Designed-In Security for Mobile Applications

High Confidence Software and Systems – Designed-In Security

Jonathan Aldrich

(joint work with Michael Maass, Joshua Sunshine, Cyrus Omar, Marwan Abi-Antoun, and Ciera Jaspan)

Mobile Apps are Vulnerable

Examples

- Siemens SMS Chinese character vulnerability (2003)
- Commwarrior virus spread via MMS (2006)
- iPhone jailbreaks based on web browser, PDF (ongoing)
- Popular apps (Netflix, Google wallet, Wikivest) criticized for insecure password, data storage (2010-2011)

Factors

- Mobile apps provide mission-critical information and operations
- Mobile applications are (typically) distributed
- Mobile apps inherit web or native app vulnerabilities
- Models of interaction among mobile apps

Underlying Causes of Vulnerabilities

- Many ways to look at the problem
 - process, coordination, human weakness, etc.
- Hypothesis: many vulnerabilities arise because:
 - desired security properties are **not explicit**;
 - these properties are only loosely related to code; and
 - code is written at a low level of abstraction
- That is, if it were not for the issues above, we could more readily prevent many vulnerabilities in real software

Tracing Vulnerabilities to Causes

• Consider the OWASP Top 10 web app vulnerabilities (shared by many mobile applications)

Vulnerability	Cause
1. Command injection	Missing data format; Command created implicitly; Low-level string manipulation
2. Cross-site scripting (XSS)	Similar to command injection
3. Broken authentication and sessions	Authentication/sessions model missing or not explicit in code; built out of low-level operations
4. Insecure direct object references	Permissions for accessing object missing or not explicit; enforced at low level
5. Cross-site request forgeries (CSRFs)	Missing models for verifying request origin and intended usage pattern; low-level enforcement

Designing Security In

- Make **design** intent explicit
 - How security is enforced
 - Overall application design (e.g. architectural structure)
 - Design choices in code (e.g. protocols, algorithms, data formats)
- Explicitly express security constraints
 - What properties are required
 - Requirements to call an interface
 - Confidentiality, integrity properties
- Verify design and security in code
 - Unify design and implementation (via languages, libraries)
 - Opportunity: mobile/web app world is evolving rapidly
 - **Check** implementation against design (via analysis, types, model checking, reviews)

Software Architecture

- the set of structures needed to reason about the system, which comprise software elements, relations among them, and properties of both Clements et al.
- the set of **principal design decisions** made about the system Taylor et al.
- Software architecture enables reasoning about a software system based on its design characteristics.
 - Can we leverage architecture to reason about mobile security?
 - Can we link architecture to application implementation?

Architectural Reasoning about Security

- Data flow diagrams
 - Processes, data, trust
 - Analyzed for attacks
- Used at Microsoft, others

Attack Graphs

- Possible steps in an attack
- Analyze attack/defense opts.
 - Least cost attack path
 - Coverage of defense strat.

Architectural Reasoning about Security

Attack Graphs

Possible stens in an attack

Can we related these architectural reasoning techniques more directly to code?

8

pts.

Architecture: Naïve object graph extraction

Architecture: Design Intent Approach

- Labeled groups
 - @Domain: Put in logical part of architecture

Labeled groups provider(+): engine(+): Provider EngineWrapper @Domain: Put in logical part of architecture ROVIDERS keyStore(+): class Main { mgr(+): encryptionRequest: LocalKeyStore CustomerManager EncryptionRequest @Domain("PROVIDERS") Provider provider; CONSUMER alias(+): KeyAlias @Domain("CONSUMERS") CustomerManager mgr; keyTool(+): **KEYSTORAGE** KeyTool @Domain("KEYSTORAGE") LocalKeyStore keyStore; KEYMANAGEMENT

- Labeled groups provider(+): engine(+): Provider EngineWrapper @Domain: Put in logical part of architecture ROVIDERS keyStore(+): class Main { mgr(+): encryptionRequest: LocalKeyStore CustomerManager EncryptionRequest @Domain("PROVIDERS") Provider provider; CONSUMER alias(+): KeyAlias @Domain("CONSUMERS") CustomerManager mgr; keyTool(+): **KEYSTORAGE** KeyTool @Domain("KEYSTORAGE") LocalKeyStore keyStore; KEYMANAGEMENT
- Data structure encapsulation
 - OWNED: Hide data objects within high-level abstractions

```
class LocalKeyStore {

List<LocalKey> keys;

owned

keyStore:
LocalKeyStore

keyStore:
LocalKeyStore

KEYSTORAGE
```


- Data structure encapsulation
 - OWNED: Hide data objects within high-level abstractions

```
class LocalKeyStore {

@Domain("OWNED<KEYS>") List<LocalKey> keys;

owned
keyStore:
LocalKeyStore
KEYSTORAGE
```

CryptoDB Case Study Results

- Comparison non-trivial
 - Names in code differ from diagram
 - Multiple design components merged into one
- Diagrams mostly consistent
 - A few differences marked with X (missing) or + (added)
- Conformance analysis easily found injected defects

Configuration Files as Architecture

- Architecture already in industry frameworks
 - Framework configuration files describe structure, properties
 - Spring: web app framework
 - Describes structure, security properties of web site
 - Android framework
 - Describes event-based communication, UI flow, security properties
- Can we check these for consistency?
 - Specific tools for some frameworks—can we do it generally?
- FUSION tool at CMU/Cal Poly Pomona [C. Jaspan thesis, 2011]

Vision: Mobile App Architecture in Impl

- Concept: *Executable documentation*
 - E.g. declaring a protocol defines encoding used in components
 - Structure, redundancy, wire protocol, format, interfaces
 - Typechecking/analysis tools ensure consistency with code
- Enables analysis capabilities: attack graphs, threat models
- Challenge: making it open
 - Nothing "built-in" implement security protocols as libraries
 - Thus libraries must also extend analysis capabilities
- End-to-end guarantee for what you implement "in the system"
 - Bridge to external systems via separate analysis tools

Why Ruby on Rails Works

- Flexible language syntax that supports embedded DSLs
 - But not much checking!
- Challenge: extensible language with extensible checking
- Approach: type-driven compilation and checking
 - Ability to pair a type with
 - Code generation
 - Semantic checks

• Python syntax, C type system, OpenCL code generation for neuroscience

[Cyrus Omar, ongoing work at CMU]

- Applications
 - Prepared SQL statements best defense against SQL injection
 - Communication protocols

Lower Level Design: Security by Default

Integers

- Default: infinite precision (relatively cheap to implement)
- Ranged integers (enforced statically or dynamically)
- Machine words if you really want them (low-level algorithms)

Strings

- Describe the format/contents (char classes, regular expressions)
- Convenient common abstractions (names, numbers, etc.)
- Arbitrary strings only if you really want them (low-level code)
- How to make it practical?
 - Convenient syntax and defaults
 - Leverage specifications to reduce engineering effort
 - E.g. input validation code can be driven by specifications

Unified data model

- Different data models
 - Client (JavaScript, Objective C)
 - HTTP (XML)
 - Server (Java, C++)
 - Database (SQL)
- Assurance challenges
 - Inconsistent semantics
 - Command injection
- Unified model
 - OO + database integrity constraints
 - Help with expressing security constraints
 - Can generate XML, SQL, encodings
- Challenge: interoperate with components we don't control

```
class Person {
     Name id;
     Collection<Course> coursesTaken
         inverse students;
class Course {
     Collection<Person> instructors;
     Collection<Student> students;
     Collection<Assignment> assgns;
class Assignment {
     Name name;
     nat possible;
     Course course inverse assgns;
```

Policy specifications

```
// in policy file
fun ScoreAccess(Grade g)
    principal in g.assignment.course.instructor
fun ScoreRead(Grade g)
    principal == g.student
```

- Policies leverage data model
 - Assignment, course, instructor are bidirectional relations
- Expressed using language abstractions
 - Built-in concept of principal
 - Permission, checks are extensible, reflective

```
class Person { ... }
class Course {
     Collection<Person> instructors;
     Collection<Student> students;
     Collection<Assignment> assgns;
class Assignment {
     Name name;
     Course course inverse assgns;
class Grade {
     Assignment assignment;
     Person student;
     @Read ScoreRead
     @Access ScoreAccess
     nat score;
```

Secure Protocols for Components, Communication

Protocol constraints

- More common than type parameters! [ECOOP '11]
- Order of calls
- Required argument state

Frameworks

- Now underlie nearly all apps
- Verifying relationships among objects

Concurrency

- Increasing in importance
- Time of check-time of use (TOCTOU) vulnerabilities

Ganymed SSH-2 Protocol

Protocol Checking Experience [FSE '05, ECOOP '09]

Java Specifications

- Ganymed SSH-2 Protocol
- Collections and iterators
- I/O streams, Sockets
- XML, trees
- Timers, Tasks
- JDBC (database connectivity)
- Regular expressions
- Exceptions

Verification Studies

- Breadth: JabRef, PMD, JSpider...
 - 100+ kLOC open source code
 - Multiple APIs assured
- **Depth:** Apache Beehive
 - Open Source resource access library
 - Has its own protocol
 - Common scenario: one API builds on another
 - Verified implementation uses JDBC correctly

Among the first field studies of semantically deep resource analysis for objects at this scale

Protocols and Productivity

- Protocols cause problems
 - Many hits on stackoverflow
- But bugs not often released

Keyword(s)	# of results
Java IllegalStateException	880
Java NullPointerException	3,137
Java UnsupportedOperationException	610
Java	239,525

- Observational study: 8 professional programmers
 - Greenfield programming/debugging tasks with protocols
 - Error messages not helpful:
 "java.sql.SQLException: invalid cursor state: cannot FETCH NEXT, PRIOR, CURRENT, or RELATIVE, cursor position is unknown"
 - 60 pages of documentation
- Results: 88% time spent answering questions about protocols
- Barriers
 - State encoded at low level
 - Unhelpful error messages
 - Documentation & tools not context-specific
 - Documentation does not clearly separate state from functionality

Protocols and Productivity

- Protocols cause problems
 - Many hits on stackoverflow
- But bugs not often released

Keyword(s)	# of results
Java IllegalStateException	880
Java NullPointerException	3,137
Java UnsupportedOperationException	610
Java	239,525

Observational study: 8 professional programmers

Next step: can protocol checking tools enhance productivity? By what mechanisms?

- Results: 88% time spent answering questions about protocols
- Barriers
 - State encoded at low level
 - Unhelpful error messages
 - Documentation & tools not context-specific
 - Documentation does not clearly separate state from functionality

User Interface Protocols


```
type α page =
    div[mutable(string)], div[string], α;
type thanks = div[string];
type rating =
    div[dropdown[option[int]*], //rating selector
    button[(rating page)→(thanks page)]];
type quantity =
    div[textbox[], //quantity textbox
    button[(quantity page)→(rating page)]];
type full =
    mutable(thanks | rating | quantity); []
```

- Protocols appear in UIs as well as libraries
- Checking approach [APLWACA `10]
 - Declaratively specify states of web page
 - Check that code is consistent with web page changes
- Software engineering benefits enhance security, too
 - Declarative UI enables link to input data validation

User Interface Protocols


```
type α page =
   div[mutable(string)], div[string], α;
type thanks = div[string];
type rating =
   div[dropdown[option[int]*], //rating selector
   button[(rating page)→(thanks page)]];
type quantity =
   div[textbox[], //quantity textbox
   button[(quantity page)→(rating page)]];
type full =
   mutable(thanks | rating | quantity); 1
```

- Other applications of protocols:

 Mitigating cross-site request forgery (CSRF) attacks
- Software engineering benefits enhance security, too
 - Declarative UI enables link to input data validation

Designed-In Security for Mobile Apps

- Techniques for designing security into application code
 - Architectural models tie components together
 - Design intent describes security policy, means of assurance
 - Secure-by-default language constructs, libraries
- Benefits for both security and software engineering
 - Connect existing security practices to source code
 - Assurance at systems level and code level
 - Improve productivity by raising level of abstraction

The Plaid Group

(from a couple of years ago)