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ABSTRACT
Data-intensive file systems, developed for Internet services
and popular in cloud computing, provide high reliability
and availability by replicating data, typically three copies
of everything. Alternatively high performance computing,
which has comparable scale, and smaller scale enterprise
storage systems get similar tolerance for multiple failures
from lower overhead erasure encoding, or RAID, organi-
zations. DiskReduce is a modification of the Hadoop dis-
tributed file system (HDFS) enabling asynchronous com-
pression of initially triplicated data down to RAID-class re-
dundancy overheads. In addition to increasing a cluster’s
storage capacity as seen by its users by up to a factor of
three, DiskReduce can delay encoding long enough to de-
liver the performance benefits of multiple data copies.

1. INTRODUCTION
The Google file system (GFS)[11] and Hadoop distributed
file system (HDFS)[5], defined data-intensive file systems.
They provide reliable storage and access to large scale data
by parallel applications, typically through the Map/Reduce
programming framework [10]. To tolerate frequent failures,
each data block is triplicated and therefore capable of re-
covering from two simultaneous node failures. Though sim-
ple, a triplication policy comes with a high overhead cost in
terms of disk space: 200%. The goal of this work is to reduce
the storage overhead significantly while retaining double node
failure tolerance and multiple copy performance advantage.

We present DiskReduce, an application of RAID in HDFS to
save storage capacity. In this paper, we will elaborate and
investigate the following key ideas:

• A framework is proposed and prototyped for HDFS to
accommodate different double failure tolerant encoding
schemes, including a simple “RAID 5 and mirroring” en-
coding combination and a“RAID 6”encoding. The frame-
work is extensible by replacing an encoding/decoding mod-
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ule with other double failure tolerant codes, and could
easily be extended to higher failure tolerance.

• Asynchronous and delayed encoding, based on a trace
of the Yahoo! M45 cluster [2], enables most applications
to attain the performance benefit of multiple copies with
minimal storage overhead. With M45 usage as an exam-
ple, delaying encoding by as little as an hour can allow
almost all accesses to choose among three copies of the
blocks being read.

The balance of the paper is as follows: In Section 2, we
discuss work related to DiskReduce. We present its design
and prototype in Section 3 and Section 4. Section 5 discusses
deferred encoding for read performance. We conclude in
Section 6.

2. RELATED WORK
Almost all enterprise and high performance computing stor-
age systems protect data against disk failures using a variant
of the erasure protecting scheme known as Redundant Ar-
rays of Inexpensive Disks [16]. Presented originally as a sin-
gle disk failure tolerant scheme, RAID was soon enhanced
by various double disk failure tolerance encodings, collec-
tively known as RAID 6, including two-dimensional parity
[12], P+Q Reed Solomon codes [20, 8], XOR-based EvenOdd
[3], and NetApp’s variant Row-Diagonal Parity [9]. Lately
research as turned to greater reliability through codes that
protect more, but not all, sets of larger than two disk fail-
ures [13], and the careful evaluation of the tradeoffs between
codes and their implementations [17].

Networked RAID has also been explored, initially as a block
storage scheme [15], then later for symmetric multi-server
logs [14], Redundant Arrays of Independent Nodes [4], peer-
to-peer file systems [22] and is in use today in the PanFS
supercomputer storage clusters [23]. This paper explores
similar techniques, specialized to the characteristics of large-
scale data-intensive distributed file systems.

Deferred encoding for compression, a technique we use to re-
cover capacity without loss of the benefits of multiple copies
for read bandwidth, is similar to two-level caching-and-compression
in file systems [7], delayed parity updates in RAID sys-
tems [21], and alternative mirror or RAID 5 representation
schemes [24].
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Figure 1: Codewords providing protection against double node failures

Finally, our basic approach of adding erasure coding to data-
intensive distributed file systems has been introduced into
the Google File System [19] and, as a result of an early ver-
sion of this work, into the Hadoop Distributed File System
[6]. This paper studies the advantages of deferring the act
of encoding.

3. DESIGN
In this section we introduce DiskReduce, a modification of
the HDFS[5].

3.1 Hadoop Distributed File System
HDFS[5] is the native file system in Hadoop[1], an open
source Map/Reduce parallel programming environment, and
is highly similar to GFS[11]. HDFS supports write-once-
read-many semantics on files. Each HDFS cluster consists
of a single metadata node and a usually large number of
data nodes. The metadata node manages the namespace,
file layout information and permissions. To handle failures,
HDFS replicates files three times.

In HDFS, all files are immutable once closed. Files are di-
vided into blocks, typically 64MB, each stored on a data
node. Each data node manages all file data stored on its
persistent storage. It handles read and write requests from
clients and performs“make a replica”requests from the meta-
data node. There is a background process in HDFS that
periodically checks for missing blocks and, if found, assigns
a data node to replicate the block having too few copies.

3.2 DiskReduce Basics
One principle of the DiskReduce design is to minimize the
change to original HDFS logic. Specifically, DiskReduce
takes advantage of following two important features of HDFS:
(1) files are immutable after they are written to the system
and (2) all blocks in a file are triplicated initially. DiskRe-
duce makes no change to HDFS when files are committed
and triplicated. Then DiskReduce exploits the background
re-replication in HDFS, but in a different way: in HDFS the
background process looks for insufficient number of copies,
while in DiskReduce it looks for blocks with high overhead
(i.e. blocks triplicated) that can be turned into blocks with
lower overhead (i.e. RAID encoding). Redundant blocks
will not be deleted before the encoding is done to ensure
data reliability during encoding phase. Since this process
is inherently asynchronous, DiskReduce can further delay
encoding, when space allows, to facilitate temporally local
accesses to choose among multiple copies.

3.3 Encoding
Files are written initially as three copies on three different
data nodes. We later compress the capacity used by encod-
ing redundancy and deleting the excess copies.

In our prototype, we have implemented two codes:

• RAID 5 and Mirror As shown in Figure 1(b), we
both maintain a mirror of all data and a RAID 5 en-
coding. The RAID 5 encoding is only needed if both
copies of one block are lost. In this way, the storage
overhead is reduced to 1+1/N where N is the number
of blocks in the parity’s RAID set.

• RAID 6 DiskReduce also implements the leading scheme
for double disk failure protection as shown in Fig-
ure 1(c). The storage overhead is 2/N where N is
the number of data blocks in a RAID set.
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Figure 2: Space overhead by different grouping
strategies according to the file size distribution on
the Yahoo! M45 cluster. The overhead of triplica-
tion is 200%

Based on a talk about our previous DiskReduce work [6],
a userspace RAID 5 and mirror encoding scheme has been
implemented on top of HDFS and may appear in the next
HDFS release. In that implementation, only blocks from the
same file will be grouped together. Alternatively, Figure 2
shows the capacity overhead derived from a file size distribu-
tion from the Yahoo! M45 cluster for two encoding schemes:
blocks grouped for encoding within a file or grouped across
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Figure 3: Storage utilized and rate of capacity re-
covered by encoding

files. M45 is a cluster with approximately 4,000 processors,
three terabytes of memory, and 1.5 petabytes of disk. We
can see that grouping across files may result in 40% reduc-
tion in capacity overhead for RAID 5 and mirror and 70%
for RAID 6 because files on M45 are typically small rela-
tive to 64 MB blocks, and users often split data sets into
many files. Our prototype explores this difference by group-
ing consecutively created blocks regardless of file boundaries
on each node.

4. DISKREDUCE PROTOTYPE
We have prototyped DiskReduce as a modification to the
Hadoop Distributed File System (HDFS) version 0.20.0. Cur-
rently, the DiskReduce prototype supports only two encod-
ing schemes: RAID 6 and RAID 5 and mirror. The RAID
6 encoding scheme uses the open-source Blaum-Roth RAID
6 code released in the Jerasure erasure coding library devel-
oped by the University of Tennessee [18]. The RAID 5 and
mirror encoding scheme uses a simple block XOR operation
written in Java to replace one of the three data copies of
N blocks with a single-block RAID parity. Without com-
ments, our prototype implementation consists of less than
2,000 lines of Java code along with the Jerasure erasure cod-
ing library which is itself about 7,000 lines of C code.

Our prototype runs in a cluster of 63 nodes, each containing
two quad-core 2.83GHz Xeon processors, 16 GB of memory,
and four 7200 rpm SATA 1 TB Seagate Barracuda ES.2
disks. Nodes are interconnected by 10 Gigabit Ethernet.
All nodes run the Linux 2.6.28.10 kernel and use the ext3
file system to store HDFS blocks.

While our prototype is not fully functioned, for example
some reconstruction cases are still a work-in-progress, it
functions enough for preliminary testing. To get a feel for
its basic encoding function, we set up a 32 node partition
and had each node write a file of 16 GB into a DiskReduce
modified HDFS, spread over the same 32 nodes using RAID
groups of 8 data blocks. Figure 3 shows the storage capac-
ity recoverd for this 512GB of user data after it has been
written three times.
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Figure 4: CDF of block age at time of access

While this experiment is simple, it shows the encoding pro-
cess recovering 400GB and 900GB for the RAID 5 and mir-
ror and RAID 6 schemes, respectively, bringing overhead
down from 200% to 113% and 25%, respectively.

5. ASYNCHRONOUS ENCODING
The background re-replication process in HDFS and GFS
makes it easy to shift in time when data is encoded.

It is generally believed that having multiple copies can im-
prove read performance. In this section we bound the perfor-
mance degradation that might result from decreasing copies
with encoding.

If we reduce the number of data copies in HDFS, there are
several reasons that Map/Reduce applications might suffer
a performance penalty:

• Backup tasks: In Map/Reduce a backup task is the
redundant execution of a task if it fails or runs slowly.
Backup tasks run in a different node, preferably in a node
with a local copy of the data the original node was read-
ing, otherwise more network traffic is needed to support
the backup task. More data copies give scheduling more
choices for assigning backup tasks on a node with a local
copy.

• Disk bandwidth: Popular, small datasets may be read
by many jobs at the same time, making the total number
of disk spindles holding the data a bottleneck. Copies of
data may increase the number of spindles with desired
data, increasing total bandwidth. GFS may make more
than three copies for such “hot spots” [11].

• Load Balance: When N blocks are spread at random
over M nodes, they will not be perfectly evenly distributed,
and the total work to be done by the most loaded node
may determine the completion time. With more data
copies, the job tracker has more flexibility to assign tasks
to nodes with a local data copy, leading to better load
balance.



The impact of these three factors is dependent on the encod-
ing, frequency of failures, slow nodes, hot small files, and the
ratio of disk to network bandwidth. For this study we are
looking to bound the impact of a simple delaying scheme, so
we will model the penalty as a factor of r, corresponding to
a 100(1− r)% degradation. Our strategy is to exploit local-
ity in the accesses of data, delaying encoding until there is
a small impact on overall performance regardless of r.

We obtained a data access trace from Yahoo’s M45 cluster,
recording the HDFS activity from December 2007 to July
2009. We count all block access requests, and calculate the
“block age” when blocks are read. The cumulative distribu-
tion function (CDF) of the age of block accesses distribution
is shown in Figure 4.

From this figure, one can observe that most data access hap-
pens a short time after its creation. For instance, more than
99% of data accesses. happen within the first hour of a data
block’s life.

If we delay the encoding for t seconds, i.e. the background
process will not encode data blocks until they have lived
for at least t seconds, we can obtain the full performance
of having three copies from a block’s creation until it is t
seconds old. The expected performance achieved by delaying
encoding t seconds can be bounded as:

1× Φ(t) + r × (1− Φ(t))

Where Φ is the CDF of block access with regard to block
age, derived from the trace and shown in Figure 4. Different
r gives different expected performance bounds, as shown in
Figure 5.

90%
99%

99.9%
99.99%

99.999%

 0%

 20%

 40%

 60%

 80%

 100%

1sec 1min 1hr 1day 1week  1mon

E
xp

ec
te

d 
P

er
fo

rm
an

ce
 B

ou
nd

Delay before Encoding

r=0.8
r=0.5
r=1/3

Figure 5: Bound in performance degradation with
delayed encoding as function of degradation when
insufficient copies are available

As we can see in Figure 5, even if one copy achieves only 1/3
of the performance of three copies, by delaying the encoding
for one hour, there is very little system performance penalty.

Delaying encoding delays recovering the disk capacity used
by copies. Consider a bound for the disk capacity consumed
by delaying by one hour the encoding. Each disk cannot
write faster than about 100MB/s, and is unlikely to sus-
tain more than 25MB/s through a file system today, because

file systems cannot generally avoid fragmentation altogether.
With disk capacities now 1-2TB, a workload of continuous
writing at 25 MB/s per disk for one hour would consume
6− 12% of total capacity.

Combining these two bounds, regardless of the performance
degradation a workload might suffer from not having extra
copies, M45 usage suggests that at a capacity overhead of
less than 6 − 12%, overall performance degradation will be
negligible if all encoding is delayed for an hour.

6. CONCLUSION
Data-intensive file systems are part of the core of data-
instensive computing paradigms like Map/Reduce. We en-
vision a large increase in the use of large scale parallel pro-
gramming tools for science analysis applications applied to
massive data sets such as astronomy surveys, protein fold-
ing, public information data mining, machine translation,
etc. But current data-intensive file systems protect data
against disk and node failure with high overhead triplica-
tion schemes, undesirable when data sets are massive and
resources are shared over many users, each with their own
massive datasets.

DiskReduce is a modification of the Hadoop distributed file
system (HDFS) to asynchronously replace multiple copies of
data blocks with RAID 5 and RAID 6 encodings. Because
this replacement is asynchronous, it can be delayed wher-
ever spare capacity is available. If encoding is delayed long
enough, most read accesses will occur while multiple copies
are available, protecting all potential performance benefits
achievable with multiple copies. By examining a trace of
block creation and use times on the Yahoo! M45 Hadoop
cluster, we find that 99% of accesses are made to blocks
younger than one hour old, and that far less than 12% of
disk capacity is needed to delay encoding for an hour. We
conclude that delaying encoding by about one hour is likely
to be a good rule of thumb for balancing capacity overhead
and performance benefits of multiple copies.

We are completing our implementation of DiskReduce as
well as exploring the costs of “cleaning” partially deleted
RAID sets, the reliability differences between our different
encodings, and explorations of different encoding schemes
than were presented in this paper.
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