
toad

Fall 2014

School of 
Computer Science

School of 
Computer Science

Principles of Software Construction: 

Objects, Design, and Concurrency

Specification, Testing, and Builds

Jonathan Aldrich Charlie Garrod



toad 215-214

Administrivia

• Homework 0 due at 11:59pm tonight

• Document summarizing Java basics posted



toad 315-214

Review: Steps in the Design Process

• Precondition: understand functional requirements
� Pre- and post-condition specifications for IntSet

• Precondition: understand quality attribute requirements

• Design a logical architecture

• Design a behavioral model

• Responsibility assignment

• Interface design

• Algorithm and data structure design

• Writing code

• …

Design



toad 415-214

Review: In the Previous Lecture…

• We broke the Tree Simulation design process into steps

• We studied an example of the last step, detailed design
� A data structure for mathematical sets

• We discussed a number of design principles
Can you name the benefits, and how achieved?
� Representation hiding �

� Object-oriented interfaces �

� Abstract data types �



toad 515-214

Review: In the Previous Lecture…

• We broke the Tree Simulation design process into steps

• We studied an example of the last step, detailed design
� A data structure for mathematical sets

• We discussed a number of design principles
Can you name the benefits, and how achieved?
� Representation hiding � ease of changing representation

• Mechanisms: public vs. private, constructors

� Object-oriented interfaces � interoperability of implementations
• Use interface as type, especially for binary methods
• Dispatch provides interoperability

� Abstract data types � performance from shared representation
• Using a class type instead of an interface type, esp. in binary methods
• The type tells you the representation – can access private fields
• Tradeoff: lose interoperability advantages



toad 615-214

Steps in the Design Process

• Precondition: understand functional requirements
� Pre- and post-condition specifications for IntSet

• Precondition: understand quality attribute requirements

• Design a logical architecture

• Design a behavioral model

• Responsibility assignment

• Interface design

• Algorithm and data structure design

• Writing code

• …

Design

What goes here?



toad 715-214

Steps in the Design Development Process

• Precondition: understand functional requirements
� Pre- and post-condition specifications for IntSet

• Precondition: understand quality attribute requirements

• Design a logical architecture

• Design a behavioral model

• Responsibility assignment

• Interface design

• Algorithm and data structure design

• Writing code

• Testing code
� Unit testing, JUnit, Coverage, EclEmma

• Automated builds and continuous integration
� Ant and TravisCI

Design

Note – possibly before writing code!



toad 815-214

This lecture

• 214: managing complexity, from programs to systems
� Threads and concurrency
� Object-oriented programming
� Analysis and modeling
� Design



toad 915-214

Today’s Lecture: Learning Goals

• Review principles for detailed design �

• Basic specification concepts (review from 15-122)
� preconditions and postconditions

• Testing principles and practices
� design effective unit test suites
� write tests in JUnit

• Specification and code coverage
� how they differ
� what each is useful for
� evaluate of code coverage using EclEmma

• Continuous integration
� benefits in software development
� use ant and TravisCI



toad 1015-214

This is a bug



toad 1115-214

Is this a bug?

graph.getDistance(rachel, kramer);

> -1



toad 1215-214

Is this a bug?  NO!

class Graph {

/** @return the distance between p1 and p2

* in the graph.  Returns -1 if p1 and p2

* are unconnected. */

void getDistance(Person p1, Person p2);

}

graph.getDistance(rachel, kramer);

> -1 We need specifications to determine
whether or not code behaves correctly



toad 1315-214

Specifications

• Contain
� Functional behavior

� Erroneous behavior

� Quality attributes

• Desirable attributes
� Complete

•Does not leave out any desired behavior

� Minimal
•Does not require anything that the user does not care about

� Unambiguous
•Fully specifies what the system should do in every case the user cares about

� Consistent
•Does not have internal contradictions

� Testable
•Feasible to objectively evaluate

� Correct
•Represents what the end-user(s) need



toad 1415-214

A Real Specification

/** 

* Returns the correctly rounded positive square root of a 

* double value.

* 

* Special cases: 

* - If the argument is NaN or less than zero, then the 

* result is NaN. 

*  - If the argument is positive infinity, then the result 

* is positive infinity. 

*  - If the argument is positive zero or negative zero, then 

* the result is the same as the argument.

* Otherwise, the result is the double value closest to 

* the true mathematical square root of the argument value. 

* 

* @param a a value. 

* @return the positive square root of a. If the argument is NaN

* or less than zero, the result is NaN.

*/ 

public static double sqrt(double a) { …}

We need specifications to correctly
use code that we can’t see, or don’t
have time to study



toad 1515-214

Function Specifications

• A function’s contract is a statement of the responsibilities of 
that function, and the responsibilities of the code that calls it.
� Analogy: legal contracts

•If you pay me $30,000

•I will build a new room on your house

� Helps to pinpoint responsibility

• Contract structure
� Precondition: condition the function relies on for correct operation

� Postcondition: condition the function establishes after running

• (Functional) correctness with respect to the specification
� If the client of a function fulfills the function’s precondition, the 

function will execute to completion and when it terminates, the 
postcondition will be fulfilled

• What does the implementation have to fulfill if the client 
violates the precondition?

• A: nothing at all!
• In practice we often want to specify what happens on error inputs

15



toad 1615-214

Specifying IntSet (in-class verion)

interface IntSet {

/** precondition:

*   postcondition:

*/

IntSet union(IntSet s);

/** precondition:

*   postcondition:

*/

boolean contains(int i);

}



toad 1715-214

Specifying IntSet (prepared version)

interface IntSet {

/** precondition: s is not null

*   postcondition: returns an IntSet that contains an

*        element i iff when this or s does

*/

IntSet union(IntSet s);

/** precondition: none  (“true” logically)

*   postcondition: returns true iff i is in the set

*/

boolean contains(int i);

}



toad 1815-214

Specifying IntSet (on your own – one solution at the end)

interface IntSet {

IntSet union(IntSet s);

boolean contains(int i);

/** precondition:

*   postcondition:

*

*/

boolean isSubsetOf(IntSet s);

}



toad 1915-214

Testing

• Executing the program with selected inputs in a controlled 
environment

• Goals:
� Reveal bugs (main goal)
� Assess quality (hard to quantify)
� Clarify the specification, documentation
� Verify contracts

"Testing shows the presence, 
not the absence of bugs

Edsger W. Dijkstra 1969



toad 2015-214

Testing Decisions

• What to test?
� Functional correctness of each method?  System behavior?  UI?

• Who tests?
� Developers?  QA team?

• When to test?
� Before coding?  After writing each method? Before shipping?

• Manual or automated?
� Ability to test anything?  Ability to repeat tests?

• When to stop testing?
� When all functionality is tested?  When all code is tested?  When 

we run out of time or money?



toad 2115-214

Guidelines for Designing Test Suites

• Write a test for each case in the specification
� Representative classes of input
� Invalid classes of input

• Write tests for boundary conditions
� Off-by-one errors are common

• Write tests for difficult situations
� Stress tests (extreme input)
� Situations that require complex reasoning

• Write tests that exercise all of the code
� Perhaps interesting paths through the code, too

Black-box
testing

White-box
testing
(glass-box a
better term?)



toad 2215-214

Example (exercise on paper)
/**
* computes the sum of the first len values of the array
* 
* @param array array of integers of at least length len
* @param len number of elements to sum up 
* @return sum of the array values
*/
int total(int array[], int len);

Guideline Reminder

• Write a test for each case in the specification
� Representative classes of input
� Invalid classes of input

• Write tests for boundary conditions
� Off-by-one errors are common

• Write tests for difficult situations
� Stress tests (extreme input)
� Situations that require complex reasoning



toad 2315-214

Example (possible solution)

• Test empty array

• Test array of length 1 and 2

• Test negative numbers

• Test invalid length (negative or longer than array.length)

• Test null as array

• Test with a very long array

/**
* computes the sum of the first len values of the array
* 
* @param array array of integers of at least length len
* @param len number of elements to sum up 
* @return sum of the array values
*/
int total(int array[], int len);



toad 2415-214

Exercise (on your own)

• Test a priority queue for Strings

public interface Queue {

void add(String s);

String getFirstAlphabetically();

}

• Write various kinds of test cases



toad 2515-214

Unit Tests

• Unit tests for small units: functions, classes, subsystems
� Smallest testable part of a system
� Test parts before assembling them
� Intended to catch local bugs

• Typically written by developers

• Many small, fast-running, independent tests
� Can run on every check-in, or every compile

• Little dependencies on other system parts or environment

• Insufficient but a good starting point, 
extra benefits:
� Documentation (executable specification)
� Design mechanism (design for testability)



toad 2615-214

JUnit

• Popular unit-testing framework for Java

• Easy to use

• Integration into Eclipse, Ant, other tools

• Can be used to drive design
� Testability, incrementally adding functionality



toad 2715-214

JUnit

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
@Test
public void testSanityTest(){

Graph g1 = new AdjacencyListGraph(10);
Vertex s1 = new Vertex("A");
Vertex s2 = new Vertex("B");
assertEquals(true, g1.addVertex(s1));
assertEquals(true, g1.addVertex(s2));
assertEquals(true, g1.addEdge(s1, s2));
assertEquals(s2, g1.getNeighbors(s1)[0]);

}

@Test
public void test….

private int helperMethod…
}

Set up
tests

Check 
expected 
results

@Test annotation 

signals a test case



toad 2815-214

JUnit Demo



toad 2915-214

assert, Assert

• assert is a Java statement form that verifies a condition
(if checking is turned on)
� assert expression: "Error Message";

• org.junit.Assert is a library that provides many more specific 
methods
� static void assertTrue(java.lang.String message, 

boolean condition)
// Asserts that a condition is true.

� static void assertEquals(java.lang.String message, 
long expected, long actual);
// Asserts that two longs are equal.

� static void assertEquals(double expected, double actual, 
double delta);
// Asserts that two doubles are equal to within a positive delta

� static void assertNotNull(java.lang.Object object)
// Asserts that an object isn't null.

� static void fail(java.lang.String message)
//Fails a test with the given message.



toad 3015-214

Common Setup
import org.junit.*;
import org.junit.Before;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
Graph g;

@Before
public void setUp() throws Exception {

graph = createTestGraph();
}

@Test
public void testSanityTest(){

Vertex s1 = new Vertex("A");
Vertex s2 = new Vertex("B");
assertEquals(3, g.getDistance(s1, s2));

}



toad 3115-214

Test organization conventions

• A test class CTest for each class C

• Two directories: source and test
� Store CTest and C in the same package
� Tests can access members with default 

(package) visibility

• Alternative: (not in 15-214)
� Store tests in the source directory but 

in a separate package



toad 3215-214

JUnit Operation

• TestCase collects multiple tests (in one class)

• TestSuite collects test cases (typically package)

• Tests are methods without parameters or return values

• Test runner knows how to run JUnit tests
� (uses reflection to find all methods with @Test annotat.)



toad 3315-214

Run tests frequently

• Run tests before every commit
� Committing broken code makes teammates unhappy
� You will be unhappy too if they call your cell on your vacation

• Run tests before trying to understand unfamiliar code
� If it’s broken, get someone to fix it first

• What if the test suite takes too long to run?
� Medium sized projects easily have 1000s of test cases and run 

for minutes
� Run a subset (“smoke tests”) on every commit
� Run all tests nightly/weekly/whatever (“Nightly build”)

• Build tools and continuous integration servers make this 
convenient



toad 3415-214

Build and Test Automation

• Build automation: automatically compile a program
� May be a multi-step process with dependencies

• Program A uses library B � compile B first

� Avoid unnecessary recompilation

• Test automation: run tests automatically after a build

• Many tools
� make
� ant
� gradle
� maven
� sbt
� …

Library A
Library B Library C

Library D

Program P

red = changed, recompile
brown = depends on change, recompile
black = no recompilation needed



toad 3515-214

Ant build file example

<project name="MyProject" default="dist" basedir=".">

<property name="src" location="src"/>

<property name="build" location="build"/>

<target name="compile"

description="compile the source">

<javac srcdir="${src}" destdir="${build}"/>

</target>

<target name="test" depends="compile"

description="run tests">

<junit printsummary="on" haltonfailure="yes">

...

</junit>

</target>

</project>

XML format

Constants 
used later

compile
target runs 
javac

test target 

depends on 
compile, 

runs javac



toad 3615-214

Ant demo



toad 3715-214

Continuous Integration

• Automation server responds on every commit
� Compiles code
� Runs tests
� Reports errors (web page, email, etc.)

• Benefits
� Immediate feedback about problems
� Allows developers to make frequent check-ins
� Keeps code synchronized

• Example tool: TravisCI



toad 3815-214

TravisCI Demo



toad 3915-214

Whitebox Testing: Code Coverage

� Organized according to program decision structure
� Touching: statement, branch

39

public static int binsrch (int[] a, int key) {

int low  = 0;
int high = a.length - 1;

while (true) {

if ( low > high ) return -(low+1); 

int mid = (low+high) / 2;

if      ( a[mid] < key )  low  = mid + 1;
else if ( a[mid] > key )  high = mid - 1;
else    return mid; 

}
}

• Will this statement get executed in a test? 

• Does it return the correct result?

•Could this array index be out of bounds?

• Does this return statement ever get reached?



toad 4015-214

Method Coverage

• Trying to execute each method as part of at least one test

• Does this guarantee correctness?



toad 4115-214

Statement Coverage

• Trying to execute every statement in at least one test

• Does this guarantee correctness?



toad 4215-214 42

Structure of a Method Under Test

Flow chart diagram for
junit.samples.money.Money.equals



toad 4315-214 43

Statement Coverage

• Statement coverage
� What portion of program statements

(nodes) are touched by test cases

• Advantages
� Coverage easily assessed

� Test suite size linear in size of code

• Issues
� May not exercise code in enough

interesting situations



toad 4415-214 44

Branch Coverage

• Branch coverage
� What portion of condition branches are

covered by test cases?
• Consider true and false branches

at each choice point

• Advantages
� Coverage easily assessed

� Test suite size and content derived 
from structure of control flow

• Issues
� More tests than statement coverage

� Still may not exercise enough
interesting situations



toad 4515-214 45

Path Coverage

• Path coverage
� What portion of all possible paths through

the program are covered by tests?
• For loops: must limit to a finite set of

iterations (e.g. 0, 1, 2, N)

• Advantages
� Considers all logical combinations

• Issues
� Combinatorial explosion of paths

� Not necessarily worth the extra tests



toad 4615-214 46

Test Coverage Tooling

• Coverage assessment tools
� Track execution of code by test cases

• Count visits to statements
� Develop reports with respect to specific coverage criteria
� Instruction coverage, line coverage, branch coverage

• Example: EclEmma tool for JUnit tests



toad 4715-214

EclEmma Demo



toad 4815-214

Exercise (on your own)

• Write test cases to achieve 100% line coverage but not
100% branch coverage

void foo(int a, int b) {
if (a == b)

a = a * 2;
if (a + b > 10)

return a - b;
return a + b;

}



toad 4915-214 49

“Coverage” is useful but also dangerous

• Examples of what coverage analysis could miss

� Unusual paths

� Missing code

� Incorrect boundary values

� Timing problems

� Configuration issues

� Data/memory corruption bugs

� Usability problems

� Customer requirements issues

• Coverage is not a good adequacy criterion

� Instead, use to find places where testing is inadequate



toad 5015-214

Toad’s Take-Home Messages

• Specifications
� Defined in terms of preconditions and postconditions
� Necessary for determining correctness, and reusing code

• Testing
� Finds bugs, but cannot prove their absence
� Useful as documentation
� JUnit is a practical tool

• Build and Test Automation
� Runs tests often and automatically
� Enables finding bugs more quickly

• Black box: coverage of the specification 
� The core of good testing practice – but must be done well
� Representative, boundary, error, and extreme cases

• White box: coverage of code
� Good for finding untested functionality
� Not an indication that a test suite is adequate



toad 5115-214

Specifying IntSet (exercise solution)

interface IntSet {

IntSet union(IntSet s);

boolean contains(int i);

/** precondition: s is not null

*   postcondition: returns true iff for every integer i

*        such that this.contains(i), we have s.contains(i)

*/

boolean isSubsetOf(IntSet s);

}


