
toad

Fall 2014

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Domain Modeling and Specifying

System Behavior

Jonathan Aldrich Charlie Garrod

toad 215-214

Administrivia: Architecture Review Study

• What is the impact of structure architectural reviews on learning?

• To answer this question, later in the semester the TAs and some
guests will review one of your assignments.

• We would like to use data from the reviews, assignments, tests,
and quizzes.
� All data will be anonymized
� Optional. No impact on grading, profs/TAs will not know who gave

consent.

• If you would like to participate:
� Sign consent form
� Get paid $10

toad 315-214

Review: From the Previous Lecture…

• What are some benefits of specifications?

• What is testing good for?

• How do we select good test cases?

toad 415-214

Exploring Continuous Integration

• When is continuous integration useful? Why not just test
locally?

toad 515-214

Exploring Continuous Integration

• When is continuous integration useful? Why not just test
locally?
� In a large project, should enforce QA practices centrally

• Otherwise there will always be someone who doesn’t comply

� There may be too many tests to run locally
• Sheer volume of tests
• Many configurations, environments
• A CI server can run them all overnight

� Want to standardize testing
• Avoid any differences between developer machines

toad 615-214

This lecture

• 214: managing complexity, from programs to systems
� Threads and concurrency
� Object-oriented programming
� Analysis and modeling
� Design

Design

Objects

Analysis

Concurrency

toad 715-214

Steps in the Design Process

• Precondition: understand functional requirements
� Domain modeling
� System sequence diagrams
� Behavioral contracts

• Precondition: understand quality attribute requirements

• Design a logical architecture

• Design a behavioral model
� (Sub)system sequence diagrams
� Behavioral contracts

• Responsibility assignment

• Interface design

• Algorithm and data structure design – pseudo-code

toad 815-214

Today’s Lecture: Learning Goals

• Review specification, testing approaches,
and continuous integration �

• Benefits of domain modeling

• Developing and documenting Domain Models

• Specifying program interactions with System Sequence
Diagrams

• Specifying behavioral contracts for domain operations

toad 915-214

Domain Modeling

• Identify and relate the key concepts in a domain
� Thus also called “conceptual modeling”

• Part of Object-Oriented Analysis
� i.e. analysis of the problem space

• Why domain modeling?
� You may not know the domain well

• Details matter! Does every student have exactly one major?

� You don’t want to forget key concepts
• A student’s home college affects registration

� You want to agree on a common set of terms
• freshman/sophomore vs. first-year/second-year

� Prepare to design
• Domain concepts are good candidates for OO classes

• A domain model is a visual representation of the concepts
and relationships in a domain

toad 1015-214

Domain Model Distinctions

• Vs. data model
� Not necessarily data to be stored

• Vs. Java classes
� Only includes real domain concepts
� No “window” in the UI, no database, etc.

toad 1115-214

Domain Modeling Steps

• Identify concepts

• Establish a common vocabulary

• Add associations between concepts

• Assign attributes to the concepts

• Find commonalities between concepts

toad 1215-214

Running Example

© CC License by Cyberslayer on Flickr

toad 1315-214

Running Example

• Point of sale (POS) or checkout is the place where a retail
transaction is completed. It is the point at which a customer
makes a payment to a merchant in exchange for goods or
services. At the point of sale the merchant would use any of a
range of possible methods to calculate the amount owing - such as
a manual system, weighing machines, scanners or an electronic
cash register. The merchant will usually provide hardware and
options for use by the customer to make payment. The merchant
will also normally issue a receipt for the transaction.

• For small and medium-sized retailers, the POS will be customized
by retail industry as different industries have different needs. For
example, a grocery or candy store will need a scale at the point of
sale, while bars and restaurants will need to customize the item
sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to
cater to different verticals, such as inventory, CRM, financials,
warehousing, and so on, all built into the POS software. Prior to
the modern POS, all of these functions were done independently
and required the manual re-keying of information, which resulted
in a lot of errors. http://en.wikipedia.org/wiki/Point_of_sale

toad 1415-214

Read description carefully, look for nouns and verbs

• Point of sale (POS) or checkout is the place where a retail
transaction is completed. It is the point at which a customer
makes a payment to a merchant in exchange for goods or
services. At the point of sale the merchant would use any of a
range of possible methods to calculate the amount owing - such as
a manual system, weighing machines, scanners or an electronic
cash register. The merchant will usually provide hardware and
options for use by the customer to make payment. The merchant
will also normally issue a receipt for the transaction.

• For small and medium-sized retailers, the POS will be customized
by retail industry as different industries have different needs. For
example, a grocery or candy store will need a scale at the point of
sale, while bars and restaurants will need to customize the item
sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to
cater to different verticals, such as inventory, CRM, financials,
warehousing, and so on, all built into the POS software. Prior to
the modern POS, all of these functions were done independently
and required the manual re-keying of information, which resulted
in a lot of errors. http://en.wikipedia.org/wiki/Point_of_sale

toad 1515-214

Hints for Identifying Concepts

• Read the requirements description, look for nouns

• Reuse existing models

• Use a category list
� tangible things: cars, telemetry data, terminals, …
� roles: mother, teacher, researcher
� events: landing, purchase, request
� interactions: loan, meeting, intersection, …
� structure, devices, organizational units, …

• Analyze typical use scenarios, analyze behavior

• Brainstorming

• Collect first; organize, filter, and revise later

toad 1615-214

Identifying Concepts for the Point of Sale Example

• Let’s identify some concepts

• Point of Sale (POS) Scenario (sometimes called a Use Case)
1. Customer arrives at POS checkout with goods to purchase
2. Cashier starts a new sale
3. Cashier enters item identifier
4. System records sale line item and presents item description,

price, and running total
5. Cashier repeats steps 3-4 until all goods have been entered
6. System presents total with taxes calculated
7. Cashier tells customer the total, and asks for payment
8. Customer pays and System provides change and a receipt

toad 1715-214

First Steps toward a Conceptual Model

StoreRegister SaleItem

Cash
Payment

Sales
LineItem

Cashier Customer

Product
Catalog

Product
Description

Ledger

Identify concepts

toad 1815-214

Identifying Relevant Concepts

• The domain model should contain only relevant concepts

• Remove concepts irrelevant for the problem

• Remove vague concepts (e.g., "system")

• Remove redundant concepts, agree on name
� Pick whatever name is used in the real domain

• Remove implementation constructs

• Distinguish attributes (strings, numbers) and concepts

• Distinguish operations and concepts

toad 1915-214

Organize Concepts

• Identify related elements

• Model relationships through specialization ("is a") or
associations ("related to")

toad 2015-214

Classes vs. Attributes

• "If we do not think of some conceptual class X as text or a
number in the real world, it's probably a conceptual class,
not an attribute"

• Avoid type annotations

Sale

store

Sale Store

phoneNr
vs.

toad 2115-214

Associations

• When do we care about a relationship between two objects?
(in the real world)
� Guideline: is this a relationship that needs to be remembered?

• Name with a verb phrase, as in “X –verb phrase� Y”

• Include cardinality (aka multiplicity) where relevant

ItemStore
stocks

*

Cardinality of the role

1

toad 2215-214

Specialization

• Sometimes several concepts are specializations of a more
general concept

• We avoid repeating shared attributes and associations by
putting them in the general concept

• Specialized concepts inherit these attributes and
associations from their parent

Payment

amount

CashPayment CashPayment

toad 2315-214

OO Analysis Benefit: Low Representational Gap (Congruence)

• The domain model is familiar to domain experts
� Simpler than code
� Uses familiar names, relationships

• Classes in the object model and implementation will be
inspired by domain model
� similar names
� possibly similar connections and responsibilities

• Benefits of congruence
� Facilitates understanding of design and implementation
� Facilitates traceability from problem to solution
� Facilitates evolution

• Small changes in the domain more likely to lead to small changes in
code

toad 2415-214

Hints for Object-Oriented Analysis

• A domain model provides vocabulary
� for communication among developers, testers, clients, domain

experts, …
� Agree on a single vocabulary, visualize it

• Focus on concepts, not software classes, not data
� ideas, things, objects
� Give it a name, define it and give examples (symbol, intension,

extension)
� Add glossary
� Some might be implemented as classes, other might not

• There are many choices

• The model will never be perfectly correct
� that’s okay
� start with a partial model, model what's needed
� extend with additional information later
� communicate changes clearly
� otherwise danger of "analysis paralysis"

toad 2515-214

Documenting a Domain Model

• Typical: UML class diagram
� Simple classes without methods and essential attributes only
� Associations, inheritance, … as needed
� Do not include implementation-specific details, e.g., types,

method signatures
� Include notes as needed

• Complement with examples, glossary, etc as needed

• Formality depends on size of project

• Expect revisions

toad 2615-214

Two uses for class diagrams

• Domain modeling: Draw a diagram that represents the
concepts in the domain under study
� Conceptual classes reflect concepts in the domain
� Little or no regard for software that might implement it

• Software design: Diagram describes actual
implementation classes

Understanding the intended perspective is
crucial to drawing and reading class diagrams

toad 2715-214

Associations

• Associations represent relationships between instances of
classes

• Domain modeling: Associations represent conceptual
relationships

• Software design: Associations represent pointers/fields
between related classes

toad 2815-214

Associations

• Each association has two ends
� Each end can be named with a label called role name
� An end also has a multiplicity: How many objects participate in

the given relationship
• General case: give upper and lower bound in lower..upper notation
• Abbreviations: * = 0..infinity, 1 = 1..1
• Most common multiplicities: 1, *, 0..1

toad 2915-214

Associations
Unidirectional vs bidirectional

• Arrows in association lines indicate navigability
� Only one arrow: unidirectional association
� No or two arrows: bidirectional association

• Software design: arrows indicate which objects contain a
pointer to the other objects

• Arrows serve no useful purpose in domain modeling

• For bidirectional associations, the two navigations must be
inverses of each other

toad 3015-214

Unidirectional
Associations

toad 3115-214

Class Diagrams: Attributes

• Attributes are very similar to associations
� Domain modeling: A customer’s name attribute indicates that

customers have names
� Software design: customer has a field for its name
� UML syntax for attributes:

visibility name : type = defaultValue
• Details may be omitted

toad 3215-214

Class Diagrams: Attributes vs Associations

• Attributes describe non-object-oriented data
� Integers, strings, booleans, …

• For domain modeling this is the only difference

• Software design
� Attributes imply navigability from type to attribute only
� Implied that type contains solely its own copy of the attribute

objects

toad 3315-214

Class Diagrams: Operations

• Operations are the processes that a class knows to carry out

• Most obviously correspond to methods on a class

• Full syntax:

visibility name(parameter-list) : return-type
� visibility is + (public), # (protected), or - (private)
� name is a string
� parameter-list contains comma-separated parameters whose

syntax is similar to that for attributes
• Can also specificy direction: input (in), output(out), or both (inout)
• Default: in

� return-type is comma-separated list of return types (usually
only one)

toad 3415-214

Aggregation vs Composition

• Aggregation expresses “part-of” relationships, but rather
vague semantics

• Composition is stronger: Part object live and die with the
whole

toad 3515-214

Build a UML Domain Model for the Point of Sale Scenario

• Point of Sale (POS) Scenario (sometimes called a Use Case)
1. Customer arrives at POS checkout with goods to purchase
2. Cashier starts a new sale
3. Cashier enters item identifier
4. System records sale line item and presents item description,

price, and running total
5. Cashier repeats steps 3-4 until all goods have been entered
6. System presents total with taxes calculated
7. Cashier tells customer the total, and asks for payment
8. Customer pays and System provides change and a receipt

toad 3615-214

A Partial Domain Model

Sale

dateTime
total

Register

id

SalesLineItem

quantity

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

toad 3715-214

A word on notation

• UML notation is broadly known, well documented

• Informal notations/sketching often sufficient, but potentially
ambiguous for communication and documentation

• In practice:
� Graphical modeling very common in general
� Agree on some notation
� Adapt/extend as needed
� UML rarely full heartedly adopted

• In this course
� Use UML and conventions for communication
� Keep it simple
� Clarity is imperative, document your extensions/shortcuts
� We don't require or recommend a drawing tool

toad 3815-214

Aside: Key Observations

• How used?
� transient forms for exploration, permanent solutions for

communication with larger groups
� mostly ad-hoc white-board diagrams during meetings

• Why used?
� to understand, to design, to communicate
� "code is king"

• Graphical conventions?
� Use of formal diagramming language is low
� too formal for mostly informal visualizations; cost benefit ratio

• Culture?
� limited adoption of drawing tools;
� high value diagrams recreated more formally

Empirical
Evidence

toad 3915-214

Domain Model (more complete, but without attributes)

Register

ItemStore

Sale

CashPayment

Sales
LineItem

CashierCustomer

Product
Catalog

Product
Description

Stocks

*

Houses

1..*

Used-by

*

Contains

1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

3 Works-on

1

1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

toad 4015-214

Steps in the Design Process

• Precondition: understand functional requirements
� Domain modeling
� System sequence diagrams
� Behavioral contracts

• Precondition: understand quality attribute requirements

• Design a logical architecture

• Design a behavioral model
� (Sub)system sequence diagrams
� Behavioral contracts

• Responsibility assignment

• Interface design

• Algorithm and data structure design – pseudo-code

toad 4115-214

System Sequence Diagrams

• Domain model – understanding concepts and relationships
in the domain

• What about interactions?
� Between the program and its environment
� Between major parts of the program

• A System Sequence Diagram is a picture that shows, for
one scenario of use, the sequence of events that occur on
the system’s boundary or between subsystems

toad 4215-214

Simulation Framework Behavior Model

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

…Simulation
Driver

1. Select and
create agents

2. Add agents to
framework

3. Invoke
simulate() on
the framework

4. Invoke
timestep() on
each agent

5. Update
agent-specific
state in
timestep()

6. Invoke
logState() on
each agent

7. Repeat 4-6
until done

(actually a
Communication Diagram)

toad 4315-214

Interaction Diagrams

• Interaction diagrams describe how groups of objects
collaborate in some behavior

• Two kinds of interaction diagrams: sequence diagrams
and communication diagrams

toad 4415-214

Communication Diagram Example

toad 4515-214

Communication Diagram Example: Decimal Numbering System

toad 4615-214

Sequence Diagram Example

toad 4715-214

Sequence Diagrams

• Vertical line is called lifeline

• Each message represented by an arrow between lifelines
� Labeled at minimum with message name
� Can also include arguments and control information
� Can show self-call by sending the message arrow back to the

same lifeline

• Can add condition which indicates when message is sent,
such as [needsReorder]

• Can add iteration marker which shows that a message is
sent many times to multiple receiver objects

toad 4815-214

Sequence Diagram for the Point of Sale Example

• Let’s develop a sequence diagram

• Point of Sale (POS) Scenario (sometimes called a Use Case)
1. Customer arrives at POS checkout with goods to purchase
2. Cashier starts a new sale
3. Cashier enters item identifier
4. System records sale line item and presents item description,

price, and running total
5. Cashier repeats steps 3-4 until all goods have been entered
6. System presents total with taxes calculated
7. Cashier tells customer the total, and asks for payment
8. Customer pays and System provides change and a receipt

toad 4915-214

Sequence Diagram for the Point of Sale Example

: Cashier : System

makeNewSale

enterItem(itemID, quantity)

description, total

endSale

total with taxes

makePayment(amount)

change due, receipt

toad 5015-214

Sequence vs Communication Diagrams

• Sequence diagrams are better to visualize the order in
which things occur

• Communication diagrams also illustrate how objects are
statically connected

• Communication diagrams often are more compact

• You should generally use interaction diagrams when you
want to look at the behavior of several objects within a
single use case.

toad 5115-214

Steps in the Design Process

• Precondition: understand functional requirements
� Domain modeling
� System sequence diagrams
� Behavioral contracts

• Precondition: understand quality attribute requirements

• Design a logical architecture

• Design a behavioral model
� (Sub)system sequence diagrams
� Behavioral contracts

• Responsibility assignment

• Interface design

• Algorithm and data structure design – pseudo-code

toad 5215-214

Behavioral Contracts: What do These Operations Do?

• To design, we need a spec
� Preconditions
� Postconditions

• We can write a behavioral
contract
� Like a pre-/post-condition

specification for code
� Often written in natural

language
� Focused on system interfaces

• may or may not be methods

: Cashier : System

makeNewSale

enterItem(itemID, quantity)

description, total

endSale

total with taxes

makePayment(amount)

change due, receipt

toad 5315-214

Example Point of Sale Contract

Operation: makeNewSale()
Preconditions: none

Postconditions: - A Sale instance s was created
- s was associated with a Register

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

toad 5415-214

A Point of Sale Contract

• Contract structure
� Operation name, parameters
� Requirement or use case this is a part of (not discussed in 15-215)

� Preconditions
� Postconditions

• Which contracts to write?
� Operations that are complex or subtle
� Operations that not everyone understands
� Simple/obvious operations are often not given contracts in practice

• Writing postconditions
� Written in past tense (a post-condition)
� Describe changes to domain model

• Instance creation and deletion
• Attribute modification
• Associations formed and broken

• Easy to forget associations when creating objects!

toad 5515-214

Example Point of Sale Contract

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

Operation: enterItem(itemID : ItemID, quantity : integer)
Preconditions:

Postconditions:

toad 5615-214

Example Point of Sale Contracts

Operation: makeNewSale()
Preconditions: none

Postconditions: - A Sale instance s was created
- s was associated with a Register

Operation: enterItem(itemID : ItemID, quantity : integer)
Preconditions: There is a sale s underway

Postconditions: - A SalesLineItem instance sli was created
- sli was associated with the sale s
- sli.quantity became quantity
- sli was associated with a ProjectDescription,

based on itemID match

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

toad 5715-214

Literature on OO Design

• Alan Shalloway and James Trott. Design
Patterns Explained, Addison Wesley, 2004
� Brief introduction to UML
� Introduction to design with design patterns
� Mandatory reading

• Craig Larman, Applying UML and Patterns, Prentice Hall,
2004
� Introduction to UML
� Excellent discussion of object-oriented analysis

and object-oriented design with and without
patterns

� Detailed additional material, many guidelines

• Bertrand Meyer, Object-Oriented Software Construction,
Prentice Hall, 1997
� Detailed discussion of design goals and modularity

toad 5815-214

Toad’s Take-Home Messages

• Domain Modeling is a useful way to build
understanding of the target domain

• Domain classes often turn into Java classes
� However, sometimes they don’t need to be modeled in code
� Furthermore, some concepts only live at the code level

• UML is a commonly understood notation for domain
modeling

• System Sequence Diagrams describe the overall operation
of a (sub)system

• Behavioral contracts specify what program operations
should do

toad 5915-214

Bonus: Code Design Principles to Live By

• Or at least to do Homework 1 by!

• Don’t repeat yourself
� Avoid duplicate code—instead create a method and call it twice

• Separate concerns
� Isolate each issue to as small a piece of code as you can

• Within a single method
• Within a subset of methods in a class
• Within a single class
• Within a single package

� Each piece of code should be as cohesive as possible
� Each piece of code should be coupled to other code as little as

possible

toad 6015-214

ArraySet – is this Good Code?

class ArraySet {
private int members[]; // the array is sorted
private int temp[]; // for performing unions
public ArraySet union (ArraySet s) {

if (temp == null || size + s.size > temp.length)
temp = new int[size + s.size];

// copy non-duplicate members and s.members into ms
}
// other methods not shown

}

the special length field
can be used to get the

array size

toad 6115-214

ArraySet – is this Good Code?

class ArraySet {
private int members[]; // the array is sorted
private int temp[]; // for performing unions
public ArraySet union (ArraySet s) {

if (temp == null || size + s.size > temp.length)
temp = new int[size + s.size];

// copy non-duplicate members and s.members into ms
}
// other methods not shown

}

the special length field
can be used to get the

array size

coupling means one
part of the code

depends on another
part. Some coupling is

necessary, but
unnecessary coupling
makes code harder to

understand and modify.

This code has high
coupling because the
details of the union

algorithm depend on a
field in ArraySet that is

used for no other

purpose. Making temp a

local variable would
reduce coupling.

