
Designed-In Security for
Mobile Applications

Jonathan Aldrich

(joint work with Michael Maass,

Joshua Sunshine, Cyrus Omar,

Marwan Abi-Antoun, and Ciera

Jaspan)

High Confidence Software and Systems – Designed-In Security

Mobile Apps are Vulnerable

• Examples
• Siemens SMS Chinese character vulnerability (2003)

• Commwarrior virus spread via MMS (2006)

• iPhone jailbreaks based on web browser, PDF (ongoing)

• Popular apps (Netflix, Google wallet, Wikivest) criticized for

insecure password, data storage (2010-2011)

• Factors
• Mobile apps provide mission-critical information and operations

• Mobile applications are (typically) distributed

• Mobile apps inherit web or native app vulnerabilities

• Models of interaction among mobile apps

2

Underlying Causes of Vulnerabilities

• Many ways to look at the problem
• process, coordination, human weakness, etc.

• Hypothesis: many vulnerabilities arise because:
• desired security properties are not explicit;

• these properties are only loosely related to code; and

• code is written at a low level of abstraction

• That is, if it were not for the issues above, we could more

readily prevent many vulnerabilities in real software

3

Tracing Vulnerabilities to Causes

Vulnerability Cause

1. Command injection Missing data format; Command created
implicitly; Low-level string manipulation

2. Cross-site scripting (XSS) Similar to command injection

3. Broken authentication and sessions Authentication/sessions model missing
or not explicit in code; built out of low-
level operations

4. Insecure direct object references Permissions for accessing object missing
or not explicit; enforced at low level

5. Cross-site request forgeries (CSRFs) Missing models for verifying request
origin and intended usage pattern;
low-level enforcement

• Consider the OWASP Top 10 web app vulnerabilities
(shared by many mobile applications)

4

Designing Security In

• Make design intent explicit
• How security is enforced

• Overall application design (e.g. architectural structure)
• Design choices in code (e.g. protocols, algorithms, data formats)

• Explicitly express security constraints
• What properties are required

• Requirements to call an interface
• Confidentiality, integrity properties

• Verify design and security in code
• Unify design and implementation (via languages, libraries)

• Opportunity: mobile/web app world is evolving rapidly

• Check implementation against design (via analysis, types, model

checking, reviews)

5

Software Architecture

• the set of structures needed to reason about the system, which

comprise software elements, relations among them, and properties

of both – Clements et al.

• the set of principal design decisions made about the system –

Taylor et al.

• Software architecture enables reasoning about a software system

based on its design characteristics.
• Can we leverage architecture to reason about mobile security?
• Can we link architecture to application implementation?

6

Architectural Reasoning about Security

• Threat Modeling

• Data flow diagrams
• Processes, data, trust

• Analyzed for attacks

• Used at Microsoft, others

• Attack Graphs

• Possible steps in an attack

• Analyze attack/defense opts.
• Least cost attack path

• Coverage of defense strat.

7

Architectural Reasoning about Security

• Threat Modeling

• Data flow diagrams
• Processes, data, trust

• Analyzed for attacks

• Used at Microsoft, others

• Attack Graphs

• Possible steps in an attack

• Analyze attack/defense opts.
• Least cost attack path

• Coverage of defense strat.

8

Can we related these architectural reasoning
techniques more directly to code?

Architecture: Naïve object graph extraction

9

Architecture: Design Intent Approach

MODEL

DB

Channel(+)

Circuit

Partitioner(+)

Placer(+)

Floorplanner(+)

GlobalRouter(+)

Node(+) Terminal Net(+)

Viewer(+)

PartitionUI(+)

FloorplanUI(+)

PlaceRouteUI(+)

10[Abi-Antoun & A, OOPSLA ‘09]

Architectural Design Intent

• Labeled groups
• @Domain: Put in logical part of architecture

class Main {

@Domain(“PROVIDERS”) Provider provider;

@Domain(“CONSUMERS”) CustomerManager mgr;

@Domain(“KEYSTORAGE”) LocalKeyStore keyStore;

}

11[Abi-Antoun & A, OOPSLA ‘09]

Architectural Design Intent

• Labeled groups
• @Domain: Put in logical part of architecture

class Main {

@Domain(“PROVIDERS”) Provider provider;

@Domain(“CONSUMERS”) CustomerManager mgr;

@Domain(“KEYSTORAGE”) LocalKeyStore keyStore;

}

12[Abi-Antoun & A, OOPSLA ‘09]

13

Architectural Design Intent

• Labeled groups
• @Domain: Put in logical part of architecture

class Main {

@Domain(“PROVIDERS”) Provider provider;

@Domain(“CONSUMERS”) CustomerManager mgr;

@Domain(“KEYSTORAGE”) LocalKeyStore keyStore;

}

• Data structure encapsulation
• OWNED: Hide data objects within high-level abstractions

class LocalKeyStore {

@Domain(“OWNED<KEYS>”) List<LocalKey> keys;

}

[Abi-Antoun & A, OOPSLA ‘09]

14

Architectural Design Intent

• Labeled groups
• @Domain: Put in logical part of architecture

class Main {

@Domain(“PROVIDERS”) Provider provider;

@Domain(“CONSUMERS”) CustomerManager mgr;

@Domain(“KEYSTORAGE”) LocalKeyStore keyStore;

}

• Data structure encapsulation
• OWNED: Hide data objects within high-level abstractions

class LocalKeyStore {

@Domain(“OWNED<KEYS>”) List<LocalKey> keys;

}

[Abi-Antoun & A, OOPSLA ‘09]

CryptoDB Case Study Results

• Comparison non-trivial
• Names in code differ from

diagram

• Multiple design components

merged into one

• Diagrams mostly consistent
• A few differences marked with X

(missing) or + (added)

• Conformance analysis easily
found injected defects

15[Abi-Antoun & Barnes, ASE ‘10]

Configuration Files as Architecture

• Architecture already in industry frameworks
• Framework configuration files describe structure, properties

• Spring: web app framework
• Describes structure, security properties of web site

• Android framework
• Describes event-based communication, UI flow, security properties

• Can we check these for consistency?
• Specific tools for some frameworks—can we do it generally?

• FUSION tool at CMU/Cal Poly Pomona [C. Jaspan thesis, 2011]

XML
config

file extraction

Relation

store

Java
source
codeanalysis

16

Vision: Mobile App Architecture in Impl

• Concept: Executable documentation
• E.g. declaring a protocol defines encoding used in components
• Structure, redundancy, wire protocol, format, interfaces
• Typechecking/analysis tools ensure consistency with code

• Enables analysis capabilities: attack graphs, threat models

• Challenge: making it open
• Nothing “built-in” – implement security protocols as libraries
• Thus libraries must also extend analysis capabilities

• End-to-end guarantee for what you implement “in the system”
• Bridge to external systems via separate analysis tools

App Servers External Data

Scalable Data
Store

Rest/
WSDL

HTTP/
XML

17

Why Ruby on Rails Works

• Flexible language syntax that supports embedded DSLs
• But not much checking!

• Challenge: extensible language with extensible checking

• Approach: type-driven compilation and checking
• Ability to pair a type with

• Code generation
• Semantic checks

• Open source prototype: cl.oquence (OpenCL + C. Elegans)
• Python syntax, C type system, OpenCL code generation for neuroscience

[Cyrus Omar, ongoing work at CMU]

• Applications
• Prepared SQL statements – best defense against SQL injection

• Communication protocols
18

Lower Level Design: Security by Default

• Integers
• Default: infinite precision (relatively cheap to implement)

• Ranged integers (enforced statically or dynamically)

• Machine words if you really want them (low-level algorithms)

• Strings
• Describe the format/contents (char classes, regular expressions)

• Convenient common abstractions (names, numbers, etc.)

• Arbitrary strings only if you really want them (low-level code)

• How to make it practical?
• Convenient syntax and defaults

• Leverage specifications to reduce engineering effort
• E.g. input validation code can be driven by specifications

19

Unified data model
• Different data models

• Client (JavaScript, Objective C)
• HTTP (XML)
• Server (Java, C++)
• Database (SQL)

• Assurance challenges
• Inconsistent semantics
• Command injection

• Unified model
• OO + database integrity constraints

• Help with expressing security constraints

• Can generate XML, SQL, encodings

• Challenge: interoperate with

components we don’t control

class Person {

Name id;

Collection<Course> coursesTaken

inverse students;

}

class Course {

Collection<Person> instructors;

Collection<Student> students;

Collection<Assignment> assgns;

}

class Assignment {

Name name;

nat possible;

Course course inverse assgns;

}

20

Policy specifications

• Policies leverage data model
• Assignment, course, instructor are

bidirectional relations

• Expressed using language

abstractions
• Built-in concept of principal
• Permission, checks are extensible,

reflective

class Person { … }

class Course {

Collection<Person> instructors;

Collection<Student> students;

Collection<Assignment> assgns;

}

class Assignment {

Name name;

Course course inverse assgns;

}

class Grade {

Assignment assignment;

Person student;

@Read ScoreRead

@Access ScoreAccess

nat score;

}

// in policy file

fun ScoreAccess(Grade g)
principal in g.assignment.course.instructor

fun ScoreRead(Grade g)
principal == g.student

21

22

Secure Protocols for Components, Communication

• Protocol constraints
• More common than type parameters!

[ECOOP ’11]

• Order of calls
• Required argument state

• Frameworks
• Now underlie nearly all apps
• Verifying relationships among

objects

• Concurrency
• Increasing in importance
• Time of check-time of use

(TOCTOU) vulnerabilities

Ganymed SSH-2 Protocol

created

connected

authenticated

closed

Constructor

connect()

authenticateWithX()

close()
openSession()

[With Kevin Bierhoff, Nels Beckman, Ciera Jaspan, Duri Kim]

23

Protocol Checking Experience [FSE ’05, ECOOP ’09]

Java Specifications

• Ganymed SSH-2 Protocol

• Collections and iterators

• I/O streams, Sockets

• XML, trees

• Timers, Tasks

• JDBC (database connectivity)

• Regular expressions

• Exceptions

Verification Studies

• Breadth: JabRef, PMD, JSpider…
• 100+ kLOC open source code
• Multiple APIs assured

• Depth: Apache Beehive
• Open Source resource access library
• Has its own protocol

• Common scenario: one API builds on
another

• Verified implementation uses JDBC
correctly

Among the first field studies of semantically deep
resource analysis for objects at this scale

[With Kevin Bierhoff, Nels Beckman]

Protocols and Productivity

• Protocols cause problems
• Many hits on stackoverflow

• But bugs not often released

• Observational study: 8 professional programmers
• Greenfield programming/debugging tasks with protocols

• Error messages not helpful:

“java.sql.SQLException: invalid cursor state: cannot FETCH NEXT, PRIOR,

CURRENT, or RELATIVE, cursor position is unknown”

• 60 pages of documentation

• Results: 88% time spent answering questions about protocols

• Barriers
• State encoded at low level
• Unhelpful error messages
• Documentation & tools not context-specific
• Documentation does not clearly separate state from functionality

Keyword(s) # of results

Java IllegalStateException 880

Java NullPointerException 3,137

Java UnsupportedOperationException 610

Java 239,525

24[With Ciera Jaspan]

Protocols and Productivity

• Protocols cause problems
• Many hits on stackoverflow

• But bugs not often released

• Observational study: 8 professional programmers
• Greenfield programming/debugging tasks with protocols

• Error messages not helpful:

“java.sql.SQLException: invalid cursor state: cannot FETCH NEXT, PRIOR,

CURRENT, or RELATIVE, cursor position is unknown”

• 60 pages of documentation

• Results: 88% time spent answering questions about protocols

• Barriers
• State encoded at low level
• Unhelpful error messages
• Documentation & tools not context-specific
• Documentation does not clearly separate state from functionality

Keyword(s) # of results

Java IllegalStateException 880

Java NullPointerException 3,137

Java UnsupportedOperationException 610

Java 239,525

25

Next step: can protocol checking tools enhance
productivity? By what mechanisms?

[With Ciera Jaspan]

User Interface Protocols

• Protocols appear in UIs as well as libraries

• Checking approach [APLWACA `10]

• Declaratively specify states of web page

• Check that code is consistent with web page changes

• Software engineering benefits enhance security, too
• Declarative UI enables link to input data validation

26[With Joshua Sunshine]

User Interface Protocols

• Protocols appear in UIs as well as libraries

• Checking approach [APLWACA `10]

• Declaratively specify states of web page

• Check that code is consistent with web page changes

• Software engineering benefits enhance security, too
• Declarative UI enables link to input data validation

Other applications of protocols:
Mitigating cross-site request forgery (CSRF) attacks

27[With Joshua Sunshine]

Designed-In Security for Mobile Apps

• Techniques for designing security into application code
• Architectural models tie components together

• Design intent describes security policy, means of assurance

• Secure-by-default language constructs, libraries

• Benefits for both security and software engineering
• Connect existing security practices to source code

• Assurance at systems level and code level

• Improve productivity by raising level of abstraction

28

The Plaid Group

29

(from a couple of years ago)

