
toad

Fall 2014

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Design Goals and Process

Jonathan Aldrich Charlie Garrod

toad 215-214

Review: In the Previous Lecture…

• We designed a forestry simulation.
What made it challenging?

• What is it that generally drives design decisions?

• What is the feature of object-oriented programming that
facilitates extensibility?

toad 315-214

Review: In the Previous Lecture…

• We designed a forestry simulation.
What made it challenging?
� Extensibility and evolvability requirements

• What is it that generally drives design decisions?
� Quality Attributes (extensibility, evolvability, and others)

• What is the feature of object-oriented programming that
facilitates extensibility?
� Dispatch

toad 415-214

Review/Elaboration: Quality Attributes

• Design driven by extensibility, modifiability requirements
� Framework should work unmodified with other simulations
� Can extend with new agents

• without modifying existing agents or the framework

� Can modify the simulation setup or modify the set of agents
• Without modifying the agents or the framework

• Extensibility and modifiability are quality attributes
� Properties of software that describe its fitness for further

development and use
� Not what the system does but how well it does it

• Other quality attributes
� Performance
� Availability
� Security

� Testability
� Usability

The major focus of design is achieving quality attributes

toad 515-214

Review: Dispatch in the Previous Lecture

s:Simulation

grid:Agent[]

simulate()

*simplification: we consider a 1-dimensional grid in this diagram

a0:LodgepolePine

age:int

timeStep(Simulation)
…

a1:InfectedPine

intensity:int

timeStep(Simulation)
…

1. assign a0 to grid[0]
2. assign a1 to grid[1]
3. invoke grid[0].timeStep()
4. invoke grid[1].timeStep()

Object a0 is a
LodgepolePine
Dispatch to code in the
LodgepolePine class

Object a1 is a
LodgepolePine
Dispatch to code in the
LodgepolePine class

toad 615-214

Puzzle: What Does This Code Print?

class Table {

BallState state;

void set(BallState s) {

state = s;

}

void play(int n) {

for (int i = 0; i < n; ++i)

state.bounce(this);

state.print();

}

}

void main(…) {

Table t = new Table();

t.set(new Ping());

t.play(3);

}

interface BallState {

void bounce(Table t);

void print();

}

class Ping implements BallState {

void bounce(Table t) {

t.set(new Pong());

}

void print() {

System.out.println(“Ping”);

} }

class Pong implements BallState {

void bounce(Table t) {

t.set(new Ping());

}

void print() {

System.out.println(“Pong”);

} }

Refers to the state field of
the current object this.
Could have written:
this.state = s;

System.out is an object
representing standard
output.

toad 715-214

Dispatch in Ping-Pong

*simplification: we consider a 1-dimensional grid in this diagram

t:Table

state:BallState

set(BallState)
play(int)

1. Table t = new Table();
2. t.add(new Ping());
3. t.play(3);

a. state.bounce(this);
b. state.bounce(this);
c. state.bounce(this);
d. state.print();

p0:Ping

bounce(t:Table)
print()

Object p0 is a Ping
Dispatch to bounce in
the Ping class, calling
t.set(new Pong);

p1:Pong

bounce(t:Table)
print()

Object p1 is a Pong
Dispatch to bounce in
the Pong class, calling
t.set(new Ping);

p2:Ping

bounce(t:Table)
print()

Object p2 is a Ping
Dispatch to bounce in
the Ping class, calling
t.set(new Pong);

p3:Pong

bounce(t:Table)
print()

Object p3 is a Pong
Dispatch to print in the
Pong class, printing
“Pong”

toad 815-214

Learning Goals

• Review quality attributes, extensibility, and dispatch �

• Know the steps of the design process

• Understand quality attributes in more depth

• Learn how several design guidelines promote quality
attributes

• Illustrate the design process through an example

• Learn Java’s encapsulation constructs

toad 915-214

Why a Design Process?

• Without a process, how do you know what to do?
� A process tells you what is the next thing you should be doing

• A process structures learning
� We can discuss individual steps in isolation
� You can practice individual steps, too

• If you follow a process, we can help you better
� You can show us what steps you have done
� We can target our advice to where you are stuck

toad 1015-214

Steps in the Design Process (example: forest simulation)

• Precondition: understand functional requirements
� Step-by-step simulation of the forest, according to a spec

• Precondition: understand quality attribute requirements
� Extension with new agents; easily change simulation setup

• Design a logical architecture
� Driven by quality attributes: what code must change

independently

• Design a behavioral model
� The interactions between components, and their order

• Responsibility assignment
� Which components store data and implement behavior

• Interface design
� The operations of each component, and their signatures

• Algorithm and data structure design – pseudo-code

• Postcondition: ready to code

toad 1115-214

Steps in the Design Process (example: forest simulation)

• Precondition: understand functional requirements
� Step-by-step simulation of the forest, according to a spec

• Precondition: understand quality attribute requirements
� Extension with new agents; easily change simulation setup

• Design a logical architecture
� Driven by quality attributes: what code must change

independently

• Design a behavioral model
� The interactions between components, and their order

• Responsibility assignment
� Which components store data and implement behavior

• Interface design
� The operations of each component, and their signatures

• Algorithm and data structure design – pseudo-code

• Postcondition: ready to code

Caveats:
• You may skip steps
• You may backtrack
• Some steps break down further

toad 1215-214

Data Structure Design: Mathematical Sets of Integers

• Design a library representing mathematical sets of integers

• The library should support:
� Creating empty and singleton sets
� Computing the union, intersection, and difference of two sets
� Testing membership of an integer in a set
� (likely more goes here…)

• Plan to extend the library with efficient representations:
� A representation that represents singleton sets with little space
� A representation for which union and intersection are fast
� A representation for which testing membership is fast
� A representation that is well-balanced across all operations

• Should be able to modify each representation independently

• Different representations should interoperate

Which of these requirements are quality attributes?

toad 1315-214

Steps in the Design Process (example: mathematical sets)

• Precondition: understand functional requirements
� Operations the sets must support

• Precondition: understand quality attribute requirements
� Extensible representations; Interoperability; Performance

• Design a logical architecture
� Trivial: an interface and multiple representations

• Design a behavioral model
� No interesting constraints on order of operations

• Responsibility assignment
� Trivial: the set object does it all

• Interface design
� Mostly specified by the functional requirements

• Algorithm and data structure design – pseudo-code
� This will be our main focus

toad 1415-214

IntSet Interface Design (in-class version)

interface IntSet {

} • The library should support:
� Computing the union of two

sets
� Testing membership of an

integer in a set
� … (and other operations)

toad 1515-214

IntSet Interface Design (prepared version)

interface IntSet {

/** @return the union of this and s */

IntSet union(IntSet s);

/** @return true if this contains i */

boolean contains(int i);

// and other operations

} • The library should support:
� Computing the union of two

sets
� Testing membership of an

integer in a set
� … (and other operations)

toad 1615-214

Algorithm and Data Structure Design

• What choices will support:
� A representation that represents singleton sets with little space?

� A representation for which union and intersection are fast?

� A representation for which testing membership is fast?

� A representation that is well-balanced across all operations?

toad 1715-214

Algorithm and Data Structure Design

• What choices will support:
� A representation that represents singleton sets with little space?

• A single field holding the singleton member

� A representation for which union and intersection are fast?
• A UnionSet object with fields for its constituent sets (and similar for

IntersectionSet)

� A representation for which testing membership is fast?
• A hashtable allows expected constant-time membership testing

� A representation that is well-balanced across all operations?
• A sorted array would provide logarithmic membership testing and

union operations

toad 1815-214

Implementing Set

• Trivial example: an empty set

class EmptySet implements IntSet {

/** @return the union of this and s */

IntSet union(IntSet s) { }

}

• Some OO rules and concepts:
� Must provide method bodies for all the messages in the

interface
• It is an error if we forget one, or change its signature

� May define additional methods and/or data fields
� The class is a subtype of the interfaces it implements

toad 1915-214

Implementing Set

• Trivial example: an empty set

class EmptySet implements IntSet {

/** @return the union of this and s */

IntSet union(IntSet s) { return s; }

}

• Some OO rules and concepts:
� Must provide method bodies for all the messages in the

interface
• It is an error if we forget one, or change its signature

� May define additional methods and/or data fields
� The class is a subtype of the interfaces it implements

interface IntSet {

IntSet union(IntSet s);

boolean contains(int i);

}

error: method contains
from interface IntSet is

not implemented

toad 2015-214

Implementing Set

• Trivial example: an empty set

class EmptySet implements IntSet {

/** @return the union of this and s */

IntSet union(IntSet s) { return s; }

/** @return true if this contains i */

boolean contains(int i) { return false; }

}

• Some OO rules and concepts:
� Must provide method bodies for all the messages in the

interface
• It is an error if we forget one, or change its signature

� May define additional methods and/or data fields
� The class is a subtype of the interfaces it implements

interface IntSet {

IntSet union(IntSet s);

boolean contains(int i);

}

toad 2115-214

Typechecking client code

IntSet s = new EmptySet();

boolean f = s.contains(0); // false

interface IntSet {
IntSet union(IntSet s);
boolean contains(int element);

}
class EmptySet implements IntSet { … }

4. The contains
method in IntSet
accepts an int

argument so the actual
argument is OK

3. s has type IntSet.
We check that IntSet

defines a contains
method.

1. The new
expression has
type EmptySet

2. OK to assign an EmptySet to
an IntSet, because EmptySet

implements IntSet

5. contains()
returns a boolean,

which we can
assign safely to f

toad 2215-214

Typechecking: What Could Go Wrong?

EmptySet s = new IntSet();

int f = s.contans(“hello”); // false

4. Even if we spell
contains correctly,

the method takes an
int argument, and

String is not a
subtype of int

3. s has type EmptySet.
But EmptySet does not

define a contans method

1. Can’t instantiate
an interface; its
methods are
undefined.

2. Can’t assign an IntSet to an EmptySet
because IntSet is not a subtype of (i.e.

does not implement) EmptySet

5. contains()
returns a boolean,

which is not a
subtype of int
(unlike in C)

interface IntSet {
IntSet union(IntSet s);
boolean contains(int element);

}
class EmptySet implements IntSet { … }

toad 2315-214

Implementing Singleton and Union Sets (version 1)

class SingletonSet implements IntSet {
int member;
boolean contains(int e) { return member == e; }
IntSet union(IntSet otherSet) {

UnionSet u = new UnionSet();
u.set1 = this;
u.set2 = otherSet;
return u;

}
}
class UnionSet implements IntSet {

IntSet set1;
IntSet set2;
boolean contains(int e) {

return set1.contains(e) || set2.contains(e);
}
// other methods not shown

}

Issue: what if we want
to represent unions with
an array of ints?

Quality Attribute: Should
be able to modify each
representation independently

class UnionSet is a
Composite—an object

that groups other objects,
while behaving just like

the objects it groups. For
example, you can make a

UnionSet out of UnionSets.

Design Guideline [Representation Hiding]:
Hiding the representation of an object from
other code helps make it easier to modify the
representation

toad 2415-214

Implementing Singleton and Union Sets (version 2)

class SingletonSet implements IntSet {
private int member;

public SingletonSet(int element) { member = element; }

public boolean contains(int e) { return member == e; }
public IntSet union(IntSet otherSet) {

return new UnionSet(this, otherSet);
}

}
class UnionSet implements IntSet {

private IntSet set1;
private IntSet set2;
public UnionSet(IntSet s1, IntSet s2) {

set1 = s1; set2 = s2; }
// other methods not shown

}

A constructor method
initializes the fields

A private field can’t be used
from outside the class

Allocates memory and calls
the constructor of UnionSet

Now we can change the
representation of unions

without affecting other code

public members—i.e.
methods and fields—can be

accessed from anywhere

toad 2515-214

Implementing Singleton and Union Sets (version 2)

class SingletonSet implements IntSet {
private int member;

public SingletonSet(int element) { member = element; }

public boolean contains(int e) { return member == e; }
public IntSet union(IntSet otherSet) {

return new UnionSet(this, otherSet);
}

}

SingletonSet s = new SingletonSet(5);
if (s.member <= 5)

s.member++;

error: cannot access
private field member

from outside class
SingletonSet

Note: all methods in
an interface are
implicitly public

Discussion: when is
it useful to have a
private method?

toad 2615-214

Implicit Constructors

• If you don’t define a constructor, Java generates one for you
� It has no return type and is named after the class

• Just like all constructors

� It has no arguments
� Fields (if any) are initialized to default values

• 0 for numeric values
• false for boolean variables
• null for reference (pointer) variables

class EmptySet implements IntSet {

/** This is equivalent to the auto-generated constructor */

public EmptySet() {}

public IntSet union(IntSet s) { return s; }

public boolean contains(int i) { return false; }

}

toad 2715-214

Using Sets Together

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);
IntSet temp = s1;
s1 = s2;
s2 = temp;
System.out.println(s1.contains(5));
System.out.println(s2.contains(5));

What does this
program print?

Quality Attribute: Different
representations should be able
to interoperate

toad 2815-214

Using Sets Together

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);
IntSet temp = s1;
s1 = s2;
s2 = temp;
System.out.println(s1.contains(5));
System.out.println(s2.contains(5));

main()
s1
s2
temp

Method Stack

e : EmptySet

What does this
program print?

s : SingletonSet

member = 5

Quality Attribute: Different
representations should be able
to interoperate

toad 2915-214

Using Sets Together

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);
IntSet temp = s1;
s1 = s2;
s2 = temp;
System.out.println(s1.contains(5));
System.out.println(s2.contains(5));

main()
s1
s2
temp

Method Stack

e : EmptySet

What does this
program print?

s : SingletonSet

member = 5

Quality Attribute: Different
representations should be able
to interoperate

toad 3015-214

Quality Attribute: Different
representations should be able
to interoperate

Using Sets Together

IntSet s1 = new EmptySet();
IntSet s2 = new SingletonSet(5);
IntSet temp = s1;
s1 = s2;
s2 = temp;
System.out.println(s1.contains(5));
System.out.println(s2.contains(5));

main()
s1
s2
temp

Method Stack

e : EmptySet

s1 points to s.
s is of class SingletonSet.
SingletonSet.contains() is

called, printing true

s : SingletonSet

member = 5

s2 points to e.
e is of class EmptySet.
EmptySet.contains() is
called, printing false

Dynamic Dispatch:
determine which method
to call based on the run-
time class of the object

Polymorphism (“many forms”):
Sets can take two forms, and the

behavior of a set depends on
which form it takes.

toad 3115-214

Achieving Balanced Performance (version 1)

class ArraySet implements IntSet {
private int members[]; // the array is sorted
public ArraySet(int ms[], int size) {

members = new int[size];
for (int i = 0; i < size; ++i)

members[i] = ms[i];
}
public boolean contains(int element) {

/* binary search */
}
public IntSet union (IntSet s) {

int ms[] = new int[size + s.size];
// copy non-duplicate members and s.members into ms

}
} error: s is an IntSet,

and IntSet does not
have a member size

Why copy the ms array?

Representation hiding
requires not sharing
objects with the outside

toad 3215-214

Achieving Balanced Performance (version 2)

class ArraySet implements IntSet {
private int members[]; // the array is sorted
public ArraySet(int ms[], int size) {

members = new int[size];
for (int i = 0; i < size; ++i)

members[i] = ms[i];
}
public boolean contains(int element) {

/* binary search */
}
public ArraySet union (ArraySet s) {

int ms[] = new int[size + s.size];
// copy non-duplicate members and s.members into ms

}
}

error: ArraySet does
not implement union

from the IntSet
interface – the

argument type differs

We can fix the error by
not implementing IntSet

toad 3315-214

ArraySet – is this Good Code?

class ArraySet {
private int members[]; // the array is sorted
private int temp[]; // for performing unions
public ArraySet union (ArraySet s) {

if (temp == null || size + s.size > temp.length)
temp = new int[size + s.size];

// copy non-duplicate members and s.members into ms
}
// other methods not shown

}

the special length field
can be used to get the

array size

toad 3415-214

ArraySet – is this Good Code?

class ArraySet {
private int members[]; // the array is sorted
private int temp[]; // for performing unions
public ArraySet union (ArraySet s) {

if (temp == null || size + s.size > temp.length)
temp = new int[size + s.size];

// copy non-duplicate members and s.members into ms
}
// other methods not shown

}

the special length field
can be used to get the

array size

cohesion means the
code for one issue is

localized. High
cohesion makes code
easier to understand

and modify.

This code has low
cohesion because data
structures used in the
union algorithm are
spread outside the

union method.

toad 3515-214

Using Sets Together

IntSet s1 = new EmptySet();
ArraySet s2 = new ArraySet(new int[] { 5 });
IntSet temp = s2;
ArraySet s3 = s2.union(s1);
IntSet s4 = s1.union(s2);

Quality Attribute: Different
representations should be able
to interoperate

error: ArraySet is not
a subtype of IntSet

error: argument s1 of
type IntSet is not a
subtype of ArraySeterror: argument s2 of

type ArraySet is not a
subtype of IntSet

Quality Attribute: Support a
representation that performs
well on all operations

Two quality attributes, interoperability
and performance, are in conflict

toad 3615-214

An ArraySet Abstract Data Type (ADT)

class ArraySet {
private int members[]; // the array is sorted
public ArraySet(int ms[], int size) {

members = new int[size];
for (int i = 0; i < size; ++i)

members[i] = ms[i];
}
public boolean contains(int element) {

/* binary search */
}
public ArraySet union (ArraySet s) {

int ms[] = new int[size + s.size];
// copy non-duplicate members and s.members into ms

}
} union is a binary

operation because it
accepts another set.

ArraySet is an Abstract
Data Type. Its binary

operations access
objects of the same
fixed class type (and
therefore the same

fixed representation).

This has performance
advantages but

interoperability and
extensibility

disadvantages.

Typical application
programs prioritize

interoperability/
extensibility and

therefore prefer interface
types over class types.

toad 3715-214

ArraySet Design Alternatives, Part 1

class ArraySet implements IntSet {
public IntSet union (IntSet s) {

if (s instanceof ArraySet) {
ArraySet arrSet = (ArraySet) s;
// optimized code here

} else {
// default code here

}
}
// other methods not shown

}

• Benefits

• Drawbacks

instanceof checks at
run time whether s is

really an ArraySet

A cast lets us treat s as
an ArraySet. Java checks
(again) that the object

really is an ArraySet

toad 3815-214

ArraySet Design Alternatives, Part 1

class ArraySet implements IntSet {
public IntSet union (IntSet s) {

if (s instanceof ArraySet) {
ArraySet arrSet = (ArraySet) s;
// optimized code here

} else {
// default code here

}
}
// other methods not shown

}

• Benefits
� Provides both interoperability and performance

• Drawbacks
� Two versions of code are harder to maintain
� Hard to extend – need new instanceof cases for each new rep.

Because extensibility is
typically a high priority,

object-oriented designers
avoid using instanceof

instanceof checks at
run time whether s is

really an ArraySet

A cast lets us treat s as
an ArraySet. Java checks
(again) that the object

really is an ArraySet

How do we avoid case-
based reasoning?
Come up with a higher-
level method that
unifies the cases, and
dispatch to it.

toad 3915-214

ArraySet Design Alternatives, Part 2

interface IntSet {
IntSet union(IntSet s);
boolean contains(int element);
int[] getMembers();

}

• Benefits

• Drawbacks

toad 4015-214

ArraySet Design Alternatives, Part 2

interface IntSet {
IntSet union(IntSet s);
boolean contains(int element);
int[] getMembers();

}

• Benefits
� Can implement union efficiently for ArraySet
� ArraySet is an instance of IntSet and interoperates

• Drawbacks
� Maybe getMembers() is not a method clients should call
� Maybe getMembers() is hard for other implementations to

implement efficiently

toad 4115-214

Toad’s Takeaways: Design Goals and Process

• Quality attributes such as extensibility and performance drive
design

• Following a process can help with being a more effective
designer

• Design guidelines that enhance quality attributes

� Hiding an object’s representation makes it easier to change
representations

� Making fields private and copying internal arrays (or mutable
objects) is one way to hide representation

� Designing for high cohesion makes code easier to understand
and modify

� Programming to interfaces rather than class types facilitates
extensibility and interoperability

� ADTs, instanceof, and casts can be useful, e.g. for performance,
but compromise extensibility and are discouraged in OO. Use
dispatch instead!

