Threads

toad

Fall 2014

School of
- Computer Science

institute for

SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Specification, Testing, and Builds

Jonathan Aldrich Charlie Garrod

Administrivia

e Homework O due at 11:59pm tonight

e Document summarizing Java basics posted

15-214 toad 2 St

RESEARCH

Review: Steps in the Design Process

e Precondition: understand functional requirements
= Pre- and post-condition specifications for IntSet

e Precondition: understand quality attribute requirements
e Design a logical architecture)
e Design a behavioral model

e Responsibility assignment > Design
e Interface design

e Algorithm and data structure design
_//

e Writing code

Lol toad 3 reibte

RESEARCH

Review: In the Previous Lecture...

e We broke the Tree Simulation design process into steps

o We studied an example of the last step, detailed design
= A data structure for mathematical sets

e We discussed a number of design principles
Can you name the benefits, and how achieved?
= Representation hiding »>

= Object-oriented interfaces 2>

= Abstract data types >

Lol toad 4 e

RESEARCH

Review: In the Previous Lecture...

e We broke the Tree Simulation design process into steps

e We studied an example of the last step, detailed design
= A data structure for mathematical sets

e We discussed a number of design principles
Can you name the benefits, and how achieved?

= Representation hiding - ease of changing representation
e Mechanisms: public vs. private, constructors

= Object-oriented interfaces - interoperability of implementations
e Use interface as type, especially for binary methods
e Dispatch provides interoperability

= Abstract data types - performance from shared representation
e Using a class type instead of an interface type, esp. in binary methods
e The type tells you the representation — can access private fields
e Tradeoff: lose interoperability advantages

= institute for
15-214 toad 5 SO

Steps in the Design Process

e Precondition: understand functional requirements
= Pre- and post-condition specifications for IntSet

e Precondition: understand quality attribute requirements
e Design a logical architecture)
e Design a behavioral model

e Responsibility assignment > Design
e Interface design

e Algorithm and data structure design
_//

e Writing code
*. €= What goes here?

15-214 toad 6 CoFrvRE

RESEARCH

Steps in the eesgld Development Process

e Precondition: understand functional requirements
= Pre- and post-condition specifications for IntSet

o Interface design

ibility assig

—— Design

e Testing code <

= Unit testing, JUnit, Coverage, EcCIEmma

e Automated builds and continuous integration

= Ant and TravisCI

15-214

toad 7

Note - possibly before writing code!

institute for
SOFTWARE
RESEARCH

This lecture

e 214: managing complexity, from programs to systems<=
= Threads and concurrency
= Object-oriented programming
= Analysis and modeling
= Design

= institute for
15-214 toad 8 sormse

Today’s Lecture: Learning Goals

e Review principles for detailed design v

e Basic specification concepts (review from 15-122)
= preconditions and postconditions

e Testing principles and practices
= design effective unit test suites
= write tests in JUnit

e Specification and code coverage
= how they differ
=« what each is useful for
= evaluate of code coverage using EcCIEmma

e Continuous integration
= benefits in software development
= use ant and TravisCI

te for

15-214 toad o sorTs

This-is-a-bug

"gmim has ,begn dete e
N YO COMDUTEr,

re any new hargeare or software s proper
wew installation, ask your hardeare OF softwa
windows updates you might need.

nue, disable or remove any newly 4n
» pisable BI10S memory options such as <l
ou need to use Safe Mode to remove or disable components,
computer, press F8 to select Advamced Startup options,
st Safe Mode.

information:

000050 (OxBOO0OSF2, , OxBO4EB3ICH, 0x00000000

f . crlf =)l A l CLEAR ‘

Is this a bug?

graph.getDistance(rachel, kramer);

> -1

= institute for
15-214 toad 11 SorTuA

Is this a bug? NO!

class Graph {
/** @return the distance between pl and p2
* in the graph. Returns -1 if pl and p2
* are unconnected. */

void getDistance(Person pl, Person p2);

graph.getDistance(rachel, kramer);

s -1 We need specifications to determine

whether or not code behaves correctly

= mnsttute Fi:r
15-214 toad 12 sorTva

Specifications

« Contain
= Functional behavior
= Erroneous behavior
= Quality attributes

 Desirable attributes

= Complete
*Does not leave out any desired behavior

Minimal
*Does not require anything that the user does not care about

Unambiguous
*Fully specifies what the system should do in every case the user cares about

Consistent
Does not have internal contradictions

Testable
*Feasible to objectively evaluate

Correct
*Represents what the end-user(s) need

t;}

15-214 toad 13 ;ééxﬁé

A Real Specification

/**
Returns the correctly rounded positive square root of a
double value.

Special cases:
- If the argument is NaN or less than zero, then the
result is NaN.
- If the argument is positive infinity, then the result
is positive infinity.
- If the argument is positive zero or negative zero, then
the result is the same as the argument.
Otherwise, the result is the double value closest to
the true mathematical square root of the argument value.

X X X X X X X X X X X X X X

@param a a valug
* @return the pos We need specifications to correctly

S use code that we can’t see, or don't
have tlme to study

*/
public static double
15-214 toad 14 sorti

Function Specifications

A function’s contract is a statement of the responsibilities of
that function, and the responsibilities of the code that calls it.

= Analogy: legal contracts

If you pay me $30,000

I will build a new room on your house
= Helps to pinpoint responsibility

Contract structure
= Precondition: condition the function relies on for correct operation
= Postcondition: condition the function establishes after running

(Functional) correctness with respect to the specification

= If the client of a function fulfills the function’s precondition, the
function will execute to completion and when it terminates, the
postcondition will be fulfilled

What does the implementation have to fulfill if the client

violates the precondition?
e A: nothing at all!
» In practice we often want to specify what happens on error inputs

ste f

15 15.214 toad 15 SO

Specifying IntSet (in-class verion)

interface IntSet {
/** precondition:
* postcondition:
Y/
IntSet union(IntSet s);

/** precondition:

* postcondition:
Y/

boolean contains(int i);

15-214 toad

16

institute for
SOFTWARE
RESEARCH

Specifying IntSet (prepared version)

interface IntSet {
/** precondition: s is not null
* postcondition: returns an IntSet that contains an
* element i iff when this or s does
*/
IntSet union(IntSet s);

/** precondition: none (“true” logically)
* postcondition: returns true iff i is in the set
*/

boolean contains(int i);

15-214 toad 17 St

RESEARCH

Specifying IntSet (on your own — one solution at the end)

interface IntSet {
IntSet union(IntSet s);

boolean contains(int i);

/** precondition:

* postcondition:

X
*/
boolean isSubsetOf(IntSet s);
);
15-214 toad

18

institute for
SOFTWARE
RESEARCH

Testing

e Executing the program with selected inputs in a controlled
environment

e Goals:
= Reveal bugs (main goal)
= Assess quality (hard to quantify)
= Clarify the specification, documentation
= Verify contracts

"Testing shows the presence,
not the absence of bugs
Edsger W. Dijkstra 1969

15-214 toad 19 sorTinse

Testing Decisions

e What to test?
= Functional correctness of each method? System behavior? UI?

e Who tests?
= Developers? QA team?

e When to test?
= Before coding? After writing each method? Before shipping?

e Manual or automated?
= Ability to test anything? Ability to repeat tests?

e When to stop testing?

= When all functionality is tested? When all code is tested? When
we run out of time or money?

= institute for
15-214 toad 20 SO

Guidelines for Designing Test Suites

e Write a test for each case in the specification
= Representative classes of input
= Invalid classes of input

e Write tests for boundary conditions ___ Black-box
= Off-by-one errors are common testing

e Write tests for difficult situations
= Stress tests (extreme input)
= Situations that require complex reasoning __

e \Write tests that exercise all of the code White-box
= Perhaps interesting paths through the code, too testing

(glass-box a
better term?)

= institute for
15-214 toad 21 sormse

Example (exercise on paper)
/**

* computes the sum of the first Len values of the array
k
* @param array array of integers of at least length Len
* @param Len number of elements to sum up
* @return sum of the array values
*/

int total(int array[], int len);

Guideline Reminder

e Write a test for each case in the specification
= Representative classes of input
= Invalid classes of input

e Write tests for boundary conditions
= Off-by-one errors are common

o Write tests for difficult situations
= Stress tests (extreme input)
= Situations that require complex reasoning

= institute for
15-214 toad 22 SOt

Example (possible solution)
/>I<>I<

* computes the sum of the first Len values of the array
k

* @param array array of integers of at least length Len
* @param Len number of elements to sum up
* @return sum of the array values

*/
int total(int array[], int len);

e Test empty array
e Test array of length 1 and 2

e Test negative numbers

e Test invalid length (negative or longer than array.length)
e Test null as array

e Test with a very long array

= nstitute FOF
15-214 toad)3 o

RESEARCH

Exercise (on your own)

e Test a priority queue for Strings

public interface Queue {
void add(String s);
String getFirstAlphabetically();

e \Write various kinds of test cases

= institute for
15-214 toad 24 o

Unit Tests

e Unit tests for small units: functions, classes, subsystems
=« Smallest testable part of a system
= Test parts before assembling them
= Intended to catch local bugs

e Typically written by developers

e Many small, fast-running, independent tests
= Can run on every check-in, or every compile

e Little dependencies on other system parts or environment

e Insufficient but a good starting point,
extra benefits:
= Documentation (executable specification)
= Design mechanism (design for testability)

15-214 toad 25 corrvns

Junit

e Popular unit-testing framework for Java
e Easy to use

e Integration into Eclipse, Ant, other tools

e Can be used to drive design
= Testability, incrementally adding functionality

| Proble Javado [o Ju Junit 52 T v " B @’ ® =
Finished after 0.012 seconds

Runs: 4/4 B Errors: 0 B Failures: 1

P i edu.cmu.cs.cs214.hwi.tests.AlgorithmTest [Runner: JUnit 4] (0.000 s) = Failure Trace s
¥ @il edu.cmu.cs.cs214.hwi.tests.AdjacencyMakrixTest [Runner: JUnit 4] {0.0005s)

gl

41 java.lang.AssertionError: Expected Exception:java.lang.NullPointerExceptioh
gel basicNullTest2 (0.000 s)

» Eiedu.cmu.cs.cs214.hwi.tests.AdjacencyListTest [Runner: JUnit 4] (0.000's)

15'2 14 toad institute for

SOFTWARE
26 I S r RESEARCH

Junit

| nport org.junit.Test;
| nport static org.junit.Assert.assertEquals:
@est annotation

publ i ¢ cl ass AdjacencyListTest { signals a test case
@ est
publ i ¢ voi d testSanityTest(){
Graph gl = new AdjacencyListGraph(10); Set up
Vertex sl = new Vertex("A"); tests
Vertex s2 = new Vertex("B");

assertEquals(true, gl.addVertex(sl));
assertEquals(true, gl.addVertex(s2));
assertEquals(true, gl.addEdge(sl, s2));
assertEquals(s2, gl.getNeighbors(s1)[0]);

} Check
oSt expected

public void test....

results

private int helperMethod...

te for

15-214 toad 27 sorTs

JUnit Demo

wtitute for

15-214 toad 28 s

assert, Assert

e assert is a Java statement form that verifies a condition
(if checking is turned on)
= assert expression: "Error Message";

e org.junit.Assert is a library that provides many more specific
methods
= static void assertTrue(java.lang.String message,
boolean condition)
// Asserts that a condition is true.

= static void assertEquals(java.lang.String message,
long expected, long actual);
// Asserts that two longs are equal.

= static void assertEquals(double expected, double actual,
double delta);
// Asserts that two doubles are equal to within a positive delta

= static void assertNotNull(java.lang.Object object)
// Asserts that an object isn't null.

= static void fail(java.lang.String message)
//Fails a test with the given message.

ste for

15-214 toad 29 sorTva

Common Setup

Import org.junit.*;
import org.junit.Before;
Import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
Graph g;

@ef or e
public void setUp() throws Exception {
graph = createTestGraph();

}

@Test

public void testSanity Test(){
Vertex s1 = new Vertex("A");
Vertex s2 = new Vertex("B");
assertEquals(3, g.getDistance(sl, s2));

15-214 toad 30 sorTinse

Test organization conventions

e A test class CTest for each class C

e Two directories: source and test
= Store CTest and C in the same package
= Tests can access members with default
(package) visibility

e Alternative: (not in 15-214)

= Store tests in the source directory but
in a separate package

15-214 toad

¥ 12 hwi
Y g#src
¥ B edu.cmu.cs.cs214.hwi.graph
» [§] AdjacencyListGraph.java
> [J] AdjacencyMatrixGraph.java
> [1] Algorithm.java
2 edu.cmu.cs.cs214.hwi.sols
P B edu.cmu.cs.cs214.hwi.staff
* B edu.cmu.cs.cs214.hwi.staff.tests
¥ & tests
¥ B edu.cmu.cs.cs214.hwi.graph
> 111 AdjacencyListTest.java
b 1] AdjacencyMatrixTest.java
» 1] AlgorithmTest.java
> [J] GraphBuilder.java
P B edu.cmu.cs.cs214.hwl.staff.tests
» mi JRE System Library [jdk1.7.0]
P =l JUnit 4
* = docs
» = theory

-
institute for
I S SOFTWARE

RESEARCH

31

JUnit Operation

e TestCase collects multiple tests (in one class)
e TestSuite collects test cases (typically package)

e Tests are methods without parameters or return values

e Test runner knows how to run JUnit tests
= (uses reflection to find all methods with @Test annotat.)

= mnsttute Fi_}!’
15-214 toad 32 SOTTARE

Run tests frequently

e Run tests before every commit
= Committing broken code makes teammates unhappy
= You will be unhappy too if they call your cell on your vacation

e Run tests before trying to understand unfamiliar code
« If it's broken, get someone to fix it first

e What if the test suite takes too long to run?
= Medium sized projects easily have 1000s of test cases and run
for minutes
= Run a subset ("smoke tests”) on every commit
= Run all tests nightly/weekly/whatever ("Nightly build”)

e Build tools and continuous integration servers make this
convenient

= nstitute F b
15-214 toad 33 :E;Fgﬁ“,;}‘ﬁ

Build and Test Automation

e Build automation: automatically compile a program

= May be a multi-step process with dependencies
e Program A uses library B > compile B first

= Avoid unnecessary recompilation
Library B Library C

Library A —

red = changed, recompile Library D
brown = depends on change, recompile
black = no recompilation needed

Program P
e Test automation: run tests automatically after a build

e Many tools
= make
= ant
gradle
maven
sbt

= nstitute F) §
15-214 toad 34 sorTva

Ant build file example

<project name="MyProject" default="dist" basedir=".">
<property name="src" location="src"/> Constants
<property name="build" location="build"/> used later

<target name="compile"

description="compile the source"> conpi |l e
<javac srcdir="${src}" destdir="${build}"/> target runs
</target> javac

<target name="test" depends="compile"
description="run tests">

t est target

Q s Q [1]] 1] ° n 1] depends On
<junit printsummary="on" haltonfailure="yes"> conpi | e
14
o runs javac
</junit>
</target>
</project>

Lol toad 35 e

RESEARCH

Ant demo

wtitute for

15-214 toad 36 sormase

Continuous Integration

e Automation server responds on every commit
= Compiles code
= Runs tests
= Reports errors (web page, email, etc.)

e Benefits
« Immediate feedback about problems
= Allows developers to make frequent check-ins
« Keeps code synchronized

e Example tool: TravisCI

= institute for
15-214 toad 37 SO

TravisCl Demo

= mnsttute Fi.ﬁr
15-214 toad 38 :‘g’;FLTi“R'}":

Whitebox Testing: Code Coverage

= Organized according to program decision structure
= Touching: statement, branch

public static int binsrch (int[] a, int key) {

0.
a.length - 1;

int low
int high

e Will this statement get executed in a test?
e Does it return the correct result?

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (| a[mid] |< key) low = mid + 1;
else if (Cafmid] > hlh‘mld-l;
else |return mid;

}

eCould this array index be out of bounds?]

}

[e Does this return statement ever get reached?

15-214 toad 39 somﬁ«f& 39

RESEARCH

Method Coverage

e Trying to execute each method as part of at least one test

T
public boolean edquals (Chiject anChiject) |
if (isZeraol))
if (andhiject instanceof IMNonhey)
return [[(IMonev)anCbhject).isierol():
if (andbiject instanceof Monevy) |
Money alMoney= [(Monev)anChject:
return aMonev.currencyi() .equalsicurrencyi])

b
return false:;

b . e 1 Ja I

&% amount ()] == alonevy.amount () ;

e Does this guarantee correctness?

15-214 toad

40

nstitute { 1
SOFTWARE
RESEARCH

Statement Coverage

e Trying to execute every statement in at least one test

T
public boolean edquals (Chiject anChiject) |
if (isZeraol))
if (andhiject instanceof IMNonhey)
return [[(IMonev)anCbhject).isierol():
if (andbiject instanceof Monevy) |
Money alMoney= [(Monev)anChject:
return aMonev.currencyi() .equalsicurrencyi])

b
return false:;

b . e 1 Ja I

&% amount ()] == alonevy.amount () ;

e Does this guarantee correctness?

15-214 toad

41

nstitute { 1
SOFTWARE
RESEARCH

Structure of a Method Under Test

T
public boolean equals(Chject anChiject) | J
if [(isZero())
if [(anChject instanceof IMoney)
return | (IMoney)anOhject).isZeraol():
if [(anChject instanceof Monewy) |
Noney aloney= [(Money)anthiject;
return aMonevy.currency() .equals(currency ()]
£& amount () == alMonevy.amwount () ;
'
return false;

DWW ox -1 o A e W

C W | lai™ monlom SN

) 4

Flow chart diagram for
junit.samples.money.Money.equals

-
nstitute for

15‘214 toad 42 é(ED;FE'I'Xl"QIE 42

Statement Coverage

o Statement coverage

= What portion of program statements
(nodes) are touched by test cases

e Advantages
= Coverage easily assessed
= Test suite size linear in size of code

e [Issues

= May not exercise code in enough
interesting situations

T
public boolean egquals(Ohject anChiject) { J
if [isZero()]
if [anChject instanceof IMoney)
return [(IMoney)anChject).isZerol();
if (antbject instanceof Money) |
Money aMoney= [(Money)anCbject:
return aMoney.currency () .equals currency(])
&& ammount () == aMoney.samount():
i
return false;

'

15-214 " toad

43

IS

institute for
r SOFTWARE
RESEARCH

43

Branch Coverage

e Branch coverage

= What portion of condition branches are
covered by test cases?

e Consider true and false branches
at each choice point

e Advantages
= Coverage easily assessed

= Test suite size and content derived
from structure of control flow

e Issues
= More tests than statement coverage

= Still may not exercise enough
interesting situations

T
public boolean egquals(Ohject anChiject) { J
if [isZero()]
if [anChject instanceof IMoney)
return [(IMoney)anChject).isZerol();
if (antbject instanceof Money) |
Money aMoney= [(Money)anCbject:
return aMoney.currency () .equals currency(])
&& ammount () == aMoney.samount():
i
return false;

'

15-214 " toad

44

) 4

institute for
SOFTWARE
RESEARCH

44

Path Coverage

e Path coverage

= What portion of all possible paths through
the program are covered by tests?

e For loops: must limit to a finite set of
iterations (e.g. 0, 1, 2, N)

e Advantages
= Considers all logical combinations

e Issues
= Combinatorial explosion of paths
= Not necessarily worth the extra tests

T
public boolean egquals(Ohject anChiject) { J
if [isZero()]
if [anChject instanceof IMoney)
return [(IMoney)anChject).isZerol();
if (antbject instanceof Money) |
Money aMoney= [(Money)anCbject:
return aMoney.currency () .equals currency(])
&& ammount () == aMoney.samount():
i

return false;
i -

15-214 ~ toad as [v 45

RESEARCH

Test Coverage Tooling

e Coverage assessment tools

= Track execution of code by test cases

e Count visits to statements

= Develop reports with respect to specific coverage criteria
= Instruction coverage, line coverage, branch coverage

e Example: EclEmma tool for JUnit tests

Fis Edt Sowrcs Asfactor Flwigsls Ssarch Promc Aun Wicks Halp
|.".-|- i} F'I“'t"o'%'li:&r@'lf - .

Firishad alter 14,43 pcench
P LOFINY DEros: © O Fshesn 0
I

nul'i.l'-l _":I'humr.ll
=1

50 Teatagtic
50 o spachs cormnons colsctiant. TeehTlos
50 o spachs corwnons colsctiont. T Col
BB Teatuffar i

B U] Teatrersar stion b

50 o spachs coarwnons colectiont. Teeacl
BB Testi it

5B TeatMapltic

5B o spachs coarwnons colectiont. TestPra:

ItaTator it

reE——— [50 f 7 " O,

¥ |

=]

I!

index || sips ==

rebwrm =3AR11 (=] F
boelEe o

= Liztsbls succ = getlistsblsit |indss|;
sums] T mall | SuST.pEV ||
= o itarator || ;
WRELE | 1. DastERn]| |
prad] =

Lispalnle pred = |mall ==

5B Testhat i =
B B oo pscha crrwons colections. TestTryr | || Probleis | Revades | Exelaration ﬂm|_-cwnq- N

a)

inmsrtListabls |pred, sucs, it

public bealesm mddill [imt index, Collaction | 0
At jo. dsEapryji| o
rebarm falee;

I else if| sipe ==

0] Ty Tastelitachages (110 20068 15 (4:14) AT T B
Bt craranor ol Teding | || Elrwnt Cewmrage | Coeedines | Totallie []
TestBaundsdFfoifer B e« porwrwancabeclions - EELS 18T 1378
TestBaundsdFrobier] I o1 egrarhea - orwwra < plediam: - ML% T 1EE

- TeshCursorablal nbadL J| AareStack jrea - A% = g

T e —— 4)] Bag s - % 13 15 —

B o e coannors ol TestE e H-\d] Bamfim jea - TA 155 B

TR 1] BrargHeap. jrea - A% 1 {13

B-A) TestF v] i j I:\i : ::: l'; lﬁ

-0 TesFastHasivisg 4 |1 BufferresfioaEocaplion jra

A _,: TestF sstHarhitagd 4| J] Bufferrce s =oaption jews - ma% B]

TR e —— i] Buffer b v - WaA% i 13

g ——— - 4 |J] Clowrel i s - ma% = =

al | " J| Colecion b e - wA% e nr
- B] Comparadorib jra - L 3 =
= Fodure Trace | K} 5|1 A I T1 4 =0 =

R | e

St vt

148128

15-214 toad

46

institute for
SOFTWARE
RESEARCH

46

EclEmma Demo

= mnsttute Fi.ﬂ'
15-214 toad 47 sormase

Exercise (on your own)

e Write test cases to achieve 100% line coverage but not
100% branch coverage

void foo(int a, int b) {
if (a == Db)
a=a¥*2;
if(a+b>10)
return a - b;
return a + b;

h

15-214 toad sz [HI o

“Coverage” is useful but also dangerous

e Examples of what coverage analysis could miss
= Unusual paths
= Missing code
= Incorrect boundary values
= Timing problems
= Configuration issues
= Data/memory corruption bugs
= Usability problems
= Customer requirements issues

e Coverage is not a good adequacy criterion
= Instead, use to find places where testing is inadequate

= institute for
15-214 toad 49 i o

Toad’s Take-Home Messages

e Specifications
= Defined in terms of preconditions and postconditions
= Necessary for determining correctness, and reusing code

e Testing
= Finds bugs, but cannot prove their absence
= Useful as documentation
= JUnit is a practical tool

e Build and Test Automation
= Runs tests often and automatically
= Enables finding bugs more quickly

e Black box: coverage of the specification
=« The core of good testing practice — but must be done well
= Representative, boundary, error, and extreme cases

e White box: coverage of code
= Good for finding untested functionality
= Not an indication that a test suite is adequate

= institute for
15-214 toad 50 sorminse

Specifying IntSet (exercise solution)

interface IntSet {
IntSet union(IntSet s);

boolean contains(int i);

/** precondition: s is not null

* postcondition: returns true iff for every integer i

* such that this.contains(i), we have s.contains(i)
*/
boolean isSubsetOf(IntSet s);

15-214 toad 51 St

RESEARCH

