the
sequence of events that occur on the system’s boundary

: Contributor : GitHub

commit(changes)

ack

make pull request (description)

request accepted(id)

id

: Committer

pull request notification(id)

accept PR(id, comments)

toad 1115-214

Sequence Diagram for the Point of Sale Example

• Exercise (paper): write a System Sequence Diagram for the
Point of Sale system

• Use Case: Successful Customer Checkout
1. Customer arrives at POS checkout with goods to purchase
2. Cashier starts a new sale
3. Cashier enters item identifier and quantity
4. System records sale line item and presents item description,

price, and running total
5. Cashier repeats steps 3-4 until all goods have been entered
6. System presents total with taxes calculated
7. Cashier tells customer the total, and asks for payment
8. Customer pays and System provides change and a receipt

toad 1215-214

Sequence Diagram for the Point of Sale Example

: Cashier : System

makeNewSale

enterItem(itemID, quantity)

description, price, total

endSale

total with taxes

makePayment(amount)

change due, receipt

toad 1315-214

Behavioral Contracts: What do These Operations Do?

• To design, we need a spec
� Preconditions
� Postconditions

• We can write a behavioral
contract
� Like a pre-/post-condition

specification for code
� Often written in natural

language
� Focused on system interfaces

• may or may not be methods

: Cashier : System

makeNewSale

enterItem(itemID, quantity)

description, price, total

endSale

total with taxes

makePayment(amount)

change due, receipt

toad 1415-214

Example Point of Sale Contract

Operation: makeNewSale()
Preconditions: There is not currently a sale in progress

Postconditions: - A Sale instance s was created
- s was associated with a Register

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

toad 1515-214

A Point of Sale Contract

• Contract structure
� Operation name, parameters
� Requirement or use case this

is a part of (discussed in 15-313)

� Preconditions
� Postconditions

• Which contracts to write?
� Operations that are complex or subtle
� Operations that not everyone understands
� Simple/obvious operations are often not given contracts in practice

• Writing postconditions
� Written in past tense (a post-condition)
� Describe changes to domain model

• Instance creation and deletion
• Attribute modification
• Associations formed and broken

• Easy to forget associations when creating objects!

Operation: makeNewSale()
Preconditions: There is not currently a

sale in progress

Postconditions: - A Sale instance s was
created
- s was associated with a
Register

toad 1615-214

Exercise (paper): Write a Point of Sale Contract

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

Operation: enterItem(itemID : ItemID, quantity : integer)
Preconditions:

Postconditions:

toad 1715-214

Example Point of Sale Contracts

Operation: makeNewSale()
Preconditions: There is not currently a sale in

progress

Postconditions: - A Sale instance s was created
- s was associated with a Register

Operation: enterItem(itemID : ItemID, quantity : integer)
Preconditions: There is a sale s in progress

Postconditions: - A SalesLineItem instance sli was created
- sli was associated with the sale s
- sli.quantity became quantity
- sli was associated with a ProjectDescription,
based on itemID match

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

toad 1815-214

Requirements and Design Overview

• Requirements Engineering
� Requirements Elicitation (see 15-313)

• Functional Requirements (often as Use Cases)
• Quality Attributes (often as Quality Attribute Scenarios)

� (Object-Oriented) Requirements Analysis
• Domain Modeling

� System Specification
• System Sequence Diagrams
• Behavioral Contracts

• (Object-Oriented) Software Design
� Architectural Design (mostly in 15-313)
� Responsibility Assignment

• Object sequence diagrams
• Object model (class diagrams)

� Method specifications / code contracts

toad 1915-214

Responsibilities

• Responsibilities are obligations that an object has to fulfill

• Two types of responsibilities:
� knowing
� doing

• Doing responsibilities of an object include:
� doing something itself, such as creating an object or doing a

calculation
� initiating action in other objects
� controlling and coordinating activities in other objects

• Knowing responsibilities of an object include:
� knowing about private encapsulated data
� knowing about related objects
� knowing about things it can derive or calculate

toad 2015-214

Responsibility Assignment

• Consider the system’s operations
� Found in System Sequence Diagrams and Behavioral Contracts

• Divide each system operation into responsibilities
� Knowing, doing, etc.

• Assign each responsibility to an object
� Knowing

• Domain-related “knowing” responsibilities already in domain model
• Implementation-related “knowing” responsibilities will be new

� Doing
• Become methods in the implementation

• Allocate object responsibilities to classes
� Two objects may have the same class � merge responsibilities
� A class may have a superclass � divide responsibilities

• How to assign
� Drive by quality attributes
� General Responsibility Assignment Software Patterns provide

heuristics (GRASP patterns for short)

toad 2115-214

Responsibility Assignment, Graphically

Operation
(from SSDs,
Behavioral
contracts)

Responsibilities

Object
Interaction

Diagram

Class
Diagram

GRASP heuristics

quality
attribute
driven

refinement

toad 2215-214

Example Point of Sale Contract

Operation: makeNewSale()
Preconditions: There is not currently a sale in

progress

Postconditions: - A Sale instance s was created
- s was associated with a Register

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

toad 2315-214

Example Point of Sale Contracts

Operation: makeNewSale()
Preconditions: There is not currently a sale in

progress

Postconditions: - A Sale instance s was created
- s was associated with a Register

Operation: enterItem(itemID : ItemID, quantity : integer)
Preconditions: There is a sale s underway

Postconditions: - A SalesLineItem instance sli was created
- sli was associated with the sale s
- sli.quantity became quantity
- sli was associated with a ProjectDescription,
based on itemID match

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

toad 2415-214

What Happens to the Domain Model?

• Methods are added

• New classes, attributes, and associations are discovered

• Attributes are given types

• Associations are given field names and direction

• New inheritance relationships are created for flexibility and
reuse

• Methods and fields are divided among superclass and
subclasses

toad 2515-214

Toad’s Take-Home Messages

• System specification identifies what the system is to do
� System sequence diagrams for each scenario (use case)
� Behavioral contracts for each operation

• specify pre- and post-conditions in terms of domain model

• Responsibility Assignment produces a concrete design
� Object interaction diagrams
� Object model (a class diagram)

• Object model vs. Domain model
� Methods are added
� New classes, fields, associations are added for implementations
� Fields and associations are further specified
� New inheritance relations are added for reuse

• How do we know how to best assign responsibilities?
� Coming soon!

Wait, don’t get up yet!

