
toad

Fall 2014

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Course Introduction

Jonathan Aldrich Charlie Garrod

toad 215-214

Growth of code—and complexity—over time

(informal reports)

toad 315-214

Principles of Software Construction

• You’ve written small- to medium-size programs in 15-122

• This course is about managing software complexity
� Scale of code: KLOC -> MLOC
� Worldly environment: external I/O, network, asynchrony
� Software infrastructure: libraries, frameworks
� Software evolution: design for change over time
� Correctness: testing, static analysis

� In contrast: algorithmic complexity not an emphasis in 15-214

toad 415-214

binary tree

graph search

sorting

BDDs

primes

GCD

toad 515-214

Our goal: understanding both the building blocks and also the principles for
construction of software systems at scale

From Programs to Systems

Writing algorithms, data
structures from scratch

Functions with inputs
and outputs

Sequential and local
computation

Full functional
specifications

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed
computation

Partial, composable,
targeted models

toad 615-214

The four course themes

• Threads and Concurrency
� System abstraction – background computing
� Performance
� Our focus: application-level concurrency

• Cf. functional parallelism (150, 210) and systems concurrency (213)

• Object-oriented programming
� Evolveability, Reuse
� Industry use – basis for frameworks
� Vehicle is Java –industry, upper-division courses

• Analysis and Modeling
� Practical specification techniques and verification tools

• Design
� Process – how to start
� Patterns – re-use conceptual solutions
� Criteria – e.g. evolveability, performance

toad

Fall 2014

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Course Organization

Jonathan Aldrich Charlie Garrod

toad 815-214

Course preconditions

• 15-122 or equivalent
� 2 semesters of programming, knowledge of C-like languages

• Specifically:
� Basic programming skills
� Basic (formal) reasoning about programs with pre/post

conditions, invariants, verification of correctness
� Basic algorithms and data structures (lists, graphs, sorting,

binary search, …)

toad 915-214

Course learning goals

1. Ability to design medium-scale programs
� Design patterns and frameworks
� Paradigms such as event-driven GUI programming

2. Understanding object-oriented programming concepts
� Polymorphism, encapsulation, inheritance, object identity

3. Proficiency with basic quality assurance techniques
� Unit testing
� Static analysis
� Verification

4. Fundamentals of concurrency and distributed systems

In addition:
� Ability to write medium-scale programs in Java
� Ability to use modern development tools, including VCS, IDEs,

debuggers, build and test automation, static analysis, …

toad 1015-214

Important features of this course

• The team
� Instructors

• Jonathan Aldrich aldrich@cs.cmu.edu Wean 4216
• Charlie Garrod charlie@cs.cmu.edu Wean 5101

� TAs
• Harry Zeng [Section A]
• Matt Gode [Section B]
• Ken Li [Section C]
• Andrew Zeng [Section D,E]
• Yada Zhai [Section F]
• Siyu Wei
• Aniruddh Chaturvedi
• Omer Elhiraika

• The schedule
� Lectures

• Tues, Thurs 9:00 – 10:20pm DH 2210
� Recitations

• A: Weds 9:30-10:20am WEH 5310
• B: Weds 10:30-11:20am WEH 5310
• C: Weds 11:30-12:20pm WEH 5310
• D: Weds 12:30-1:20pm WEH 5310
• E: Weds 3:30-4:20pm WEH 5302
• F: Weds 3:30-4:20pm SH 222

� Office hours and emails
• see course web page

Recitations
are required

toad 1115-214

Important features of this course

• Course website
� Schedule, assignments, lecture slides, policy documents

http://www.cs.cmu.edu/~charlie/courses/15-214

• Tools
� Git

• Assignment distribution, hand-in, and grades
� Piazza

• Discussion site – link from course page
� Eclipse

• Recommended for developing code
� Online quizzes (tool TBA)

• Low-consequence way to check your understanding

• Assignments
� Homework 0 available tonight

• Ensure all tools are working together
• Git, Java, Eclipse

• First recitation is tomorrow
� Introduction to Java and the tools in the course
� Bring your laptop, if you have one!

• Install Git, Java, Eclipse beforehand – instructions on Piazza

toad 1215-214

Course policies

• Grading (subject to adjustment)
� 50% assignments
� 20% midterms (2 x 10% each)
� 20% final exam
� 10% quizzes and participation

• Bring paper and a pen/pencil to class!

• Collaboration policy is on the course website
� We expect your work to be your own
� Ask if you have any questions
� If you are feeling desperate, please reach out to us

• Always turn in any work you've completed before the deadline

• Texts
� Alan Shalloway and James Trott. Design Patterns Explained:

A New Perspective on Object-Oriented Design (2nd Ed).
� Several free online texts (Java, etc.)

toad 1315-214

Course policies

• Late days for homework assignments
� 5 total free late days for the semester

• A separate budget of 2 late days for assignments done in pairs
• Going over budget: penalty 1% per 5 minutes, max 10% per day

� May use a maximum of 2 late days per assignment
• penalty 1% per 5 minutes beyond 2 days, up to 100%

� Extreme circumstances – talk to us

• Recitations
� Practice of lecture material
� Presentation of additional material
� Discussion, presentations, etc.
� Attendance is required
� In general, bring a laptop if you can

toad

Fall 2014

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Design and Objects

Jonathan Aldrich Charlie Garrod

toad 1515-214

This lecture

• 214: managing complexity, from programs to systems
� Threads and concurrency
� Object-oriented programming
� Analysis and modeling
� Design

• Learning Goals
� Introduce the design process through an example
� Understand what drives design
� Motivate object-oriented programming
� Understand basic object-oriented concepts and their benefits

toad 1615-214

Motivation: A Story of Pines and Beetles

Photo by Walter Siegmund

Source: BC Forestry website

Lodgepole Pine Mountain Pine Beetle Galleries carved
in inner bark

Widespread
tree death

toad 1715-214

How to save the trees?

• Causes
� Warmer winters � fewer beetles die
� Fire suppression � more old (susceptible) trees

• Can management help? And what form of management?
� Sanitation harvest

• Remove highly infested trees
• Remove healthy neighboring trees above a certain size

� Salvage harvest
• Remove healthy trees that have several infested neighbors

toad 1815-214

Applying Agent-Based Modeling to the Pine Beetle Problem

• Goal: evaluate different forest management techniques
� Use a simulated forest based on real scientific observations

• An agent-based model
� Create a simulated forest, divided into a grid
� Populate the forest with agents: trees, beetles, forest managers
� Simulate the agents over multiple time steps
� Calibrate the model to match observations
� Compare tree survival in different management strategies

• and vs. no management at all

Liliana Péreza and Suzana Dragićević. Exploring Forest Management Practices Using an Agent-
Based Model of Forest Insect Infestations. International Congress on Environmental Modelling
and Software Modelling for Environment’s Sake, 2010.

toad 1915-214

Simulating Pines and Beetles

• Pine trees
� Track size/age—beetles only infect trees with thick enough bark
� Seedling germination and natural tree death

• Infestations
� Growth in the number of beetles per tree
� Spreads to nearby trees once the infestation is strong enough
� Kills the tree once there are enough beetles

• Forest manager
� Applies sanitation or salvage harvest

• Others?
� Statistics gathering agent?
� Climate? (cold winters kill beetles)
� Competing trees? (the Douglas Fir is not susceptable)

• Agent operations
� Simulation of a time step
� Logging (and perhaps restoring) state

toad 2015-214

A Design Problem

• How should we organize our simulation code?

• Considerations (“Quality Attributes”)
� Separate the simulation infrastructure from forest agents

• We may want to reuse it in other studies

� Make it easy to change the simulation setup
• We want need to adjust the parameters before getting it right

� Make it easy to add and remove agents
• New elements may be needed for accurate simulation

toad 2115-214

The Simulation Architecture

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

…

Simulation
Driver

Runs the simulation

Should not be forest-specific

Should not need to modify
when adding an agent or
running a new simulation

Change easily and independently
of the simulation and agents

Choose
any
subset,
or easily
add new
agents

Each box should be
a separate module
(or file) of code

toad 2215-214

Simulation Framework Behavior Model

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

…Simulation
Driver

1. Select and
create agents

2. Add agents to
framework

3. Invoke
simulate() on
the framework

4. Invoke
timestep() on
each agent

5. Update
agent-specific
state in
timestep()

6. Invoke
logState() on
each agent

7. Repeat 4-6
until done

toad 2315-214

Exercise (small groups, on paper)

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

…Simulation
Driver

1. Select and
create agents

2. Add
agents to
framework

3. Invoke
simulate() on
the
framework

4. Invoke
timestep() on
each agent

5. Update
agent-
specific state
in timestep()

6. Invoke
logState() on
each agent

7. Repeat 4-
6 until done

Sketch the design of the simulation framework
• Each box is a separate module / code file
• Can add new agents w/o changing Simulation Framework

Key question: how can the framework call timestep() on agents?

If you already know OOP, think about how you would do this without objects

toad 2415-214

Design Exercise - Reflection

• “I didn’t know how to get started”
� This course will help

• A process for design
• Design patterns that you can apply
• Principles for selecting among design alternatives
• Techniques for documenting design for others

• “You can’t solve that problem in C / without OO!”
� Actually, it’s hard, though not impossible
� The secret is to simulate objects in C – more later

toad 2515-214

Managing the Agents

• Problem constraints
� Functionality: framework invokes agents
� Extension: add agents without changing framework code

• Consequence: framework must keep a list of agents
� E.g. one per tree, or one for all Lodgepole trees
� List must be open-ended, for extensibility
� List must be populated by simulation driver

• Consequence: behavior tied to each agent
� Framework invokes time step or logging actions
� Each agent does timestep() and logState() differently
� Framework can’t “know” which agent is which
� So agent must “know” it’s own behavior

toad 2615-214

Who is Responsible for…

• Creating the list of agents?

• Storing the list of agents?

• Running the simulation?

• Implementing agent behavior?

• Storing agent state?

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

…

Simulation
Driver

toad 2715-214

Who is Responsible for…

• Creating the list of agents?
� The Simulation Driver, because

it is the only thing that should
change when we add or remove
an agent

• Storing the list of agents?
� The Simulation Framework, because it invokes them

• Running the simulation?
� The Simulation Framework, because it is the reusable code

• Implementing agent behavior?
� Each agent, because we must be able to add new agents and

their behavior together

• Storing agent state?
� Each agent, because the state to be stored depends on the

agent’s behavior

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

…

Simulation
Driver

toad 2815-214

Designing the Agent Interface

• Agent Responsibilities
� Implementing agent behavior
� Storing agent state

• Interface to agent behavior?

• Interface to agent state?
� HINT: think about what other agents need to know

Lodgepole agent

4. Invoke
timestep() on
each agent

5. Update
agent-specific
state in
timestep()

6. Invoke
logState() on
each agent

7. Repeat 4-6
until done

Part of the Behavioral Model

toad 2915-214

Designing the Agent Interface

• Agent Responsibilities
� Implementing agent behavior
� Storing agent state

• Interface to agent behavior?
� void timeStep(Simulation s)
� void logState()

• Interface to agent state?
� HINT: think about what other agents need to know
� boolean isLodgepolePine()
� boolean isInfested()
� int getAge()
� int getInfestation()
� Location getLocation()
� String getStateDescription()

Lodgepole agent

4. Invoke
timestep() on
each agent

5. Update
agent-specific
state in
timestep()

6. Invoke
logState() on
each agent

7. Repeat 4-6
until done

Part of the Behavioral Model

Note: this agent interface is
specific to tree infestation
simulations. We’ll discuss later
how to make it generic.

toad 3015-214

Designing the Framework Interface

• Framework Responsibilities
� Running the simulation
� Storing the list of agents

• Framework interface?

Simulation
Framework

2. Add agents
to framework

3. Invoke
simulate() on
the framework

4. Invoke
timestep() on
each agent

6. Invoke
logState() on
each agent

7. Repeat 4-6
until done

Part of the Behavioral Model

toad 3115-214

Designing the Framework Interface

• Framework Responsibilities
� Running the simulation
� Storing the list of agents

• Framework interface?
� void simulate()
� Agent[] getAgents()

Simulation
Framework

2. Add agents
to framework

3. Invoke
simulate() on
the framework

4. Invoke
timestep() on
each agent

6. Invoke
logState() on
each agent

7. Repeat 4-6
until done

Part of the Behavioral Model

toad 3215-214

Some Pseudo-code

Simulation Driver

void main(…)

create a simulation

create and add agents for trees

add agents for infestations, etc.

call simulate() on the framework

Simulation Framework

void simulate()

loop // until done

for each agent a

call a’s timeStep(simulation)

call a’s logState()

Lodgepole Pine Agent

void timeStep(Simulation s)

increment age

chance to die

chance to spawn seedlings nearby

String logState()

return a String representation
of the agent’s state

toad 3315-214

The Lodgepole Pine Agent is an Object

• An Object is a first-class package of behavior and state
� First-class: we can create it and pass it around at run time

Agent a = new LodgepolePine();

simulate(a);

� State: data fields of the object

int age;
Location location;

� Behavior: the object “knows” how to respond to requests

a.timeStep(); // the agent knows how to do a time step
// since the agent is a Lodgepole Pine,
// it will behave as in the previous slide

sends the timeStep
message to the agent a

a is the receiver
of the message

creates a LodgepolePine object,
which we will call “a”

passes the object “a” to a function

so far an object is like
a record or struct

toad 3415-214

The Agent Interface

• An interface is a type describing the set of messages an
object understands

• What messages does Agent understand?

interface Agent {
void timeStep(Simulation s);
void logState();

boolean isLodgepolePine();
boolean isInfested();
int getAge();
int getInfestation();
Location getLocation();

}

toad 3515-214

The LodgepolePine Class

• A class is a construct describing the implementation of a
certain kind of object

• We’ll use a class to implement LodgepolePine objects:

class LodgepolePine implements Agent {
int age;
Location location;

void timeStep(Simulation s) { … }
void logState() { … }

boolean isLodgepolePine() { … }
boolean isInfested() { … }
int getAge() { … }
int getInfestation() { … }
Location getLocation() { … }

}
* some keywords left out for simplicity

LodgepolePine can
respond to the messages
in the Agent interface

Each LodgepolePine
object stores information
about the pine’s age and
location in fields

LodgepolePine defines how
it responds to each
message in the Agent
interface with a method

toad 3615-214

The Simulation Framework and Driver Code

Simulation Driver

void main(…) {

Simulation s = new Simulation();

for (int i = 0; i<NUM_TREES; ++i)

s.add(new LodgepolePine(…));

s.simulate()

}

* some keywords left out for simplicity

Simulation Framework

class Simulation {

Agent grid[][];

int xSize;

int ySize;

void simulate() {

for (int i=0; i<NUM_STEPS; ++i)

for (int x=0; x<xSize; ++x)

for (int y=0; y<ySize; ++y) {

Agent a = grid[x][y];

if (a != null) {

a.timeStep(this);

a.logState();

}

} }

// other methods, such as add(Agent a)…

}

A two-dimensional
array of Agents

The keyword this
always refers to
the current
method’s receiver

toad 3715-214

Let’s Run the Code!

toad 3815-214

Extending with Infestations

Simulation Driver

void main(…) {

Simulation s = new Simulation();

for (int i = 0; i<NUM_TREES; ++i)

s.add(new LodgepolePine(…));

for (int i = 0; i<NUM_INFECT; ++i)

s.add(new InfectedPine(…));

s.simulate()

}

* some keywords left out for simplicity

Simulation Framework

class Simulation {

Agent grid[][];

int xSize;

int ySize;

void simulate() {

for (int i=0; i<NUM_STEPS; ++i)

for (int x=0; x<xSize; ++x)

for (int y=0; y<ySize; ++y) {

Agent a = grid[x][y];

if (a != null) {

a.timeStep(this);

a.logState();

}

} }

// other methods, such as add(Agent a)…

}

We simply add
InfectedPine objects
to the Agents in the
Simulation.

Separately, we
implement an
InfectedPine class.

toad 3915-214

Let’s Run the Code Again!

toad 4015-214

Dispatch: How Objects Respond to Messages

s:Simulation

grid:Agent[]

simulate()

*simplification: we consider a 1-dimensional grid in this diagram

a0:LodgepolePine

age:int

timeStep(Simulation)
…

a1:InfectedPine

intensity:int

timeStep(Simulation)
…

1. assign a0 to grid[0]
2. assign a1 to grid[1]
3. invoke grid[0].timeStep()
4. invoke grid[1].timeStep()

Object a0 is a
LodgepolePine
Dispatch to code in the
LodgepolePine class

Object a1 is a
LodgepolePine
Dispatch to code in the
LodgepolePine class

toad 4115-214

Historical Note: Simulation and the Origins of Objects

• Simula 67 was the first
object-oriented
programming language

• Developed by
Kristin Nygaard and
Ole-Johan Dahl at the
Norwegian Computing
Center

• Developed to support discrete-event simulations
� Much like our tree beetle simulation
� Application: operations research, e.g. for traffic analysis
� Extensibility was a key quality attribute for them
� Code reuse was another—which we will examine later

toad 4215-214

Toad’s Takeaways: Design and Objects

• Design follows a process
� Structuring design helps us do it better

• Quality attributes drive software design
� Properties of software that describe its fitness for further

development and use

• Objects were invented to support simulation
� Domain quality attributes: extensibility, modifiability

• Objects support extensibility, modifiability
� Interfaces capture a point of extension or modification
� Classes provide extensions by implementing the interface
� Method calls are dispatched to the method’s implementation

in the receiver object’s class

