
Tales from Dissertationland
and the Job Hunt

Jonathan Aldrich
Assistant Professor

Institute for Software Research International

School of Computer Science

Carnegie Mellon University

26 July 2005

This talk

• Alex Potanin: Will you give advice to the
Ph.D. students at the doctoral symposium?

• J: Are you sure you mean me? After all,
I’m just out of grad school myself!

• J: Besides, I’m not funny.
• A: We want someone who got a good job
recently enough to remember what it was
like.

• Caveat emptor: this is more “recent war
stories” than “wisdom from on high”

• Advice can be very dry
• So I’ve added a few stories (and occasionally a

bit of technical detail) Hope this helps!

26 July 2005

Outline

• Dissertationland
• Topic and area
• Finding and
solving problems

• Along the path
• Making it through

• The Job Hunt
• Writing
• Networking
• Talks
• Interviewing
• Closing the deal
• Other advice

26 July 2005

Do you like your topic Hot or Cold?

• Hot topics
• Advantage: everyone cares about it*

*Right now…but in 5 years, who knows?

26 July 2005

How a great idea ended in tragedy

• My first real research project
• Sychronization in Java is expensive
• So, don’t lock a lock if there can’t
possibly be contention

• Idea: optimize thread-local objects
• An object is thread-local if it’s not stored
in the heap (or at least doesn’t escape
its creating method)
• 3 OOPSLA ’99 papers, 1 SAS ’99 paper

26 July 2005

How a great idea ended in tragedy

• Enhancement
• What about objects that
escape the method, but
aren’t shared?
• Base case: shared global
variable

26 July 2005

How a great idea ended in tragedy

• Enhancement
• What about objects that
escape the method, but
aren’t shared?
• Base case: shared global
variable

• Recursive case: one
thread writes to a shared
variable, another thread
reads from it

• No other sharing possible
in Java
• treat thread & other system

objects as global

26 July 2005

How a great idea ended in tragedy

• The algorithm
• Compute which threads are

instantiated more than once
• Compute what code is

executed by each thread
• Compute what variables are

written & read by each thread

• An object is shared if:
• It is stored in a global

variable that is read by one
thread and written by another

26 July 2005

How a great idea ended in tragedy

• The algorithm
• Compute which threads are

instantiated more than once
• Compute what code is

executed by each thread
• Compute what variables are

written & read by each thread

• An object is shared if:
• It is stored in a global

variable that is read by one
thread and written by another

• It is stored in a field of a
shared object, and that field
is read by one thread and
written by another

26 July 2005

How a great idea ended in tragedy

• The tragedy
• I used off-the-shelf alias analysis to
figure out what fields point to what
objects

• The scalable analyses gave poor results
• The alias analyses that gave good results
didn’t scale

• I beat my head against the wall for 6
months trying to improve the alias
analysis

• Erik Ruf published an algorithm to do the
same thing, which used an alias analysis
customized for the problem

• Two rejections in a row; never published
in a major conference

26 July 2005

How a great idea ended in tragedy

• Life lessons learned
• Hot topics are risky. You might get scooped*

* advisors can help avoid this, but mine was on
sabbatical

• Erik Ruf is a nice guy, even though he scooped
me.

• You can still publish your work in a journal,
especially if it’s invited ;-)

• Technical lessons learned
• Problem customization is crucial to alias analysis

research
• Don’t pick the alias analysis problem unless

you’ve got something amazing up your sleeve
• E.g. John Whaley, BDD representation, PLDI ‘04

26 July 2005

Do you like your topic Hot or Cold?

• Hot topics
• Advantage: everyone cares about it
• Disadvantage: really hard to stand out from the

crowd
• Disadvantage: easy to get scooped

• Cold topics
• Must do *much* better at making an argument
• My work:

• Enforcing architecture specs: very ’90s
• AOP & modular reasoning: different crowds
• Prototypes (’80s) and Multiple Dispatch (’80s, ’90s)

• Easy to convince people you’ve done something
novel, hard to make them care

26 July 2005

Split Personality

• Cross-disciplinary research
• Apply techniques from one area to a problem in

another
• ArchJava: PL techniques applied to SE problem

• Integrate techniques from two areas

• Advantage: easy to make a significant, novel
contribution
• ArchJava was low-hanging fruit, in a sense: one

new trick—that was not even deep type theory—
and a lot of implementation, validation, and
proofs made it all work

• No-one had solved the problem before because
they hadn’t thought of it in the way that I did

26 July 2005

Split Personality

• Disadvantage: people from both areas
can dismiss you as not relevant
• Some in SE criticize ArchJava as being
unadoptable
• Valid in the short term
• Have to argue that impact on timescale of
language adoption is large

• Many people in PL simply don’t care
• Architecture is too “fuzzy” for them
• Helps to make the case that the same
technology can address issues that they
do care about.

26 July 2005

Split Personality

• Disadvantage: people from both areas
can dismiss you as not relevant
• Example: AOP & modular reasoning
• AOP crowd: you’re bringing the same old
modularity, we need a new modularity for
AOP
• Have to argue that old ideas are still useful, just

need to be adapted

• Hard-core PL crowd: AOP is wacko,
anyway
• Have to argue that AOP is less wacko if you have

a modular reasoning property

26 July 2005

Split Personality

• Fortunately the OO community is more
open to PL/SE work than either the
core PL or core SE conferences

• Interview Experiences
• I was interviewed by schools looking only
in PL, and only in SE

• I was not interviewed because of a bad
area match, by other schools looking only
in PL, and only in SE!!!

26 July 2005

What’s Your Problem?

• Crystallizing the problem is one of the
hardest things about doing research

• Common trap
• That system is so broken, I can do it
better!
• (without a specific goal for “better”)

26 July 2005

How I wrote a nice paper on the
wrong problem

• My dissertation: enforcing a software
architecture specification
• Subproblem: how to specify and check
communication through shared data

• Ownership looked promising

26 July 2005

How I wrote a nice paper on the
wrong problem

• But existing ownership systems were “bad”
• Couldn’t express capturing a pointer

• So I combined with uniqueness
• Couldn’t express iterators, events

• So I weakened ownership guarantee to
“capability-based encapsulation”

• Hadn’t been implemented, don’t know how to
implement actual language
• So I implemented it and solved issues

• No empirical evaluation of practicality
• So I evaluated it on 4000 lines of interesting

library and application code
• Lots of annotations to write

• So I wrote an inference system
• Alias analysis bites again!!

26 July 2005

How I wrote a nice paper on the
wrong problem

• Did I mention I got the problem wrong?

• “Capability-based encapsulation”
• Means you can only access an object if you can

name it in the ownership system
• Similar to OO pointers: you can access an object

if you have a name (variable) for it
• Limited improvement over Java
• Useless for my dissertation

• Still a nice paper
• Emphasized practicality of ownership
• Empirical evaluation
• Initial work on inference
• But I hadn’t focused on the real problem!

26 July 2005

How I wrote a nice paper on the
wrong problem

• What I should have done
• Focus specifically on what property I
needed to enforce architecture

• I did this later, as I was finishing up my
dissertation

26 July 2005

Ways I’ve found good problems

• The literature
• Communication integrity: comes from SE

literature on architecture

• A technical property from another area
• Karl Crary: “So, do you have any kind of

abstraction result for ArchJava?”
• J: “Abstraction? What’s that?”
• Result: ECOOP ’05 paper on abstraction in the

presence of advice
• Another example: OO substitutability, applied to

typestate (FSE ’05)

• Reconcile two properties that seem to be in
conflict
• ECOOP ’05 paper: prototypes and multiple

dispatch
• My student Lee Salzman’s idea, not mine

26 July 2005

Brain Teasers

• Once you have the problem, how do
you solve it?

• Often involves taking a break and
looking at the solution from another
angle

26 July 2005

Brain Teasers

• I’ve only solved 2 hard problems
• The other solutions were either obvious
from the problem statement,
straightforward engineering, or my
students did the real thinking

26 July 2005

Brain Teaser #1

• Recasting ownership as permissions
Traditional
Ownership OK

Bad

x

Pointers can go out but not in

26 July 2005

Brain Teaser #1

• Recasting ownership as permissions
Traditional
Ownership

Problem: Too inflexible to check architecture!
Need ability to specify arbitrary sharing relationships

(but enforce whatever the architect specifies)

OK

Bad

x

26 July 2005

Brain Teaser #1

• Recasting ownership as permissions
Traditional
Ownership

Permission-based
Ownership (3am idea)

Problem: Too inflexible to check architecture!
Need ability to specify arbitrary sharing relationships

(but enforce whatever the architect specifies)

OK

Bad

x

Key idea: specify arbitrary
access permissions

Permissions are not transitive!

Bad x

OK

OK

26 July 2005

Brain Teaser #2

• Modular Reasoning about Advice
• Advice should affect declarations, not
values
• Otherwise, difficult to reason about
effects—as bad as pointers

• Treat recursive calls separately from
external calls
• What matters is module crossings

26 July 2005

Save the World!

• Don’t try to save the world
• There’s plenty of time when you’re a professor

and you have students to help you
• (but need to stay focused even then)

• Agree with advisor on scope: not a bad idea to
get a written agreement

• Don’t be afraid to change areas
• If you think the new area is more compelling to

others and it’s more interesting to you
• And if you’re not too far along already
• I did it twice!

• Java synchronization optimization
• AOP & modules

26 July 2005

Serving Two Masters

• I was co-advised, and I have a co-advised
student
• *great* way to get more than one perspective

• Things to watch out for
• Find a clear topic that both advisors are

interested in
• This was easy for me as a student, but was

hard with the student I co-advise
• We finally succeeded after nearly 2 years

• Manage the interaction
• Make sure they’re able to work together

effectively
• Meeting separately with each advisor is often a

good idea
• Make clear that you cannot do the union of their

expectations

26 July 2005

Down the Garden Path

• Once you figure out what your thesis
is, focus like a laser on it!

26 July 2005

How I wrote a nice paper that wasn’t
part of my dissertation

• Architecture literature
• Connectors are important, too!
• What would a connector look like in
ArchJava?

• Solution (ECOOP ’03)
• Method defines semantics of invocation
• Reflective access to calls on connector

• Method defines typechecking rules
• Reflective access to types of ports

• Evaluation based on a taxonomy of
connectors, distributed system

26 July 2005

How I wrote a nice paper that wasn’t
part of my dissertation

• Did I mention this wasn’t part of my
dissertation?
• My dissertation was about architectural
conformance

• This was about reusability, abstraction,
and customizable typechecking
• No conformance story

• Didn’t make it into my dissertation
writeup

• Nice paper, but it should have waited
until after I graduated

26 July 2005

Survivor!

• The hardest thing about a dissertation is finishing it
• Write lots of papers; then you have material to work

with
• Mike Ernst: publish everything you do, even if it’s in

a piddly workshop
• Knock off the hard stuff first

• Worst thing about connectors paper: distracted me
from hardest issue of dissertation

• Didn’t solve it until after my first couple of interviews
• Don’t get discouraged by problems

• ECOOP ’05 paper on aspects: rejected 3 times
(nearly 4—required shepherding)

• It’s a good paper now; great reviews at ECOOP, but I
had to fine-tune it (both technically as it was a new
area, and sales-wise) to get it right

• Do a bit every day: as long as you’re always making
progress, you’ll finish eventually!

26 July 2005

The Insane Asylum

• Becky: Tell them they need to do
extracurricular stuff, too. As in, don’t
sit in front of the computer all day.

• J: Why? Because it helps in getting a
job, or because it helps maintain your
sanity?

• B: Well, the second is not
unrelated to the first, right?

Interviewing

26 July 2005

Writing

• Kent Beck: how to write an abstract
• State the problem
• State why the problem is a problem
• Surprise the reader with your solution
• State the consequences of your solution

• Source:
• http://www.acm.org/sigs/sigplan/oopsla/
oopsla96/how93.html

26 July 2005

Writing

• Focus on the abstract/introduction
• Most important part of a paper

• Assuming you already have the ideas worked out
• I write this first *and* last

• Outline before you write
• Get outside feedback

• The pickier the better
• Feedback on the technical content, the argument,

and the grammar/style of writing

• Revise
• Take one paper and focus intensely

• Revise the argument until it’s exactly right
• Go over each sentence in detail: several minutes
• Will take a long time, but you’ll learn a lot, and

next time you can do it quickly

26 July 2005

Networking

• Give drafts of papers to people in
your area
• Offer to read their papers, too!

• Good to do summer internships
elsewhere
• So people can recommend you
• Can also help you get a research job

26 July 2005

What to do at ECOOP

• From David Notkin, my advisor, to his students:
"Why am I bringing you all down to the conference? In part, I just want

the University of Washington to have good showing, since its good for
the department. But more importantly, its good for you (1) to see the
people who've written papers you've read, (2) to see what’s current in
software engineering research, (3) to start to build relationships with
other researchers in the field, (4) to tell people what you're doing and
to find out what they are doing, and (5) to find out that you're at least
as smart and good as many of those researchers.

"So, you should work hard to attend lots of sessions and read lots of the
papers. But it's unlikely that you'll go to every session: some will be
genuinely uninteresting to you. In addition, the most important part of
a conference is "schmoozing," standing in hallways talking to
colleagues (satisfying most or all of the items in the previous
category). You'll see me and lots of others doing this.

26 July 2005

What to do at ECOOP

"It's scary trying to meet these "famous" people. I'll try and introduce you
when I can, but I'll be pretty busy. So it's OK (actually, its more than
just OK) to be a little (or a lot) pushy. If you see people you want to
listen to having a conversation, feel free to move on up to them and try to
listen (unless for some reason it seems like it's a personal conversation
and is thus inappropriate). Sometimes they'll acknowledge you,
sometimes they won't. But its worth trying to get involved in these
conversations when possible. (Even listening by itself can be valuable.)
Of course, the best way to get involved is to ask a question: it flatters
people and makes them respond to you. And you learn something.

"Trying to have meals with folks is a really good way to meet them. Some
people you already know probably know a couple of people from other
places, so if they set something up, it'd be nice to try to bring another
UW student or two along. (For women students, there may be a Sisters
lunch one-day. It'll probably be marked on a bulletin board. Go if you
can and want).

"Hang out some with each other. But don't do this exclusively, since you
can do that in Seattle, but you can't schmooze with the others here.
Debriefing with each other on sessions, papers, interactions with others,
etc. is of value, though, and you should do this with each other on
occasion.”

26 July 2005

Preparing Talks

• Preparation
• Talk about the story with your advisor
• Discuss an outline with your advisor
• Go over slides with your advisor
• Practice on your own to get it to the right
time
• Aim for 5 minutes less than the allotted
time

• Practice in public
• Helps with nerves
• Get feedback

• Memorize your talk for the first few
slides
• Gets over that initial hump

26 July 2005

Giving Talks

• One of the most important parts of your
career
• Will form main impression when you interview
• Obvious importance for teaching

• Job talk story
• Gave 2-3 practice talks
• Revised twice *after* I started interviewing

• Bring talk in two formats
• You never know when equipment will fail!
• Old advice: slides & electronic
• New advice: pick two of Laptop, USB, CD, Web

26 July 2005

Where to Interview

• Distribution of quality

• Top places
• Apply to a few—you might get lucky—but
don’t count on these

• Medium schools

• A few safety places
• You have a good chance at getting an
offer

26 July 2005

Timing

• Interview at a safety school early
• Get practice in a low-key environment
• Danger: they might make you an offer with a

short time fuse!
• They know they have to stretch to get you, and

want to make another offer if you say no
• Best if you have an offer you can hold on to—

schools that have more hiring slots can afford
to do this

• Schedule breaks
• 3 schools is probably plenty for one trip
• Need to relax between interviews, and also

revise your talk

26 July 2005

Preparing for an Interview

• Learn about the school beforehand
• Who works in your area? What have they done

recently that you could ask about?

• Know your work
• Example: I was grilled on an old system that I had

changed for my dissertation (and had forgotten!)

• Know your teaching
• Example: I said I was an expert in design, but I

wasn’t; I was an expert in enforcing design. I had to
backtrack and looked a bit naïve.

• Know your future ideas
• Should have some elements that contrast with your

dissertation
• Should be plausible given your background
• Most important: compelling & show understanding of

field

26 July 2005

My weird interview experience

• Expected: mostly get interviews and offers
below a cutoff

• Seemingly random interviews
• Ignored by several 2nd/3rd tier schools that were

hiring (and interviewing others) in my area

• Got offers at the top 3 places I interviewed
• Including CMU, ranked at a tie for #1 in the US

• My conclusion: Cold topic/two areas
increased randomness in interview process
• This worked to my advantage
• I got to pick the top part of the distribution

26 July 2005

Closing the Deal

• Talk with other interviewing students

• Compare notes on schools

• Compare offers
• Schools collude; you should too!

26 July 2005

Industry vs. Academia

• Industry
• Must justify work
to your boss
• Typically has to

be more applied
• Less job security
• Many fewer
distractions

• More direct
impact on
practice

• Academia
• Must justify work
to funding
agencies
• more work, but

more flexibility

• Tenure
• Many
responsibilities
and meetings

• Students as
research
multiplier

• Teaching

26 July 2005

Sources of Advice

• Networking on the Network
• http://dlis.gseis.ucla.edu/people/pagre/network.

html

• Mike Ernst’s advice page
• http://pag.csail.mit.edu/~mernst/advice/

• New SE faculty symposium at ICSE
• http://www.cse.unl.edu/~grother/nsefs/nsefs03

.html

• Writing Your Dissertation in Fifteen Minutes
a Day. Joan Bolker.

• ECOOP doctoral symposium

• Your advisor’s name here

