Designed-In Security for
Mobile Applications

High Confidence Software and Systems — Designed-In Security

Jonathan Aldrich Carnegie Mellon

institute for
I S SOFTWARE
RESEARCH

(joint work with Michael Maass,
Joshua Sunshine, Cyrus Omar,
Marwan Abi-Antoun, and Ciera

Jaspan)

Mobile Apps are Vulnerable

* Examples
e Siemens SMS Chinese character vulnerability (2003)
* Commwarrior virus spread via MMS (20006)
* iPhone jailbreaks based on web browser, PDF (ongoing)
* Popular apps (Netflix, Google wallet, Wikivest) criticized for
insecure password, data storage (2010-2011)

* Factors
* Mobile apps provide mission-critical information and operations
* Mobile applications are (typically) distributed
* Mobile apps inherit web or native app vulnerabilities
* Models of interaction among mobile apps

Underlying Causes of Vulnerabilities

* Many ways to look at the problem
* process, coordination, human weakness, etc.

* Hypothesis: many vulnerabilities arise because:
* desired security properties are not explicit;
* these properties are only loosely related to code; and
* code is written at a low level of abstraction

e That 1s, if it were not for the issues above, we could more
readily prevent many vulnerabilities in real software

Tracing Vulnerabillities to Causes

* Consider the OWASP Top 10 web app vulnerabilities
(shared by many mobile applications)

Vulnerability Cause

1. Command injection Missing data format; Command created
implicitly; Low-level string manipulation

2. Cross-site scripting (XSS) Similar to command injection

3. Broken authentication and sessions Authentication/sessions model missing
or not explicit in code; built out of low-
level operations

4. Insecure direct object references Permissions for accessing object missing
or not explicit; enforced at low level

5. Cross-site request forgeries (CSRFs) Missing models for verifying request
origin and intended usage pattern;
low-level enforcement

Designing Security In

* Make design intent explicit

* How security is enforced
* Overall application design (e.g. architectural structure)
* Design choices in code (e.g. protocols, algorithms, data formats)

* Explicitly express security constraints

* What properties are required
* Requirements to call an interface
* Confidentiality, integrity properties

* Verity design and security in code

* Unify design and implementation (via languages, libraries)
* Opportunity: mobile/web app world is evolving rapidly

* Check implementation against design (via analysis, types, model
checking, reviews)

Software Architecture

/— 4[{ Reimburse_Expenses E]* I{
— 4[{ Pay Salans }!* 1
Accounts —I
C Supply Office E:
-

] ‘Ei Pay Suppliers E]*i

‘Ei Bill_Customers 3377 ﬂ
Controller

* the set of structures needed to reason about the system, which

comprise software elements, relations among them, and properties
of both — Clements et al.

* the set of principal design decisions made about the system —
Taylor et al.

* Software architecture enables reasoning about a software system

based on its design characteristics.
* Can we leverage architecture to reason about mobile security?
* Can we link architecture to application implementation?

Architectural Reasoning about Security

* Threat Modeling * Attack Graphs

Input
Feedback

Write
Crypto T Protected
Consumer A Data
Read

Unencrypted
D Ke
e '/ata

Data

Lookup Admin

. Task Tasks

Key Manifest eedback
Y T TR

\ Manifest
Tasks

Key ID
Task
Encryption Feedback

Encryption Request

Response
Key store

Key
Request~y V'e Tasks
Key Vault
l— Task
Key _~1 Feedback
Data

* Data flow diagrams
* Processes, data, trust
* Analyzed for attacks

* Possible steps in an attack

* Analyze attack/defense opts.
* Least cost attack path

, e Coverage of defense strat.
e Used at Microsoft, others 5

Architectural Reasoning about Security

t * Threat Modeling * Attack Graphs

Write
Crypto Ry Protected
Consumer A Data
Read

Unencrypted

Ke
Data
Lookup Admin
. Task Tasks
Key Manifest eedback
» ey Manifes e
Key ID \ Manifest

Task Tasks

Encryption Feedback

Encryption Request
Response

Key

Request~y 7's

Key Vault
—r Task
Key / Feedback
Data

Can we related these architectural reasoning

technigues more directly to code?

Architecture: Naive object graph extraction

Architecture: Design Intent Approach

FloorplanUI(+)
A

A

PlaceRouteUl(+) 3

y
PartitionUI(+)

Partitioner(+)
v AN

Node(+),L _ ,’

Terminal ¢ % Net(+)

Floorplanner(+)
\
N b ’ o
1 “« »
J: GlobalRouter(+) > Circuit
!f ~ v 4 71_
N -
“‘ 1 ~ |
| : Channel(+) Placer(+) |
\“xl <
|
1

'
» Viewer(+)
<

[Abi-Antoun & A, OOPSLA ‘09]

10

Architectural Design Intent

* Labeled groups

* (@Domain: Put in logical part of architecture

class Main {

Provider provider;
CustomerManager mgt;

LocalKeyStore keyStore;

provider(+):

engine(+):

Provider

EngineWrapper

\RQOWDERS

\
mgr(+):

e

| encryptionRequest:

X
keyStore(+):
LocalKeyStore

CustomerManager EncryptionRequest
CONSUMERS
+ keyTool(+): ']
KeyTool
KEYMANAGEMENT

A

alias(+):

_...» KeyAlias

KEYSTORAGE

[Abi-Antoun & A, OOPSLA ‘09]

11

Architectural Design Intent

* Labeled groups

provider(+):
. Provider

engine(+):
EngineWrapper

\RQOWDERS

e (@Domain: Put in logical part of architecture

class Main {

\/

e T

mgr(+): | encryptionRequest: || keyStore(+):
CustomerManager ™ EncryptionRequest ||| LocalKeyStore
. : : —7
@Domain(“PROVIDERS”) Provider provider; / consume—— |
@Domain(“CONSUMERS”) CustomerManager mgt;

T Keaies
@Domain(“KEYSTORAGE”) LocalKeyStore keyStore;

keyTool(+): | |
KeyTool i KEYSTORAGE

KEYMANAGEMENT %

[Abi-Antoun & A, OOPSLA‘09] "

Architectural Design Intent

Provider EngineWrapper

\RQOWDERS'

o Lﬂb Cled ngupS provider(+): engine(+):

* (@Domain: Put in logical part of architecture

; e N

: B i o i keySt B
ClaSS Maln { mgr(+): L encryptionRequest: | |: eyStore(+)

CustomerManager EncryptionRequest ? LocalKeyStore
_—
@Domain(“PROVIDERS”) Provider provider; T (i

777777777777777777777777777777777 alias(+):
. 1 | ..y KeyAlias
i KEYSTORAGE

@Domain(“KEYSTORAGE”) LocalKeyStore keyStore; Kevtee!

KEYMANAGEMENT %

* Data structure encapsulation
* OWNED: Hide data objects within high-level abstraction_s ___________________________

|
|pmm=======- .

class LocalKeyStore { { | ke S

List<LocalKey> keys; it e [|

L d LT localKey: kekSpec: I

} s 2wned o _ - _ViL Localkey SecretKeySpec |I
| keyStore: : :
| LocalKeyStore |_ KEYS !
[______________ o4
l KEYSTORAGE

Rt ot i T i B 1 i i ot it

[Abi-Antoun & A, OOPSLA‘09] "

o Lﬂb Cled ngupS provider(+): engine(+):

class Main {

Architectural Design Intent

Provider EngineWrapper

\RQOWDERS'

* (@Domain: Put in logical part of architecture

; S TN

mgr(+): encryptionRequest: | | keyStore(+):

CustomerManager " EncryptionRequest ? LocalKeyStore
_—
@Domain(“PROVIDERS”) Provider provider; T (i

777777777777777777777777777777777 alias(+):
. 1 | ..y KeyAlias
i KEYSTORAGE

@Domain(“KEYSTORAGE”) LocalKeyStore keyStore; Kevtee!

KEYMANAGEMENT %

* Data structure encapsulation
* OWNED: Hide data objects within high-level abstraction_s ___________________________
|
|pmm=======- .
class LocalKeyStore { il e :
D SR / I ArrayList?l,_socalKep - — - = -
@Domain(“OWNED<KEYS>") List<LocalKey> keys; | S !
L " LT localKey: kekSpec: I
} s 2wned o _ - _ViL Localkey SecretKeySpec |I
| keyStore: : :
| LocalKeyStore |_ ______ K_EY_S ______ J'
|
l KEYSTORAGE

Rt ot i T i B 1 i i ot it

[Abi-Antoun & A, OOPSLA‘09] "

CryptoDB Case Study Results

T —————————————— e e e e

. . . I

* Comparison non-trivial ! ;
. . : 1
* Names in code differ from | CHBtoLcnsuTiGr — ;| customerinfo i
diagram E Receipts o s J i
. . E .- ;_J — }

. Multlple. design components E —— - S

merged into one T TS————. S mplm ="
_______________ ST Al

* Diagrams mostly consistent

i | -
* A few differences marked with X | CryptoProvider [y

(rnissing) or + (added) ;: FeceiptManager

i 7
: i | e l
e Conformance analysis easily ! e i
I 1
. . i]
found 1n]CCt€d defCCtS E o '. Keyhanifest E
| EngineWrapper s E
? |' !
E o F| |
E Engine o E
E i r KeyVault E
: ; s |
{__.__.__CryptoProvision . SF 1 Key Storage _i

[Abi-Antoun & Barnes, ASE ‘10] *

Configuration Files as Architecture

* Architecture already in industry frameworks
* Framework configuration files describe structure, properties
* Spring: web app framework

* Describes structure, security properties of web site

* Android framework
* Describes event-based communication, Ul flow, security properties

* Can we check these for consistency?
* Specific tools for some frameworks—can we do 1t generally?

e FUSION tool at CMU/Cal Poly Pomona [C. Jaspan thesis, 2011]

(@

)

XML
config
file

B

extraction

Relation ﬁ

store .
analysis

(@

)

Java
source
code

©

16

Vision: Mobile App Architecture in Impl

Scalable Data
Store

Rest/
App Servers WSDL External Data

Concept: Executable documentation
* E.g. declaring a protocol defines encoding used in components
* Structure, redundancy, wire protocol, format, interfaces
 Typechecking/analysis tools ensure consistency with code

Enables analysis capabilities: attack graphs, threat models

Challenge: making it open
* Nothing “built-in” — implement security protocols as libraries
* Thus libraries must also extend analysis capabilities

End-to-end guarantee for what you implement “in the system”
* Bridge to external systems via separate analysis tools

17

Why Ruby on Rails Works

* Flexible language syntax that supports embedded DSLs

* But not much checking!

* Challenge: extensible language with extensible checking

* Approach: type-driven compilation and checkmg
* Ability to pair a type with

* Code generation

e Semantic checks

* Open source prototype: cl.oquence (OpenCL + C. Elegans)
* Python syntax, C type system, OpenCL code generation for neuroscience
[Cyrus Omar, ongoing work at CMU]

* Applications
* Prepared SQL statements — best defense against SQL injection
* Communication protocols

18

Lower Level Design: Security by Default

* Integers
* Detault: infinite precision (relatively cheap to implement)
* Ranged integers (enforced statically or dynamically)
* Machine words if you really want them (low-level algorithms)

* Strings
* Describe the format/contents (char classes, regular expressions)
* Convenient common abstractions (nhames, numbers, etc.)
* Arbitrary strings only if you really want them (low-level code)

* How to make it practical?
* Convenient syntax and defaults

* Leverage specifications to reduce engineering etfort
* E.g. input validation code can be driven by specifications

19

Unifled data model

* Different data models
* Client (JavaScript, Objective C)
e HTTP (XML)
* Server (Java, C++)
* Database (SQL)

* Assurance challenges
* Inconsistent semantics
* Command injection

e Unified model

* OO + database integrity constraints
* Help with expressing security constraints

e Can generate XML, SQL, encodings

* Challenge: interoperate with
components we don’t control

class Person {
Name id;
Collection<Course> coursesTaken
inverse students;
}
class Course {
Collection<Person> instructors;
Collection<Student> students;
Collection<Assignment> assgns;
}
class Assignment {
Name name;
nat possible;
Course course inverse assgns;

20

Policy specifications

/1 in policy file class Person{ ... }
class Course {
fun ScoreAccess(Grade @) Collection<Person> instructors;
principal in g.assignment.course.instructor Collection<Student> students;

Collection<Assignment> assgns;
fun ScoreRead(Grade Q) }

principal == g.student class Assignment {

Name name;
e Policies leverage data model Course course inverse assgns;

* Assignment, course, instructor are

1 . . class Grade {
bidirectional relations

Assignment assignment;

. Person student;
* Expressed using language

abstractions @Read ScoreRead
* Built-in concept of principal @Access ScoreAccess
nat score;

* Permission, checks are extensible,
reflective

21

Secure Protocols for Components, Communication

* Protocol constraints Ganvmed SSH-2 Protocol
» More common than type parameters!

Constructor
[ECOOP ’11]
e Order of calls

* Required argument state

connect()
e Frameworks
* Now underlie nearly all apps ConnECted'
* Veritying relationships among authenticateWithX()
objects

authenticated
* Concurrency ' openSession()

 Increasing in importance close()
* Time of check-time of use osed
(TOCTOU) vulnerabilities close

[With Kevin Bierhoff, Nels Beckman, Ciera Jaspan, Duri Kim] %

Protocol Checking Experience [rsk ‘05, ECOOP 09

Java Specifications Verification Studies
* Ganymed SSH-2 Protocol * Breadth: JabRef, PMD, JSpider...
 Collections and iterators * 100+ kLOC open source code

* Multiple APIs assured

1/O streams, Sockets
XML, trees

Timers, Tasks

* Depth: Apache Beehive

* Open Source resource access library

* JDBC (database connectivity) e Has its own protocol

* Regular expressions * Common scenario: one API builds on
- another

* HExceptions

* Verified implementation uses JDBC
correctly

Among the first field studies of semantically deep

resource analysis for objects at this scale

[With Kevin Bierhoff, Nels Beckman] #

Protocols and Productivity

’ PrOtOCOIS causc p rOblemS Java IllegalStateException 380
¢ Many hitS on Stackoverﬂow Java NullPointerException 3,137
U dOperationExcepti 610
* But bugs not often released Java UnsupportedOperationException
Java 239,525

* Observational study: 8 professional programmers

* Greenfield programming/debugging tasks with protocols
* Error messages not helpful:
“9ava.sql.SQLException: invalid cursor state: cannot FETCH NEXT, PRIOR,
CURRENT, or RELATIVE, cursor position is unknown”
* 060 pages of documentation

Results: 88% time spent answering questions about protocols

* Barriers
* State encoded at low level
* Unbhelpful error messages
* Documentation & tools not context-specific
* Documentation does not clearly separate state from functionality

[With Ciera Jaspan] #

Protocols and Productivity

° PrOtOCOIS causc prOblemS Java IllegalStateException 880
* Many hits on stackoverflow Java NullPointerException 3,137
° BU_ t bugs not o fteﬂ release d Java UnsupportedOperationException 610
Java 239,525

e Observational studv: 8 professional procrammers

Next step: can protocol checking tools enhance

productivity? By what mechanisms?

* Results: 88% time spent answering questions about protocols

* Barriers
* State encoded at low level
* Unbhelpful error messages
* Documentation & tools not context-specific
* Documentation does not clearly separate state from functionality

[With Ciera Jaspan] #

User Interface Protocols

Recommended Books: tYPe ¥ page =

B”nk st“re Advanced Types, div[mutable(string)], div[string], a;

SRS type thanks = div[string];
type rating =
A div[dropdown [option[int]*], /frating selector
N button[(rating page)—(thanks page)]l];
type quantity =

div[textbox[], Hquantity textbox
quantity: [] Rating: button[(quantity page)—(rating page)l];

l
- " Thaﬂks type full =

mutable(thanks | rating | quantity); [I]

Title: Types and Programming Languages

* Protocols appear in Uls as well as libraries

* Checking approach [APLWACA "10]
* Declaratively specify states of web page
* Check that code is consistent with web page changes

* Software engineering benefits enhance security, too
* Declarative Ul enables link to input data validation

[With Joshua Sunshine]?®

User Interface Protocols

Category Theory

Recommended Books:
”nk mm Advanced Types,

Quantity: [|

Title: Types and Programming Languages
Author: Benjamin C. Piarce

Price: $57.60

Rating: [1 star [

OR- & OR- Thanmﬂ

type o page =
div[mutable(string)], div[string], a;
type thanks = div[string];
type rating =
div[dropdown [option[int]*], /frating selector
button[(rating page)—(thanks page)]];
type quantity =
div[textbox[], Hguantity textbox
button[(quantity page)— (rating page)l];
type full =
mutable(thanks | rating | quantity); [I]

Other applications of protocols:

Mitigating cross-site request forgery (CSRF) attacks

* Software engineering benefits enhance security, too
* Declarative Ul enables link to input data validation

[With Joshua Sunshine]*’

Designed-In Security for Mobile Apps

* Techniques for designing security into application code
* Architectural models tie components together
* Design intent describes security policy, means of assurance
* Secure-by-default language constructs, libraries

* Benefits for both security and software engineering
* Connect existing security practices to source code
* Assurance at systems level and code level
* Improve productivity by raising level of abstraction

28

The Plaid Group

(from a couple of years ago)

29

