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Abstract

File swarming (or file sharing) is one of the most important applications in P2P networks. In this paper, we propose a stochastic
framework to analyze a file-swarming system under realistic setting: constraints in upload/download capacity, collaboration among
peers and incentive for chunk exchange. We first extend the results in the coupon system [L. Massoulie, M. Vojnovic, Coupon
replication systems, in: Proc. ACM SIGMETRICS, Banff, Alberta, Canada, 2005] by providing a tighter performance bound.
Then we generalize the coupon system by considering peers with limited upload and download capacity. We illustrate the last-
piece problem and show the effectiveness of using forward error-correction (FEC) code and/or multiple requests to improve the
performance. Lastly, we propose a framework to analyze an incentive-based file-swarming system. The stochastic framework we
propose can serve as a basis for other researchers to analyze and design more advanced features of file-swarming systems.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, peer-to-peer (P2P) networks have emerged as a new paradigm for creating network applications.
Recent network measurements have shown that P2P file-sharing applications constitute a large percentage of the
network traffic. Also, P2P networks have a significant impact on the way new network services are designed. Unlike
the traditional client–server computing paradigm, P2P networks allow the individual user (or peer) to play the roles
of client and server at the same time. Therefore, peers in a P2P network can help other peers in file searching, file
lookup, as well as file transfer.

File swarming (or file sharing) is one of the most important applications in P2P networks. In general, a file-
swarming application has a good scalability property due to its collaborative mechanism, which can be intuitively
explained as follows: a file is first partitioned into many disjoint chunks. Each peer can obtain these chunks either from
a server, or from other peers holding those chunks that it does not already have. Each peer offers an upload service
to other peers, and in return, each peer tries to obtain a missing chunk so as to maximize its ability to serve others;
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hence also the service it will receive. By coupling the service each peer can receive to its contribution to others, file-
swarming applications successfully make each peer play the role of server and client at the same time. Therefore, as
the number of peers increases, the service capacity of the whole system also increases. The file-swarming application
is implemented in P2P file-sharing networks such as eDonkey, KaZaA, and it is the core functionality of the popular
BitTorrent (BT) [25] protocol.

The work by the authors in [23] suggests that file-swarming systems (e.g. BT networks) are efficient in the sense
that as the demand for the file increases, the service capacity also increases. However, which aspects of the system
are critical to maintain the scalability property is not completely understood. The authors in [20] use a fluid model
to represent the BT file-swarming protocol and derive a coarse approximation of the average file downloading time.
Recently, a coupon model [15] was proposed to represent a generic file-swarming system. The authors analyze the
system under the large population regime and show that the file-swarming system stabilizes around a finite equilibrium
point and is indeed efficient. The results provide further support to the claim of [23], that the system performs well
under the flash crowd scenario, even when the rarest first chunk selection policy is replaced by some random coupon
selection policies. However, strong assumptions are made in [15]; in particular, the authors assume that peers have an
infinite upload capacity (or relatively large as compared with the download capacity).

The aim of this paper is to provide a deeper understanding of file-swarming protocols and the efficiency of
BitTorrent-like file-sharing systems. We propose a simple density dependent jump Markov process to model the
dynamics of a file-swarming system, and we investigate the performance of the system under constraints on upload
capacity, download capacity and peer selection policies (including random chunk selection and coordinated matching).
The contributions of our work are as follows:

• We generalize some of the results in the coupon system [15] and provide a tighter bound for performance measures
such as the average file downloading time.

• We consider the last-piece problem and analytically show the improvement in performance when a file-swarming
system uses the forward error correction (FEC) [21] coding technique for file sharing.

• We relax the unlimited upload capacity assumption in [15], analyze the file-swarming system under a more realistic
setting and provide asymptotic bounds on the average file downloading time.

• We propose a stochastic model for an incentive-based file-swarming system with coordinated matching, wherein
chunk exchange is only allowed when both peers are deemed to be useful to each other.

Extensive simulations are carried out to validate our models and to illustrate some interesting design guidelines.
The balance of this paper is as follows. In Section 2, we present a generic model for a file-swarming system. In

Section 3, we present an analytical model of an altruistic file-swarming system wherein each peer has an unlimited
amount (or sufficiently large amount) of upload capacity and we derive performance measures such as the average file
downloading time. In Section 4, we present the model of an altruistic file-swarming system with limited upload and
download capacity. In Section 5, an analytical model of an incentive-based file-swarming system is presented and we
derive various important performance measures. Extensive simulations and the related results are given in Section 6.
Related work is given in Section 7 and Section 8 concludes.

2. Model description

Let us consider a P2P file-swarming system that distributes a given file F to a number of peers. The file is divided
into K equal size chunks, the i th chunk being denoted as Ci , and F = C1 ∪ C2 ∪ · · · ∪ CK , with Ci ∩ C j = ∅ for i 6= j .
To download the file F , a peer needs to download all K chunks from other peers in this P2P file-swarming system.
Let FA be the set of chunks that peer A possesses. Peer A maintains a bitmap to denote which chunks they possess.
Whenever peer A finishes the downloading of a new chunk, it will update its bitmap. Peer A can upload chunk Ck
to others only after it has completely downloaded Ck . New peers arrive to this system according to a Poisson process
with an average rate λ. Using the BitTorrent’s terminology, a peer that has at least one missing chunk of F is called
a leecher, while a peer that has all K unique chunks of F is called a seeder. Note that, unlike the BitTorrent system,
which has at least one seeder to start the file distribution and serve the leechers, we assume that every newly arrived
peer will initially obtain one chunk from a server before entering this system.1 This initial chunk is randomly chosen

1 This assumption is similar to the one made in [15].
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Fig. 1. A simple illustration of a transfer dynamic within one time slot with F = C1 ∪ C2 · · · ∪ C5.

by the server with equal probability 1/K for chunks C1 . . . CK . When a peer finishes downloading all K chunks, the
peer will depart immediately.

Similarly to [15], we assume that this P2P file-swarming is slotted in the sense that uploading (or downloading)
a single chunk takes one slot time. The file distribution process in each time slot can be described as follows. At the
beginning of every time slot, a peer, say A, will select m ≥ 1 other peers in the system and fetch their bitmaps. Note
that the parameter m and the way it chooses these m peers will greatly affect the system performance, and we will
investigate this further in later sections. Since the bitmap information can be greatly compressed, the transfer time of
a bitmap is negligible compared to the transfer time of a chunk. Let peer B be one of these m peers. Upon receiving
its bitmap, peer A can determine whether peer B is useful (i.e. peer B possesses at least one missing chunk of peer
A, or FB \ FA 6= ∅). If no peer among these m selected peers is useful to peer A, then peer A will take no action but
remain idle in the current time slot; otherwise, peer A will randomly select one of the useful peers to request a useful
chunk for download. Assume the selected peer is B, then peer A will request one chunk which is uniformly chosen
from the set of chunks possessed by peer B and is missing in peer A (i.e. a chunk Ck ⊂ FB \ FA). Note that this can
be viewed as a blind chunk selection policy, in contrast to the rarest first policy in the BitTorrent protocol by which
peer A will select the chunk among FB \ FA with the fewest number of copies among its neighbors [3]. As a result,
peer B may receive multiple downloading requests. Based on the upload capacity constraint and service rule, peer B
will choose one or more requests to satisfy (we will elaborate this in later sections). The transfer time of this chunk
will take one time slot. At the end of a time slot, the process repeats.

Fig. 1 illustrates the P2P file-sharing model with m = 2. We have six peers: A, B, C, D, E and F . The file has
five chunks and the shaded boxes represent the chunks that peers possess. For example, peer A has C1, C3 and C4.
In Fig. 1(a), peer A (peer B) requests bitmaps from peer C and D (peer D and F) and these peers reply with their
respective bitmaps. Peer A determines that peer C is not useful while peer D is useful. Peer B, on the other hand,
determines that both peer D and F are useful. Both peers select one peer for a chunk transfer and Fig. 1(b) shows that
both peer A and B choose D for the chunk transfer. Peer D receives two transfer requests, it randomly picks one peer
to serve in this example, and it chooses peer A. Fig. 1(c) shows that peer D transfers C5 which is requested by A. At
the end of a time slot, peer A obtains C5 while peer B wastes one time slot.

The above model is in fact, quite general. For example, when one considers the case that m = 1 (or each peer just
randomly chooses one peer to fetch the bitmap), and that there is no constraint on peers’ upload capacity, then this
becomes the model studied in the coupon replication system [15]. In this work, we generalize their model and study
the performance of the system when m ≥ 1, which means that each peer can first fetch multiple bitmaps from different
peers but can choose at most one peer to request chunk transfer. Surprisingly, such a simple modification can improve
the performance of the system to achieve a near-optimal average file downloading time. Furthermore, we also relax
the assumption of large or infinite upload capacity in [15]. This is in fact a very important step because for the current
Internet, the bottleneck is usually not at the network core but rather at the network edge, and the upload capacity of
an end host is indeed limited (e.g. ADSL system, cable system). Therefore, this capacity constraint model is in fact
a more realistic representation for file-swarming systems. In this uplink/downlink constrained system, we study two
different uploading policies.
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1. Altruistic uploading service: Under this policy, a peer will provide an upload service to other peers regardless
of whether or not these peers have provided an upload service to other peers. In other word, this is a perfect
collaborative system and it is similar to the “optimistic unchoking” feature in the BitTorrent protocol.

2. Incentive uploading service: Under this policy, a peer follows a given incentive mechanism similar to the “tit-for-
tat” feature used in the BitTorrent protocol to decide on uploading.

Although our system model is a simple representation of some realistic P2P file-swarming system (e.g. BitTorrent),
it has already captured many essential features such as the collaborative upload and download, as well as incentive-
based chunk exchange in P2P file-swarming systems. In later sections, we will derive the performance of such a
system, and show why and how it can achieve good performance.

3. Altruistic file-swarming system with constraint in download capacity

In this section, we consider the file-swarming system where each peer has a constraint in the download capacity
and we place no upper-bound restriction on the upload capacity. So at every time slot, each peer will first contact
m ≥ 1 other peers randomly in the system to acquire their bitmaps. If more than one peer is useful, it will randomly
choose one to request a useful chunk. It is possible that a peer may acquire many downloading requests. Since we
assume that there is no restriction on uploading bandwidth, all requests will be satisfied. Also, due to the abundance
of uploading bandwidth, there is no need to enforce an incentive mechanism for data transfer. Lastly, it is important
to note that when m = 1, this corresponds to the model described in the coupon replication system [15].

3.1. Model formulation

First we assume that all types of chunk in the system are uniformly distributed. This assumption can be guaranteed
by the random chunk selection policy (as described in Section 2). We classify peers into different types according to
the number of chunks it possesses. A peer holding i chunks is called a type i peer, for i = 1, 2, . . . , K − 1 (i 6= K
because a peer will immediately depart from the system when it finishes downloading all K chunks). After receiving
a new chunk, a type i peer will become a type (i + 1) peer. Let pi, j denote the probability that a type j peer B is
useful to a type i peer A. When i < j , it is clear that pi, j = 1; When i ≥ j , we have pi, j = 1 − Prob{FB ⊆ FA}.
Thus

pi, j =


1 1 ≤ i < j ≤ K − 1,

1 −
C j

i

C j
K

1 ≤ j ≤ i ≤ K − 1 (C y
x is the binomial coefficient).

(1)

Let yi (t) denote the number of type i peers in the system at time t . The total number of peers in the system at time t
is y(t) =

∑K−1
i=1 yi (t). When a type i peer randomly picks another peer and requests its bitmap, the probability that

this selected peer is useful is qi (t) =
∑K−1

j=1 pi, j y j (t)/y(t), i = 1, 2, . . . , K − 1.
Given the system state Y(t) = {yi (t)}i∈{1,...,K−1}, it is easy to verify that (Y(t))t≥0 is a Markov process taking its

values in ZK−1
+ (ZK−1

+ is a K −1 dimensions vector with non-negative integer entities). Denoting by ei the unit vector
of ZK−1

+ whose i-coordinate equals 1, and with all other coordinates equal to zero, the non-zero transition rates of
this Markov process are, for all i ∈ {1, . . . , K − 1},

Y −→ Y + e1 with rate λ,

Y −→ Y − ei + ei+1 with rate yi
(
1 − (1 − qi )

m) , i ∈ {1, . . . , K − 2}

Y −→ Y − eK−1 with rate yK−1
(
1 − (1 − qK−1)

m) .
We analyze the system under a large population asymptotic regime. Note that this is a density dependent jump Markov
process [13]. It converges to the solution of the differential equations

dyi (t)
dt

=

{
λ − y1(t)

[
1 − (1 − q1(t))m] i = 1,

yi−1(t)
[
1 − (1 − qi−1(t))m]

− yi (t)
[
1 − (1 − qi (t))m] i = 2, . . . , K − 1

(2)

for some initial condition Y(0).
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3.2. Steady state analysis

In this section, we derive the average file downloading time for the above P2P file-swarming system. We also
extend our analysis to a file-swarming system that provides an FEC service.

3.2.1. Altruistic file-swarming without FEC
In this section we focus on the steady state performance and its equilibrium point. An equilibrium point is the point

Ŷ = (y1, y2, . . . , yK−1) such that if Y(t) = Ŷ, then Y(t ′) = Ŷ for all t ′ ≥ t . The necessary and sufficient condition
for Ŷ to be an equilibrium point is dyi (t)

dt = 0, for 1 ≤ i ≤ K − 1. Applying these conditions to Eq. (2), we have the
following equations at the equilibrium point Ŷ: λ = yi (1 − (1 − qi )

m), i = 1, 2, . . . , K − 1.
Let Ti be the average sojourn time for type i peers, that is, the average time for a type i peer to receive a new

chunk and become type (i +1). One can derive this measure from the equilibrium point Ŷ = (y1, . . . , yK−1) by using
Little’s theorem [12]: λTi = yi . Define T =

∑K−1
j=1 T j as the average file downloading time in the P2P file-swarming

system, we have yi/y = Ti/T . Finally, one can obtain the following equations at the equilibrium point Ŷ:

Ti =
1

1 − (1 − qi )m and qi =

K−1∑
j=1

T j

T
pi, j , for i = 1, 2, . . . , K − 1. (3)

One can observe that Ti of Eq. (3) does not depend on λ. So even when the arrival rate λ is large and the number of
peers in the system becomes very large, the average sojourn time Ti (and also T ) will not be affected in the steady
state. This is an important observation since this indicates that the file-swarming system has a good scaling property:
when one increases the arrival rate, the performance will not degrade. Since Ti is the average sojourn time for type
i peers, i.e. it takes on average, Ti unit of time slots to download the next chunk when a peer holds i chunks, let us
explore the relationships among the Ti ’s at the steady state.

Lemma 1. The sojourn time is an increasing sequence, i.e. 1 ≤ T1 < T2 < · · · < TK−1.

Proof. According to Eq. (3) we have qi ≤ 1. Therefore, one can conclude that Ti ≥ 1 for i = 1, . . . , K − 1.
According to Eq. (1), when i > i ′, pi, j ≤ pi ′, j holds for j = 1, . . . , K − 1 and pi, j < pi ′, j holds for some j . So
qi =

∑K−1
j=1

T j
T pi, j <

∑K−1
j=1

T j
T pi ′, j = qi ′ . Thus, we have Ti > Ti ′ when i > i ′. �

Lemma 2. The upper and lower bounds of Ti are

1

1 −

[(
1

K−2+HK

) (
i

K−i+1

)]m + O(K −2) < Ti <
1

1 −

[(
1

K−1

) (
i

K−i+1

)]m ,

where K is the number of chunks in F and HK is the K th harmonic number.

Proof. The sequence {t j = T j/T } is increasing and the sequence {a j = pi, j } in non-decreasing. From Chebyshev’s
sum inequality, we have

qi >
1

K − 1

(
K−1∑
j=1

T j

T

)(
K−1∑
j=1

pi, j

)
=

1
K − 1

(
K − 1 −

i∑
j=1

C j
i

C j
K

)

= 1 −

(
1

K − 1

)(
i

K − i + 1

)
(“Concrete Mathematics” [9], p. 174).

One can apply it to Eq. (3) and obtain the upper bound of Ti as claimed. For the lower bound of Ti , let us first derive
an upper bound of T , which is

T =

K−1∑
i=1

1
1 − (1 − qi )m ≤

K−1∑
i=1

1
qi

<

K−1∑
i=1

(K − 1)(K − i + 1)

K (K − i) − 1

=
(K − 1)2

K
+

K 2
− 1

K

K−1∑
i=1

1
K i − 1

= K − 2 + HK + O(K −1).
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(a) m = 1. (b) m = 2. (c) m ≥ 1 with FEC.

Fig. 2. Illustration on the last-piece problem: bounds of Ti for m = 1, 2 and m ≥ 1 with FEC. K = 50 chunks.

We can apply it to Eq. (3) to obtain an upper bound of qi as

qi = 1 −

i∑
j=1

(
T j

T

)(
C j

i

C j
K

)
< 1 −

i∑
j=1

C j
i

C j
K

(
1

K − 2 + HK + O(K −1)

)

= 1 −

(
1

K − 2 + HK

)(
i

K − i + 1

)
+ O(K −2).

With this upper bound of qi , one can substitute it to Eq. (3) to obtain the lower bound of Ti as claimed. �

Remark. The importance of the above two lemmas is that one can use them to understand the “last-piece” problem in
P2P file-swarming systems. i.e. how long it takes for a peer to receive the last few chunks of the file since it becomes
increasingly more difficult to find other peers that can help.

To illustrate this issue, let us consider the upper and lower bounds of Ti for a file with K = 50 chunks. The
scenario is illustrated in Fig. 2(a) and (b). There are two important observations. First, one can observe that the upper
and lower bounds are indeed very tight, which implies that we can use Ti to give a very accurate measure of the
average file downloading time T . Second, one can observe that the sojourn times Ti are very close to 1 for i � K −1,
but when i approaches K −1, Fig. 2(a) (and Fig. 2(b)) shows that both bounds approach 2 (approach 1.4) quickly. The
increasing downloading time, especially for the last few chunks, depicts the last-piece problem. Intuitively, the reason
for this problem is that it becomes more and more difficult for a peer to find other peers that are useful, especially
when the peer is very close to finishing downloading the whole file. However, one can amend this problem, at least to
a certain degree, by simply changing the parameter m. One can observe that when m = 1 (as shown in Fig. 2(a)), it
costs 2 time slots on average to download the last chunk but when m = 2 (as shown in Fig. 2(b)), it only costs 1.4 time
slots to obtain the last chunk. The reason is that when m = 2, peers can ask for more peers for bitmaps and thereby
increase the chance to find useful peers. Given m, we can derive the bounds of T from Lemma 2.

Theorem 1. When m = 1, the average downloading time T = K − 2 + HK + O(
log2 K

K ).

Proof. In the proof of Lemma 2, we have obtained T < K − 2 + HK + O(K −1). For the lower bound of T , let us
denote A = K − 2 + HK , then

T =

K−1∑
i=1

Ti >

K−1∑
i=1

1

1 −
1
A

(
i

K−i+1

) + O(K −1)

=
A

A + 1

(
K − 1 +

K + 1
A + 1

K−1∑
j=1

1
j

)
+ O

(
log K

K

)
= K − 2 + HK + O

(
log2 K

K

)
.

Combining the upper and lower bounds, Theorem 1 can be shown as claimed. �

Remark. Note that when m = 1, the system corresponds to the “open and flat” case of the coupon system [15],
in which the authors give an upper bound T < K + O(

√
K ). However, the result in Theorem 1 states that
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T = K − 2 + HK + O(
log2 K

K ). We know that HK is the K th harmonic number, HK = log K + γ + O(K −1),
where γ = 0.5772 . . . is the Euler–Mascheroni constant. Thus T = K + log K + O(1). Therefore, we obtain a tighter
bound than [15].

Similarly, we can derive the lower and upper bounds of T from Lemma 2 when m ≥ 2. Due to the lack of space,
we only show the derivation of the upper bound in the following theorem.

Theorem 2. When m ≥ 2, the average downloading time T < K + O(
log K

K ).

Proof.

T <

K−1∑
i=1

1

1 −

[(
1

K−1

) (
i

K−i+1

)]2 = K − 1 +

K−1∑
i=1

[(
1

K−1

) (
i

K−i+1

)]2

1 −

[(
1

K−1

) (
i

K−i+1

)]2

< K − 1 +
4
3

K−1∑
i=1

[(
1

K − 1

)(
i

K − i + 1

)]2

= K − 1 +
4

3(K − 1)2

K−1∑
i=1

[
(K + 1)2

(K − i + 1)2 −
2(K + 1)

K − i + 1
+ 1

]
≤ K − 1 +

4
3
(ζ(2) − 1) + O

(
log K

K

)
< K + O

(
log K

K

)
. �

Remark. Since it is necessary to require at least K − 1 time slots to finish the downloading of the whole file F , we can
conclude by fetching multiple bitmaps (setting m ≥ 2), the average downloading time is near-optimal. To see this, one
can compare it with the result in Theorem 1, which states that it takes at least K + log(K ) + O(1) time slots to finish
the downloading, and we remove the log(K ) term by getting more than one bitmap. Setting m = 2 is sufficient for
achieving the near-optimal performance. This result is encouraging and insightful, it shows that due to the diversity of
chunks held and the altruistic uploading for every peer, a “simple-design” can achieve very good performance.

3.2.2. Altruistic file-swarming with FEC
We have seen that by fetching bitmaps from multiple peers, the system performance can reach near-optimal levels.

Here, we provide an alternative approach to reach the near-optimal performance by using the forward error correction
(FEC) coding technique [21]. Given a file F , one can encode the original K chunks to Q = (1 + α)K chunks
with erasure codes before the distribution process. Any peer can reconstruct the original file F after it receives any
K distinct chunks of these Q chunks. This technique makes it unnecessary to download the “last” chunk and will
ease the last-piece problem, making the system more efficient. To make this claim formally, we have the following
theorem:

Theorem 3. For m ≥ 1, using FEC with redundancy rate of α > 0, the average downloading time TFEC <

K − 2 + (1 + α) log 1+α
α

+ O(K −1).

Proof. Note that FEC makes pi, j = 1 − C j
i /C j

Q when 1 ≤ j ≤ i ≤ K − 1 and all other equations remain the same.
Similarly to the proof of Lemma 2, one can derive that Ti < [1 − ( 1

K−1 )( i
Q−i+1 )]−1. So

TFEC <

K−1∑
i=1

1

1 −

(
1

K−1

) (
i

Q−i+1

) =
K − 1

K

K−1∑
i=1

(
1 +

1
K (Q−i+1)

Q+1 − 1

)

=
(K − 1)2

K
+

(K − 1)(Q + 1)

K 2

Q−1∑
j=Q−K+1

1
j

+ O(K −1)

= K − 2 + (1 + α) log
1 + α

α
+ O(K −1). �
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Remark. Compared with Theorem 1, the harmonic term HK is replaced with the term (1 + α) log 1+α
α

. Note that,
when α = 0.1 (i.e. 10% redundancy), this term is less than 2.7. Thus, given a particular redundancy rate α, TFEC is
bounded by K − 1 plus a small constant. So by using FEC codes, even if a peer only contacts one other peer for a
bitmap (i.e. m = 1), the average downloading time T can still approach the near-optimal value.

Gkantsidis and Rodriguez [8] declare that traditional P2P content distribution software such as BitTorrent usually
suffers from last-piece problem and it could be settled by the network-coding technique they propose. In our model
we have seen that there exists a last-piece problem as Fig. 2(a) and (b) shown. It takes about 2 time slots on average
to download the last piece. To illustrate how FEC affects the last-piece problem, let us consider the upper bound of Ti
for a file with K = 50 chunks again. By setting α = 0.1 (i.e. 10% redundancy), we show the upper bound of Ti in
Fig. 2(c). This bound holds for all m ≥ 1. From Fig. 2(c), one can observe that the last-piece problem can be eased
if we use the FEC technique to generate a few redundant chunks. This observation is helpful for the advanced P2P
content distribution system design in the future.

4. Altruistic file-swarming system with download and upload constraints

In this section, we consider the file-swarming system where each peer has a limited bandwidth on the download and
upload capacity. Note that this is a more realistic setting than the unlimited upload bandwidth assumption in Section 3
and the coupon replication system [15]. This is a very important point since in the current Internet, the bottleneck is
not at the network core but rather at the edge, and usually the upload capacity of a host is indeed limited (e.g. ADSL
or the cable system). To simplify our analysis, we only consider the case m = 1 (i.e. in each time slot, peer A will first
contact one other peer randomly in the system to obtain its bitmap). If this peer can help peer A, peer A will request a
useful chunk. It is possible that a peer may obtain multiple requests for a chunk. Due to the upload capacity constraint,
this peer will only randomly pick one peer to upload. If peer A is chosen, then peer A can download one useful chunk
within the current time slot. Otherwise, peer A will remain idle for the current time slot.

4.1. Model formulation

As in Section 3, let pi, j denote the probability that a type j peer is useful to the type i peer, yi (t) denote the number
of type i peers in the system at time t . The total number of peers in the system at time t is y(t) =

∑K−1
i=1 yi (t).

When a type j peer is requested by another peer for its bitmap, the probability that this request comes from
a type i peer is yi (t)/y(t). Thus, the probability that the type j peer is useful to a peer who contacts it is
β j (t) =

∑K−1
i=1 pi, j yi (t)/y(t).

Assume that peer A contacts peer B and B is of type j . Peer A finds that B is useful and sends B a request
for a chunk. Let us consider the probability that A will be chosen by B for service. To derive this probability, we
consider how many other peers contacted B for its bitmap. Since there are y − 2 peers (ignoring A and B) in the
system selecting others to contact and B is contacted by a particular peer with probability 1/(y − 1) (each peer does
not contact itself). Thus the number of peers that contacted B, denoted by the random variable R, is the number of
successes in a sequence of y − 2 independent Bernoulli trials, or R ∼ Bernoulli(y − 2, 1

y−1 ). Since y − 2 is large
and (y − 2)/(y − 1) ∼ 1, R can be approximated as a Poisson random variable with mean 1, thus R has a probability
mass function of fR(k) = e−1/k!, for k ∈ {0, 1, . . .}.

Assume R = r (i.e. peer B was contacted by r peers for its bitmap). The probability that peer B is useful to a peer
in R is β j (t). Thus B receives k requests for a chunk with probability Ck

r βk
j (t)(1 − β j (t))r−k for k ≤ r . When A

contacts B, finds B is useful and also sends B a request for a chunk, the probability that A is chosen by B for service
is

α j,r (t) =

r∑
k=0

Ck
r βk

j (t)(1 − β j (t))r−k 1
k + 1

=
1 − (1 − β j (t))r+1

(r + 1)β j (t)
.

The system can be modeled as a Markov process Y(t) = {yi (t)}i∈{1,...,K−1}. Again, it is easy to verify that (Y(t))t≥0

is a Markov process taking its values in ZK−1
+ . The non-zero transition rates of this Markov process, for all

i ∈ {1, . . . , K − 1} is

Y −→ Y + e1 with rate λ,
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Y −→ Y − ei + ei+1 with rate yi

K−1∑
j=1

[
y j

y
pi, j

∞∑
r=0

e−1

r !
α j,r

]
, i ∈ {1, . . . , K − 2}

Y −→ Y − eK−1 with rate yK−1

K−1∑
j=1

[
y j

y
pK−1, j

∞∑
r=0

e−1

r !
α j,r

]
.

For a large population asymptotic regime, this density dependent jump Markov process converges to the solution of
the system of differential equations

dy1(t)
dt

= λ − y1(t)
K−1∑
j=1

[
y j (t)
y(t)

p1, j

∞∑
r=0

e−1

r !
α j,r (t)

]
,

dyi (t)
dt

= yi−1(t)
K−1∑
j=1

[
y j (t)
y(t)

pi−1, j

∞∑
r=0

e−1

r !
α j,r (t)

]

− yi (t)
K−1∑
j=1

[
y j (t)
y(t)

pi, j

∞∑
r=0

e−1

r !
α j,r (t)

]
, i = 2, . . . , K − 1

with some initial condition Y(0).

4.2. Steady state analysis

We focus on the steady state performance and we are interested in its equilibrium point. In other words, the
operating point wherein dyi/dt = 0 for 1 ≤ i ≤ K − 1. Define Ti as the sojourn time for type i peer. It follows
from Little’s theorem that λTi = yi . Let the average file downloading time be T =

∑K−1
j=1 T j , one can obtain the

following equations at the equilibrium point:

1
Ti

=

K−1∑
j=1

(
T j

T
pi, j

∞∑
r=0

e−1

r !
α j,r

)
, i = 1, 2, . . . , K − 1 (4)

where

α j,r =
1 − (1 − β j )

r+1

(r + 1)β j
and β j =

K−1∑
i=1

Ti

T
pi, j , j = 1, 2, . . . , K − 1.

In Section 3, we have shown that a file-swarming system that has only download capacity constraint is very efficient.
With both download and upload capacity constraints, the performance of the system will not be as good. In this
section, we seek to derive the bounds of Ti (and thereby T ) to gain insight on how the upload capacity constraint can
affect the system performance. Let us first state the upper and lower bounds of the sojourn time Ti .

Theorem 4. The sojourn time Ti satisfies

1
1 − e−1 + O

(
log K

K

)
< Ti <

[
1

1 − e−1

] 1

1 −

(
1

K−1

) (
i

K−i+1

)
 .

Proof. Because β j < 1, r ≥ 0, we have α j,r ≥ 1/(r + 1). From Eq. (4), we use the same technique in proofing the
lower bound of qi in Lemma 2:

1
Ti

≥

K−1∑
j=1

(
T j

T
pi, j

∞∑
r=0

e−1

r !

1
r + 1

)
= (1 − e−1)

K−1∑
j=1

T j

T
pi, j

>
[
1 − e−1

] [
1 −

(
1

K − 1

)(
i

K − i + 1

)]
.
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Fig. 3. Numerical results illustrated for the bounds of Ti for m = 1 when K = 50.

Therefore, the upper bound of Ti is obtained. For the lower bound of Ti , we have α j,r ≤ [1 + r(1 − β j )]/(r + 1)

because β j < 1 and r ≥ 0. Thus

1
Ti

≤

K−1∑
j=1

[
T j

T

∞∑
r=0

e−1

r !

1 + r(1 − β j )

r + 1

]
= 1 − e−1

K−1∑
j=1

T j

T
β j < 1 −

e−1

K − 1

K−1∑
j=1

β j .

One can obtain an upper bound on the summation term as

K−1∑
j=1

β j =

K−1∑
i=1

Ti

T

(
K − 1 −

i
K − i + 1

)
= K −

K + 1
T

K−1∑
i=1

Ti

K − i + 1

> K −
K + 1
K − 1

K−1∑
i=1

1

(K − i + 1)(1 − e−1)
[
1 −

(
1

K−1

) (
i

K−i+1

)]
= K −

HK

1 − e−1 + O
(

log K
K

)
.

Finally, the lower bound of Ti can be obtained as

1
Ti

< 1 −
e−1

K − 1

K−1∑
j=1

β j < 1 − e−1
+ O

(
log K

K

)
. �

Fig. 3 illustrates the upper and lower bounds of Ti for a file with K = 50 chunks and m = 1. Notice that the lower
bound of Ti is rather loose since it is not related to the index i . Nevertheless, the spread of the bounds is tight for most
values of Ti . Another observation is that for small values of i , Ti is not close to 1 any more as in the case of Section 3,
but rather, close to 1/(1 − e−1). This performance degradation is contributed to the constraint on the upload capacity.
In other words, if one limits the number of chunks that a peer can upload each time slot, it takes longer, on average,
to obtain the file. Lastly, with the upper and lower bounds of Ti , one can derive the average downloading time T .

Theorem 5. The average downloading time T satisfies

K
1 − e−1 + O(log K ) < T <

1
1 − e−1 (K − 2 + HK ) + O(K −1).

Proof. Given the upper bound of Ti , one can use the approach similar to Lemma 2 to derive that T =
∑K−1

i=1 Ti <

(K − 2 + HK )/(1 − e−1) + O(K −1). With the lower bound of Ti , we have

T =

K−1∑
i=1

Ti > (K − 1)

[
1

1 − e−1 + O
(

log K
K

)]
=

K
1 − e−1 + O(log K ). �
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Compared with Theorem 1, the average downloading time has been scaled up by a factor of 1/(1 − e−1) when
K is large. It is interesting to explore whether using FEC can improve the performance of the system. We have the
following result.

Lemma 3. When one uses FEC in this system, the bounds of Ti as specified in Theorem 4 and the average
downloading time T as specified in Theorem 5 will remain the same.

Proof. Similarly to Section 3.2.2, FEC will increase the value of pi, j and other equations remain the same. Thus the
upper bound of Ti in Theorem 4 still holds. Notice that we just replaced pi, j by 1 in the proof of the lower bound of
Ti in Theorem 4. And pi, j ≤ 1 still holds even with FEC, thus the lower bound of Ti in Theorem 4 also still holds.
We know that Theorem 5 is derived from 4 directly, thus the bounds in Theorem 5 also remain the same. �

Lemma 3 implies that FEC could not improve the performance very much. It can be explained as follows. The
random peer selection policy may cause request collision since a peer may receive multiple chunk requests but can
only serve one peer. Other peers requesting a chunk from the same peer will waste their time slot.

5. Incentive file-swarming via coordinated matching

From Theorem 5, one can observe that when there are both upload/download capacity constraints on cooperative
peers and peers use a random peer selection policy, the average downloading time T =

K
1−e−1 + O(log K ), where

the coefficient of the term K is 1
1−e−1 ≈ 1.58. The system performance degrades as compared with the file-swarming

system without upload capacity constraint where the coefficient of term K is 1. The performance degradation can be
explained as follows: the random peer selection may cause request collision since a peer may receive multiple chunk
requests but can only serve one request. Therefore, some peers may waste the download opportunity and remain idle
for a time slot. For the case of unlimited upload capacity, all requests can be satisfied, hence, the performance is better.

One may ask, in the system with both download and upload capacity constraints, can the system still achieve
good performance by using peer selection algorithms other than the random policy? In the following, we show that by
running a maximal matching algorithm (usually regarded as an “easy problem” with an efficient polynomial algorithm)
at the beginning of every time slot, one can significantly improve the system performance. Also, we show that with
built-in incentive mechanisms, this approach can also provide very good performance.

5.1. Without incentive mechanism

We assume that at the beginning of each time slot, every peer will run some distributed maximal matching
algorithm [10], or obtains the help from some central server, so that peer A will find peer B as its neighbor while
peer B will also find A as its neighbor. If the matching process is independent of the chunks held by each peer, then
given peer A, the probability that peer B is of type i is yi/y where yi is the number of type i peers and y is the total
number of peers in the system. At the current time slot, peer A can only communicate with peer B and vice versa and
the matched peers can upload and download at most one chunk per time slot.

Let us first study the system without an incentive mechanism. When peer A and peer B are matched, peer A will
help peer B iff peer A is useful to peer B (i.e. FA \FB 6= ∅); similarly peer B will help peer A iff FB \FA 6= ∅. Since
neighbor selection is independent of peer type, we obtain the differential equations for the number of type i peers as

dyi (t)
dt

=


λ − y1

K−1∑
j=1

y j (t)
y(t)

p1, j i = 1

yi−1(t)
K−1∑
j=1

y j (t)
y(t)

pi−1, j − yi (t)
K−1∑
j=1

y j (t)
y(t)

pi, j i = 2, . . . , K − 1.

(5)

One finds that Eq. (5) is equivalent to the differential equations given in Eq. (2) where peers have unlimited upload
capacity and m = 1. Thus, the asymptotic bounds given in Theorem 1 still hold for this model, which implies that
T = K + log(K ) + O(1).
Remark. Both the download and upload capacity are one chunk per time slot, each peer has the same constraints as
those in Section 4. However, we have better performance when matching is used instead of the random peer selection.
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The random peer selection may cause request collision (i.e. a peer may receive multiple chunk requests but it can
only serve one request due to its upload capacity), so the download capacities of the unserved peers are wasted. But
if peers are matched at the beginning of each time slot, then the performance is greatly improved, approaching the
performance of the random peer selection with unlimited upload capacity.

5.2. With incentive mechanism

Let us study the system with coordinated matching but with an incentive mechanism. Namely, given a pair of
neighboring peers: peer A and peer B, both of them will perform chunk transfer iff both of them are useful to each
other (i.e. FA \ FB 6= ∅ and FB \ FA 6= ∅). In this case, peer A and B will obtain one new chunk from each other in
the current time slot. We use this model to capture the “tit-for-tat” incentive mechanism in the BT protocol. With this
mechanism, the probability that a type i peer can exchange chunks with a type j peer is

p′

i, j =


1 −

C j
i

C j
K

1 ≤ j ≤ i ≤ K − 1,

1 −
C i

j

C i
K

1 ≤ i < j ≤ K − 1.

(6)

Let us first state some important properties of p′

i, j .

Lemma 4. p′

i, j has the following properties: (1) p′

i, j = p′

j,i ; (2) p′

i, j = p′

K− j,K−i and (3) p′

i, j is an increasing
function of j when j ≤ i , and p′

i, j is a decreasing function of j when j ≥ i .

Proof. The proof of property (1) is trivial. To prove property (2), we consider the following three cases:

• Case 1: 1 ≤ j ≤ i : we have p′

i, j = 1 − C j
i /C j

K = 1 − C K−i
K− j/C i

K . j ≤ i implies K − i ≤ K − j , therefore,

p′

K− j,K−i = 1 − C K−i
K− j/C K−i

K = 1 − C K−i
K− j/C i

K . So we obtain p′

i, j = p′

K− j,K−i
• Case 2: i < j ≤ K − 1: We have p′

i, j = p′

j,i = p′

K−i,K− j = p′

K− j,K−i .

To prove property (3), let us consider the following cases:
• Case 1: 1 ≤ j ′ < j ≤ i ≤ K − 1:

p′

i, j − p′

i, j ′ =

(
1 −

C j
i

C j
K

)
−

(
1 −

C j ′
i

C j ′
K

)
=

(
1 −

C K−i
K− j

C i
K

)
−

(
1 −

C K−i
K− j ′

C i
K

)
> 0.

• Case 2: i ≤ j ′ < j ≤ K − 1: Since K − j < K − j ′ ≤ K − i , we have

p′

i, j − p′

i, j ′ = p′

K−i,K− j − p′

K−i,K− j ′ < 0. �

To simplify our notation, let us denote wi, j = p′

i, j + p′

i,K− j (i, j = 1, . . . , K − 1). It is easy to show that
wi, j = wi,K− j = wK−i, j = w j,i .

Lemma 5. For a given i , wi, j is an increasing (or decreasing) function of j for j ≤ K/2 (for j ≥ K/2).

Proof. Consider i ≤ K/2 first, in this case,
(1) j ≤ i , we have

wi, j − wi, j−1 = p′

i, j + p′

i,K− j − (p′

i, j−1 + p′

i,K− j+1)

= (p′

i, j − p′

i, j−1) + (p′

i,K− j − p′

i,K− j+1) > 0.

(2) i < j ≤ K/2, we have

wi, j − wi, j−1 =

(
1 −

C i
j

C i
K

+ 1 −
C i

K− j

C i
K

)
−

(
1 −

C i
j−1

C i
K

+ 1 −
C i

K− j+1

C i
K

)

=
1

C i
K

[
C i−1

K− j − C i−1
j−1

]
> 0.
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Combine case (1) and (2), we know when i ≤ K/2, wi, j is increasing if j ≤ K/2. Since wi, j = wi,K− j , wi, j is
decreasing if j ≥ K/2. Because wi, j = wK−i, j , the above results hold for i > K/2. �

Lemma 6. Ti = TK−i .

Proof. We take a reverse view in the steady state so that (1) we regard the departure as arrival; (2) if peer A’s storage
is FA, we just imagine there is no peer A but its complementary peer Ā with storage F Ā = F \ FA. So originally Ti
is the average time for peer A to stay in type i (i.e. with i chunks), but now the average time for peer Ā to stay in type
(K − i): T ′

i = TK−i . From Lemma 4 we know p′

i, j = p′

K−i,K− j . So the “reversed system” is identical to the original
system which implies T ′

i = Ti . Thus we obtain Ti = TK−i . �

Similarly to the steady state analysis in previous section, we have the equations for Ti :

1
Ti

=

K−1∑
j=1

T j

T
p′

i, j , i = 1, 2, . . . , K − 1, (7)

where T =
∑K−1

i=1 Ti .

Lemma 7. For i ≤ K/2, Ti is a decreasing sequence: 2 > T1 > T2 > · · · > TbK/2c.

Proof. Let 1 ≤ i ′ < i ≤ bK/2c. Base on Lemma 6, we have

1
Ti

=

K−1∑
j=1

T j

T
p′

i, j =
1
2

K−1∑
j=1

T j

T
(p′

i, j + p′

i,K− j ) =
1
2

K−1∑
j=1

T j

T
wi, j .

Similarly, 1
Ti ′

=
1
2
∑K−1

j=1
T j
T wi ′, j . From Lemma 5 and wi, j = w j,i , we have

1
Ti

−
1

Ti ′
=

K−1∑
j=1

T j

T
(wi, j − wi ′, j ) =

K−1∑
j=1

T j

T
(w j,i − w j,i ′) > 0.

Thus Ti < Ti ′ , and the upper bound of T1 is

T1 =
2

K−1∑
j=1

T j
T w1, j

<
2

K−1∑
j=1

T j
T w1,1

=
2

w1,1
= 2. �

Theorem 6. Using the incentive mechanism stated above, the bounds on the average downloading time T are

K − 4 + 2HK + O
(

log K
K

)
≤ T ≤ K − 2 + 4HK + O

(
log K

K

)
.

Proof. Based on Lemmas 5–7, we have

1
Ti

=

K−1∑
j=1

T j

T
p′

i, j =
1
2

K−1∑
j=1

T j

T
wi, j ≤

1
K − 1

K−1∑
j=1

T j

T
·

K−1∑
j=1

p′

i, j =
1

K − 1

K−1∑
j=1

p′

i, j

=
1

K − 1

[
i∑

j=1

(
1 −

C j
i

C j
K

)
+

K−1∑
j=i+1

(
1 −

C i
j

C i
K

)]

= 1 −
1

K − 1

[
i

K − i + 1
+

K − i
i + 1

−
1

C i
K

]
.
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Therefore, we obtain the lower bound of T as

T =

K−1∑
i=1

Ti ≥

K−1∑
i=1

1

1 −
1

K−1

[
i

K−i+1 +
K−i
i+1 −

1
C i

K

] >

K−1∑
i=1

1

1 −
1

K−1

[
i

K−i+1 +
K−i
i+1 − 1

]
=

K−1∑
i=1

[
K − 1
K + 2

+
K 2

− 1
K 2 + 2K

(
1
i

+
1

K − i

)]
= K − 4 + 2HK + O

(
log K

K

)
.

According to Eq. (7) and Lemma 7, we have

1
Ti

=

i∑
j=1

T j

T

(
1 −

C j
i

C j
K

)
+

K−1∑
j=i+1

T j

T

(
1 −

C i
j

C i
K

)
= 1 −

(
i∑

j=1

T j

T
C j

i

C j
K

+

K−1∑
j=i+1

T j

T

C i
j

C i
K

)

> 1 −
T1

T

(
i∑

j=1

C j
i

C j
K

+

K−1∑
j=i+1

C i
j

C i
K

)
> 1 −

2
K − 1

(
i

K − i + 1
+

K − i
i + 1

)
.

Thus for i = 3 . . . K − 3 (assuming K ≥ 5), we have

Ti <
1

1 −
2

K−1

(
i

K−i+1 +
K−i
i+1

) =
(K − 1)(K − i + 1)(i + 1)

K 2i − K 2 − K i2 + 3K i − 3i2 − 2K − 1

<
(K − 1)(K − i + 1)(i + 1)

K 2i − K 2 − K i2 + K
=

K − 1
K

+
2(K − 1)

K − 2

(
1

K − i − 1
+

1
i − 1

)
.

Thus the upper bound of T is

T =

K−1∑
i=1

Ti < 4T1 +

K−3∑
i=3

[
K − 1

K
+

2(K − 1)

K − 2

(
1

K − i − 1
+

1
i − 1

)]
< 8 +

(K − 1)(K − 5)

K
+

4(K − 1)

K − 2
(HK−4 − 1) + O(K −1)

= K + 4HK − 2 + O
(

log K
K

)
. �

Remark. Given the upper and lower bounds in Theorem 6, one can conclude that when an incentive mechanism is
employed to enhance fairness, the performance of the file-swarming system still achieves better than the random
peer selection policy in Section 5 wherein no fairness is guaranteed and free riders can benefit from peers’ altruistic
service. Therefore, it is important for a system to help peers avoid a waste of download capacity (request collision).
By the assistance of the peer-matching mechanism (such as the coordinated matching presented) even if the upload
and download capacity is tightly constrained, the system can still provide good performance with a fairness guarantee.

6. Simulation

In this section, we carry out simulations to (1) validate our analytical results and (2) obtain other performance
measures such as probability distribution of the file downloading time. Unless we state otherwise, the arrival process
of peers is a Poisson process with λ = 2.0. Since the system is slotted, peers arriving at time slot t will obtain the
initial chunk and will start participating in the file-swarming process at the beginning of time slot t + 1. The file that
will be shared by all peers has K = 200 chunks. We also have results for K = 500, but due to the lack of space we
mainly discuss the case K = 200.

Experiment 1: The goal of this experiment is to validate the analytical results in Section 3 and to illustrate the
probability density function of the file download time. For this experiment, we set m = 1 or equivalently, this
corresponds to the coupon model [15].
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(a) Average Ti , without FEC. (b) Average Ti , with FEC.

(c) Distribution of T , K = 200. (d) Distribution of T , K = 500.

Fig. 4. Ti and T for m = 1, constraint on download capacity only.

Fig. 4(a) presents the average sojourn time Ti for a file with K = 200 chunks. We compare the simulation results
and the analytical results.2 This indicates that our analytical result is very accurate. Fig. 4(b) illustrates Ti under a
similar setting but we enable the FEC with 10% redundancy (i.e., α = 0.1). One can conclude that the analytical
model is again very accurate and that using FEC can resolve the last-piece problem. Fig. 4(c)–(d) illustrate the
probability density function for the average file downloading time T , with and without using FEC, for K = 200
and 500 respectively. When K = 200 (K = 500) without using FEC, the analytical average file downloading time is
T = 203.88 (T = 504.79), and the simulation average file downloading time is T = 204.11 (T = 504.99). When
K = 200 (K = 500) and FEC is enabled, the analytical average file downloading time is T = 200.64 (T = 500.64)
while simulation average file downloading time is T = 200.72 (T = 500.64). We can observe that by using FEC, not
only one can reduce the average T but also the variance of T .

Experiment 2: This experiment is to validate the results in Section 3 when m > 1. According to our analysis, there
is not much difference between m = 2 and m > 2 since the average downloading time T will be bounded by K . For
this experiment, we set m = 2. Fig. 5(a) presents the average sojourn time Ti without FEC. The simulation results are
similar to the analytical results again. Comparing Figs. 5(a) and 4(a), one can find that the last-piece problem is not so
severe for m = 2. Ti rises only for the last five chunks. If we deploy FEC (α = 0.1) together with m = 2, the last-piece
problem can be resolved and this is illustrated in Fig. 5(b). Notice that we only give out a loose upper bound of Ti
in Fig. 5(b), which is also the upper bound of the system without FEC in Fig. 5(a). Now we examine the probability
density function of T in Fig. 5(c). Without FEC, 50% of peers finished in K − 1 time slots and 80% of peers finished
in less than or equal to K time slots. After we enable the FEC with α = 0.1, 96% of peers finished in K − 1 time slots
and all finished in less than or equal to K time slots. One can conclude that the average downloading time T is close
to the optimal value of 199 (or K − 1), and the variance of T is also reduced. When K = 200 (K = 500) and without

2 For the analytical results, since the spread of the bounds is very tight, we simply plot the upper bound of Ti .



M. Lin et al. / Performance Evaluation 64 (2007) 856–875 871

(a) Average Ti , without FEC. (b) Average Ti , with FEC.

(c) Distribution of T , K = 200. (d) Distribution of T , K = 500.

Fig. 5. Ti and T for m = 2, constraint on download capacity only.

FEC, our analysis gives an upper bound of the average downloading time T ≤ 200 (T ≤ 500), and the simulation
is T = 199.83 (T = 499.78). After using FEC with α = 0.1, the analytical upper bound of T still holds, while the
simulation gives T = 199.04 (T = 499.01).

Experiment 3: This experiment is to validate the altruistic system with download and upload capacity constraints
in Section 4. We consider m = 1 in our analysis, thus we set m = 1 in this simulation. Fig. 6(a) presents the average
sojourn time Ti without FEC. The simulation results and the analytical results match very well, i.e. our theoretical
upper bound is very tight. Comparing Fig. 6(a) and (b), we observe that FEC eases the last-piece problem, but most
of Ti remain the same and they cannot approach 1 even with FEC. The reason is that the performance degradation is
due to the request collision but not the last-piece problem. Also note that when we have uploaded and downloaded the
capacity constraints, the variance on T is significantly larger than in the previous experiments. This can be confirmed
by Fig. 6(c): the downloading time T varies in a wide range, from 275 to 375, and using FEC does not reduce the
variance very much. When K = 200 (K = 500) and without FEC, our analytical bound of the average downloading
time is T ≤ 322.53 (T ≤ 798.56), while the simulation gives T = 319.99 (T = 793.67). With FEC, the upper bound
still holds, and the simulation result is T = 316.06 (T = 791.01); these show that using FEC in this type of system
cannot improve T very much.

Experiment 4: This experiment is to validate the coordinated matching system with the incentive mechanism
as described in Section 5. Fig. 7(a) presents the average sojourn time Ti without FEC. One can observe that the
gap between the simulation results and our analytical upper bound is small. Also, one can observe both the last-
piece problem and first-piece problem3 in our analytical bound and simulation result. The first-piece problem can
be explained as follows. When a peer has very few chunks, it can hardly help other peers. Due to the incentive
mechanism, it is difficult for this peer to obtain service from others. We can observe that FEC does well in easing the

3 This problem is reported as first block problem in [14] by measurement study as the slow startup due to choking.
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(a) Average Ti , without FEC. (b) Average Ti , with FEC.

(c) Distribution of T , K = 200. (d) Distribution of T , K = 500.

Fig. 6. Ti and T for m = 1, constraint on upload and download capacity.

last-piece problem, but it is not so good at easing the first-piece problem, as Fig. 7(b) has indicated. From Fig. 7(c) and
(d), one can observe that the average and variance of file downloading time can be reduced when FEC is deployed.
Another important observation is that when FEC is deployed, the performance measures of T (both for the average and
variance) are significantly improved as compared with the results in Experiment 3 wherein both systems are under the
upload and download capacity constraints. When K = 200 (K = 500) and without FEC, our analysis gives an upper
bound of the average downloading time T ≤ 221.50 (T ≤ 525.17), and the simulation is T = 211.78 (T = 513.10).
After using the FEC with α = 0.1, the analytical upper bound of T still holds, and the simulation gives T = 203.90
(T = 503.77). This validates our analytical models.

7. Related work

There are numerous empirical studies on the BT protocol, for instance, [1,4,11,14,19]. Izal et al. [11] present the
traffic information on peers behavior collected during a five-month period. Pouwelse et al. [19] study the availability,
the integrity, the flash crowd effect and the download performance from a trace which was collected for eight months.
Erman et al. [4] study the session interarrival times, sizes and durations and propose to use the hyper-exponential
distribution to model the session interarrivals, and use the log-normal distribution to fit session durations and sizes.
Legout et al. [14] evaluate the two core components of BitTorrent: choking and the rarest first algorithm and claim that
they are enough to guarantee the efficiency and viability. Bindal and Cao [1] report great variability of downloading
time and claim that instead of network bandwidth, “close neighbor set” (i.e. those peers in a stable data-exchange
relationship) is the major contributing factor for the variability. However, a major limitation of these empirical studies
is that the data collected is usually from a local view (i.e. the tracker log or a modified client), and the behavior is
very time-dependent. Therefore, it is not an easy task to understand the efficiency of the BT protocol simply based on
empirical studies.
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(A) Average Ti , without FEC. (b) Average Ti , with FEC.

(c) Distribution of T , K = 200. (d) Distribution of T , K = 500.

Fig. 7. Ti and T for coordinated matching, incentive mechanism, with constraint on upload and download capacity.

There are also several analytical studies of BT protocol. Yang and de Veciana [23] study the service capacity of BT
protocols. Their result indicates that the service capacity of BT protocols increases exponentially at the beginning and
scales well with the number of peers, thus providing fast downloading independent of demand rate. Qiu and Srikant
[20] extend the coarse-grain Markovian model in [23] by providing an analytical solution to a fluid model in steady
state which shows high scalability and stability of BT protocols. Our work differs from [20,23] in that we provide a
detailed probabilistic model to capture the peers’ diversity (in terms of downloading progress) and show the change
of downloading speed during the whole session. We also analyze the peer selection and chunk selection which are not
considered in [20,23]. Fan et al. [5] also generalize Qiu’s model by dividing peers into three types according to the
number of chunks they hold. Our work extends the number of types from 3 to K − 1 so as to capture the system more
accurately. Under the assumption that “uplink is the only constraint”, Mundinger et al. [18] propose a deterministic
scheduling algorithm to achieve the optimal makespan which requires global knowledge. Sanghavi et al. [22] also
propose a gossip-like randomized algorithm requiring only local knowledge. Both studies in [18,22] are orthogonal to
ours as they only consider the “closed system” where no new peer will arrive during the file dissemination while we
consider an “open system” which new peers are joining in, according to the Poisson process. The work that is closely
related to our study is [15]. In that paper, the authors provide a detailed probabilistic model to investigate the stability
and effectiveness of a P2P file-swarming system. Their results state that even by the “random chunk selection” policy,
the system throughout is still asymptotically optimal. Our paper improves and extends the result in [15] by providing
tighter asymptotic bounds and relaxing its assumption of unlimited upload capacity. Moreover, we study the peer
selection by both random selection and coordinated matching policies. Gaeta et al. [7] also use a probabilistic model
to study the large-scale P2P network but they are focusing on a searching strategy. There are some other analytical
studies in fairness to BT besides performance modeling. In [2,16,17], the authors present a mathematical analysis on
service differentiation in resource allocation for P2P networks. In [6], the authors present a mathematical framework to



874 M. Lin et al. / Performance Evaluation 64 (2007) 856–875

study the tradeoff between performance and fairness in BT-like systems. In [24], the authors present the first analytical
model of BT-like systems and quantify the tradeoff between scalability and QoS support for multimedia streaming
applications.

8. Conclusion

In this paper, we propose a probabilistic model which generalizes the model in [15] to capture the basic properties
of a file-swarming system. Under the same assumption as [15] (i.e. unlimited upload capacity), we first improve
its asymptotic bound of the average downloading time. Then we provide two different approaches, namely fetching
multiple bitmaps and using an FEC code, to help the system achieve near-optimal performance. Besides showing that
the FEC code can also remedy the last-piece problem, we also remove the assumption of “unlimited upload capacity”
and analyze the performance under the random peer selection algorithm. Since the performance deteriorates due to
request collision, we propose a matching scheme to improve performance. We show that under coordinated matching,
if peers are altruistic, the system performance can achieve as good as the system with unlimited upload capacity. Even
when the system deploys a certain incentive mechanism (tit-for-tat), the average downloading time is still good. The
result suggests that the performance of a P2P file-swarming system does not depend critically on altruistic peers, but
rather, due to the diversity of peers’ stored data, so the system can perform well.
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