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Abstract
The undisciplined use of shared mutable state can be a source of program errors when aliases unsafely in-
terfere with each other. While protocol-based techniques to reason about interference abound, they do not
address two practical concerns: the decidability of protocol composition and its integration with protocol
abstraction. We show that our composition procedure is decidable and that it ensures safe interference
even when composing abstract protocols. To evaluate the expressiveness of our protocol framework for
ensuring safe shared memory interference, we show how this same protocol framework can be used to
model safe, typeful message-passing concurrency idioms.

1 Introduction

The interactions that can occur via shared mutable state can be a source of program errors. When
different clients access the same mutable state, their actions can potentially interfere. For instance,
the programmer may wrongly assume that a cell holds a particular type, when another part of the
program has changed that cell to hold a different type. When this happens, the program may fault due
to unsafe interference caused by unexpected actions through other aliases to that shared state. Thus,
to reason about interference we must reason about how state is aliased and how the different aliases
use the shared state.

Our technique builds on the use of linear capabilities [1] to track type-changing resource mutation
within the framework of a linear type system. However, relying solely on linearity is often too
restrictive. For instance, linearity enforces exclusive ownership of mutable state, which is incompatible
with multithreading—i.e. linearity forbids sharing. To allow sharing, we extend the concept of
rely-guarantee protocols [18]. By sequencing steps of “rely⇒guarantee” actions, each protocol
characterizes an alias’s local, isolated perspective on interactions with a piece of shared state:

“what I assume about the state”⇒ “what I guarantee about the state”︸                                                                                        ︷︷                                                                                        ︸
current step

; next step

Since the interactions performed by an alias may change over time, a rely-guarantee protocol is
formed by a sequence of steps that specify each interfering action. Each step relies on the shared state
having some type and then, after some private actions, guarantees that the shared state will now have
some other type, which becomes visible to other aliases. By constraining the actions of each alias, we
can make strong assumptions about the kind of interference that an alias may produce, in the spirit of
rely-guarantee reasoning [13]. Naturally, not all protocols compose safely. While a protocol describes
its own actions on a piece of shared state, protocol composition will ensure that those actions are
safe w.r.t. the actions that can be done via other existing (and even future) protocols over that state.
Composition is safe only if the set of protocols accounts for all possible run-time action interleavings.

Our main contribution is a decidable protocol composition procedure that also allows abstract
protocols to be composed. We break down our contributions as follows:
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2 Composing Interfering Abstract Protocols

x ∈ Variables t ∈ Tags f ∈ Fields ρ ∈ Location Constants

e ::= v (value)
| v.f (field selection)
| v v (application)
| let x = e in e end (let)
| new v (cell creation)
| delete v (cell deletion)
| !v (dereference)
| v := v (assign)
| case v of t#x→ e end (case)

| lock v (lock locations)
| unlock v (unlock locations)
| fork e (spawn thread)

v ::= ρ (address)
| x (variable)
| λx.e (function)
| {f = v} (record)
| t#v (tagged value)

Notes: Z is a potentially empty sequence of Z elements. ρ is not source-level.

Figure 1 Values (v) and expressions (e).

We adapt the existing constructs of rely-guarantee protocols [18] to work in a system with
concurrent runtime semantics, and show that rely-guarantee protocols are useful to reason about
safe interference in the concurrent setting.
We give an axiomatic definition of protocol composition. We show that this procedure can be
implemented in a sound and complete (w.r.t. the formal definition) algorithm that terminates on
all legal inputs.1 The protocol composition algorithm is implemented in a prototype.2

We show that our use of type abstraction and bounded quantification at the protocol level enables
us to model new, and more general, polymorphic forms of safe modular shared state interactions.
We prove our system sound through progress and preservation theorems that show the absence of
unsafe interference in correctly typed programs. Our design ensures memory safety and data-race
freedom, where linear resources are shared via protocol composition (a partial commutative
monoid [16, 6]).
We evaluate the expressiveness of our system by discussing how our core shared memory protocol
framework is capable of expressing safe, typeful message-passing idioms.

Next, we briefly introduce the language that “hosts” our protocols, with the remaining text focused
on discussing new protocol-level features. Sections 2 and 3 introduce our novel definition of protocol
composition and its extensions to support abstract protocols. Section 4 discusses technical results.
The paper ends with discussions of expressiveness, related work, and conclusions.

1.1 Preliminaries: Language Overview

Our language supports fork/join concurrency combined with lock-based mutual exclusion, where
all threads share a common heap. We use the variant of the polymorphic λ-calculus shown in Fig.
1. For convenience, the grammar is let-expanded [27] so that all constructs, except let, are defined
over values. The language includes first-class functions (λ), records ({f = v}) that label a value as f,
and tagged values (t#v) to mark a value with a tag. Standard constructs are used for field selection,
application, let blocks, memory allocation, deletion, assignment, dereference, and case analysis.

1 Note that we have not proven the decidability of the entire type system, but only of the protocol composition
algorithm which is at its core. The remainder of the type system is more conventional and we did not encounter
difficulties with decidability when implementing similar rules in our prior work [18].

2 See: http://www.cs.cmu.edu/~foliveir/protocol-composition.html

http://www.cs.cmu.edu/~foliveir/protocol-composition.html
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“lock v” atomically locks a non-empty set of locations (ensuring both mutual exclusion and forbidding
re-entrant uses) and analogously with “unlock v”. “fork e” executes the expression in a new thread
while sharing access to the common global heap. The operational semantics are standard and, as such,
are only shown in the companion Technical Report [20]. They produce the standard evaluation of the
language’s constructs such as creating or deleting memory, spawning new threads, etc.

Mutable References

We type mutable references by following the design proposed in L3 [1]. Therefore, a mutable cell is
decomposed into two components: a pure reference, which can be freely copied; and a linear [10]
capability, a resource that is used to track the contents of that cell. To link a reference to its respective
capability, we use location-dependent types. For instance, a new cell has type ∃l.( (!ref l) :: (rw l A) ).
This type abstracts the fresh location, l, that was created by the memory allocation. Furthermore, we
are given a reference of type “!ref l” to mean a pure/duplicable (!) reference to a location l, where the
information about the contents of that location is stored in the linear capability for l. The permission
to access (e.g. dereference) the contents of a cell requires both the reference and the capability to be
available.

Our capabilities follow the format “rw l A”, meaning a read-write capability to a location
l that currently has contents of type A (the type of the value, given in “new v”, that initializes
the new cell). We depart from [1] by making capabilities typing artifacts that only exist at the
level of typing. Consequently, capabilities are managed implicitly by the type system rather than
manually manipulated by the programmer via language constructs. However, we may still need to
associate a capability with another type. For this reason, we use the notion of stacking [19]. In
∃l.( (!ref l) :: (rw l A) ) we see that the capability to l is stacked on top of “!ref l” since the capability
is to the right of the “::”. This allows the capability to be bundled together with the ref type, but no
action is required to unbundle them if they are needed separately. We refer to prior work [16, 19, 18, 1]
for more details on the use of capabilities, locations, and stacking, as well as convenient abbreviations.
Here, it suffices to assume that they are handled automatically by the type system, as our focus here is
on safely sharing the linear resources.

// assume ‘y’ in scope y : !ref l, rw l int
y := "ok!"; y : !ref l, rw l string
let x = y in x : !ref l, y : !ref l, rw l string
x := false; x : !ref l, y : !ref l, rw l boolean
delete x; x : !ref l, y : !ref l
!y // Type Error: missing capability to location ‘l’.

Figure 2 Tracking linear capabilities.

In the scheme above, all the vari-
ables that reference the same location
also share a single linear (i.e. “ex-
clusively owned” or “unique”) capa-
bility that tracks the changes to that
location’s contents (as shown in Fig.
2). However, this tracking relies on a
compile-time approximation of how variables alias, which constrains how state can be used. Since the
linear capability must be (linearly) threaded through the program, this scheme forbids aliasing idioms
that require “simultaneous” access to aliased state, such as when multiple threads share access to a
cell. To enable this form of sharing, we split a linear resource into multiple protocols. Each protocol
controls how an alias interacts with the shared state, without depending on precise knowledge of
which variables alias each other. We will continue with a brief presentation of the base language,
before diving into the details of our sharing mechanism in Section 2.

Types

(Note that rely and guarantee types will only be discussed in the next section, when we present
sharing). Our types (Fig. 3) follow the connectives of linear logic [10]. For this reason a function
type uses ( (instead of →) to denote a linear function. The linear restriction can be lifted when
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x ∈ Variables X ∈ Type Variables ρ ∈ Location Constants l ∈ Location Variables

t ∈ Tags f ∈ Fields p ::= ρ | l u ::= l | X U ::= p | A

A ::= !A (pure/persistent)
| A( A (linear function)
| [f : A] (record)
|
∑

i ti#Ai (tagged sum)
| ∀l.A (universal location)
| ∃l.A (existential location)
| ∀X<: A.A (bounded universal type)
| ∃X<: A.A (bounded existential type)
| ref p (reference type)
| X[U] (type variable)

| (rec X(u).A)[U] (recursive type)
| A ⊕ A (alternative)
| A & A (intersection)
| rw p A (read-write capability to p)
| none (empty resource)
| top (top)
| A :: A (stacking)
| A ∗ A (separation)
| A⇒ A (rely)
| A ; A (guarantee)

Notes: we simplify X[] to X; ⊕, &, ∗, + are commutative and associative.

Figure 3 Types (A).

the type is preceded by a “bang”, such as in !A, which denotes a pure/duplicable type. Records are
typed as [f : A] where each field f types the value of the record with some type A.

∑
i ti#Ai denotes a

single tagged type or a sequence of tagged types separated by + (such as “a#A + b#B + c#C”). We
have separate existential and universal quantification over locations and types, since locations and
types are of different kinds. Note that we leave ∀/∃ as typing artifacts and as such they do not have
corresponding constructs in the language. Quantification over types can provide a type bound (on the
right of <:) and where top is assumed by default when the bound is omitted.

Our recursive types (assumed to be non-bottom types) are equi-recursive, interpreted co-inductively,
and satisfy the usual folding/unfolding principle:

(rec X(u).A)[U] = A{(rec X(u).A)/X}{U/u} (eq:Rec)

Recursive types may include a list of type/location parameters (u) that are substituted by some
type/location (U) on unfold, besides unfolding the recursive type variable (X).

We use ⊕ to denote a union of alternative types, and & to denote a linear choice of different
types. none is the empty resource. Finally we have “A0 :: A1” for stacking resource A1 on top of
A0. Stacking is not commutative, so that it is not guaranteed that “A0 :: A1 :: A2” can be used in
place of “A0 :: A2 :: A1”. To enable resource commutation, we use ∗ such that “A0 :: (A1 ∗ A2)” and
“A0 :: (A2 ∗ A1)” are interchangeable via subtyping. For clarity, we will review these type annotations
as we present examples further below. Note that we do not syntactically distinguish resources (such
as capabilities or protocols) from value-inhabited types. However, the type system ensures that types
such as none can never be used to type a value. Indeed, even though “wrong” types can be assumed
(such as in a function’s argument) they can never actually be introduced as values.

Type System

To enable automatic threading of resources, we use a type-and-effect system with judgments of the
form: Γ | ∆0 ` e : A a ∆1 stating that with lexical environment Γ and linear resources ∆0 we assign
the expression e the type A, with effects resulting in the resources in ∆1.



F. Militão, J. Aldrich, L. Caires 5

Γ | ∆0 ` e : A a ∆1 Typing rules, (t:*)

(t:Pure)
Γ | · ` v : A a ·

Γ | · ` v : !A a ·

(t:Pure-Elim)
Γ, x : A0 | ∆0 ` e : A1 a ∆1

Γ | ∆0, x : !A0 ` e : A1 a ∆1

(t:Frame)
Γ | ∆0 ` e : A a ∆1

Γ | ∆0,∆2 ` e : A a ∆1,∆2

(t:Function)
Γ | ∆, x : A0 ` e : A1 a ·

Γ | ∆ ` λx.e : A0 ( A1 a ·

(t:Application)
Γ | ∆0 ` v0 : A0 ( A1 a ∆1 Γ | ∆1 ` v1 : A0 a ∆2

Γ | ∆0 ` v0 v1 : A1 a ∆2

(t:New)
Γ | ∆0 ` v : A a ∆1

Γ | ∆0 ` new v : ∃l.((!ref l) :: (rw l A)) a ∆1

(t:Delete)
Γ | ∆0 ` v : ∃l.((!ref l) :: (rw l A)) a ∆1

Γ | ∆0 ` delete v : ∃l.A a ∆1

(t:Assign)
Γ | ∆0 ` v1 : A0 a ∆1

Γ | ∆1 ` v0 : ref p a ∆2, rw p A1

Γ | ∆0 ` v0 := v1 : A1 a ∆2, rw p A0

(t:Let)
Γ | ∆0 ` e0 : A0 a ∆1

Γ | ∆1, x : A0 ` e1 : A1 a ∆2

Γ | ∆0 ` let x = e0 in e1 end : A1 a ∆2

(t:Dereference-Linear)
Γ | ∆0 ` v : ref p a ∆1, rw p A

Γ | ∆0 ` !v : A a ∆1, rw p ![]

(t:LocOpenBind)
Γ, l : loc | ∆0, x : A1 ` e : A2 a ∆1

Γ | ∆0, x : ∃l.A1 ` e : A2 a ∆1

(t:Subsumption)
Γ ` ∆0 <: ∆1 Γ | ∆1 ` e : A0 a ∆2 Γ ` A0 <: A1 Γ ` ∆2 <: ∆3

Γ | ∆0 ` e : A1 a ∆3

Notes: bounded variables of a construct and type/location variables of quantifiers must be fresh in the rule’s conclusion.

Figure 4 Typing rules (selected).

The typing environments are defined as follows:

Γ ::= · (empty)
| Γ, x : A (variable binding)
| Γ, p : loc (location assertion)
| Γ, X<: A (bound assertion)
| Γ, X : k (kind assertion)

∆ ::= · (empty)
| ∆, x : A (linear binding)
| ∆, A (linear resource)

k ::= type | type→ k | loc→ k (kinds)

Recursive type variables are given an→ kind, where the left hand side tracks the type/location kind
of a parameter of that recursive type.

Fig. 4 includes a few selected typing rules. Additional rules are shown below as they become
relevant to the discussion on sharing, with the remainder left to the T.R.. (t:Pure) types a value as pure
if the value does not use any resources. If a variable is of a pure type, then (t:PureElim) allows the
binding to be moved to the linear context with its type explicitly “banged” with !. (t:Frame) enables
framing [26] resources that are not used by an expression, just threaded through the expression. Since
a function, (t:Function), can depend on the resources inside of ∆ (which the function captures), a
functional value must be linear. However, the function can later be rendered pure (!) through the use
of (t:Pure) if the set of resources it captures is actually empty. (t:Application) is the standard rule. As
discussed above, (t:New) and (t:Delete) manipulate types that abstract the underlying location that
was created or that is to be deleted. (t:Assign) updates the contents of a location with the type of the
newly assigned value. (t:Let) threads the effects of e0 to the initial linear resources of e1, sequencing
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the evaluation of the expressions as usual. (t:Dereference-Linear) removes the contents of a cell,
leaving the residual “unit” type behind (the semantics leave the cell unchanged but unusable through
typing). (t:LocOpenBind) illustrates the non-syntax-directed opening of existential location packages.

The subtyping rules are deferred to the T.R., but it suffices to know the subtyping judgment,
Γ ` A0 <: A1, which states that A0 is a subtype of A1, meaning that A0 can be used anywhere A1 is
expected. An analogous judgment governs subtyping between linear environments, Γ ` ∆0 <: ∆1.
Thus, the (t:Subsumption) rule simply states that we can type an expression while using weaker
assumptions and ensuring a stronger result and effect, as these types cannot break the conclusion’s
types expectations.

2 A Protocol for Modeling join

We begin by describing how non-abstracted protocols compose and how rely-guarantee protocols
work in the concurrent setting. Our language supports the fork/join model of concurrency, in which a
join is encoded via shared state interactions. There are two participants in this interaction: the Main
thread and the Forked thread. The forked thread computes some result. When the main thread joins
the forked thread it will wait until the result becomes available, if it is not yet ready. Our primitives to
interact with shared state are reading/writing and locking/unlocking. Because of this, our protocols
must explicitly model the “wait for result” cycle of a join.3 A thread scheduler could reduce or
eliminate the spinning caused by this “busy-wait”, but this is beyond the scope of our discussion. We
define the two protocols as follows:

F , Wait⇒ Result ; none
M , ( Wait⇒ Wait ; M ) ⊕ ( Result⇒ Done ; Done )

Each protocol contains a sequence of steps that control the use of locks and specify the (type)
assumptions on that locked state. Since locks hide all private actions, the protocols will only need
to model the changes that become visible upon unlocking. These changes are bounded by a single
lock-unlock block, which is mapped to a single rely⇒guarantee step in the protocol. When we lock a
cell we will assume that the state is of some type and, when we eventually unlock that cell, we will
guarantee that it changed to some other type. Multiple steps can be sequenced using the ; operator.

The forked thread will be given the F protocol. This protocol initially assumes that the shared
state is of type Wait on locking. In order to legally unlock that cell, we must first fulfill the obligation
to mutate the state to Result. Once that guarantee is obeyed the protocol continues as none. This
empty resource type models termination since the forked thread will never be able to access that
shared state again. Note that since subsequent steps may be influenced by the guarantee of the current
step, a protocol step is to be interpreted as “Wait ⇒ ( Result ; none )”.

The Main protocol includes two alternative (⊕) steps that describe different uses of the shared state.
If we find the shared cell containing the Wait type then the main thread must leave the state with the
same type, before later retrying M. Otherwise, if we find the cell containing a Result, we know that
F has already terminated and can no longer access the shared state. In that situation, we mutate the
cell to Done and unlock it so that each lock always has a matching unlock. Afterwards, the protocol
continues as Done, a type that is just a regular linear capability. Thus, M recovered ownership of the
shared state and Done can continue to be used without locking since the cell is no longer shared. We
can now give concrete definitions for Wait, Result, and Done as types describing a single capability

3 Each protocol must be aware of all valid states, as an omission would leave room for unsafe interference, such as
when later re-splitting that protocol.
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to location l as follows:

Wait , rw l Wait#![] Result , rw l Result#int Done , rw l ![]

Wait is a capability to location l containing a tagged value, where Wait is the tag and “![]” (a pure
empty record) is the type of the value. Result is a capability for l containing an integer value tagged
with Result. The two tags will enable us to distinguish between the Wait and Result alternatives by
using standard case analysis. With Done the content is an empty pure record (“unit”).

Each protocol describes an alias’s local, isolated view of the evolution of the shared state. Thus,
we can discuss the uses of each protocol independently. Because a protocol is a linear resource, the
forked thread will “consume” or “capture” F in its context, making it unavailable to the main thread.
As with any linear resource, F is tracked by the linear typing environment (∆) and is either used
by an expression or threaded through to the next expression. However, the forked thread and main
thread can share the enclosing lexical typing environment (Γ) because it only contains pure/duplicable
assumptions. A possible use of the F protocol follows.

3 fork Γ = c : ref l, l : loc | ∆ = work : ![]( int, F
4 let r = work {} in Γ = r : int, ... | ∆ = Wait⇒ (Result ; none)
5 lock c; Γ = ... | ∆ = Wait, (Result ; none)
6 c := Result#r; Γ = ... | ∆ = Result, (Result ; none)
7 unlock c Γ = ... | ∆ = none
8 end Γ = ... | ∆ = ·

Γ contains a reference (c) to the location (l) that is being shared by the protocol, and ∆ contains a
variable with the (linear) function that computes the work that the thread will do. (In this example
both protocols refer to a well-known common location, but our technique also allows each protocol
to ∃ abstract its locations.) Line 4 consumes the function work by calling it, storing the result in
variable r. At this point we want to update the shared state to signal that the result is ready. Since we
are accessing shared state in a multi-threaded environment we first lock the shared location that is
being referenced by c. To type a lock we must map the locations listed in the lock to those contained
in the rely type of the protocol. Well-formedness conditions on the protocols ensure that, at each step,
the rely and the guarantee types refer the same set of locations so that no lock on a location goes
without a respective unlock.

Γ | · ` v : ref p a · locs(A0) = p

Γ | ∆, A0 ⇒ A1 ` lock v : ![] a ∆, A0, A1
(t:Lock-Rely)

When locking (line 5), the step of F is broken down into its two components: the rely type (Wait) and
the guarantee type (Result; none). While Wait describes the linear resources that are now available
to use, the guarantee type is an obligation to mutate the state to fulfill the given type before unlocking.
Indeed, line 7 is only valid because the shared state was modified to match the promised guarantee
type (Result).

Γ | · ` v : ref p a · locs(A0) = p

Γ | ∆, A0, (A0; A1) ` unlock v : ![] a ∆, A1
(t:Unlock-Guarantee)

(with parenthesis used for clarity). Once the guarantee is fulfilled, we can move on to the next step
of the protocol (in the case of F, none; or A1, in the case of the rule above). The none type is the
empty resource that can be automatically discarded, leaving ∆ empty (·). Thus, the uses of protocols
are mapped to the (t:Lock-Rely) and (t:Unlock-Guarantee) rules that step a protocol. We now show
the rest of the encoding:

1 let newFork = λwork. Γ = · | ∆ = work : ![]( int
2 let c = new Wait#{} in Γ = c : ref l, l : loc | ∆ = rw l Wait#![], ...
3 fork ... // lines 3 to 8 shown above. Γ = ... | ∆ = M, F, ...
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To simplify the presentation, our term language is stripped of type annotations. However, the newFork
function has type !( ( ![] ( int ) ( ( ![] ( int ) ) where the argument of this pure function is
the work to be done by the thread, as was shown above. The resulting function is the join (shown
below) that, once called, waits for the forked thread’s result. Line 2 creates the cell that will be
shared by the main and forked threads. This new cell, although typed ∃l.( (!ref l) :: (rw l Wait#![]) ),
is automatically opened by the type system via (t:LocOpenBind) to allow direct access to the ref l
reference via variable c.

Line 3 shares the cell by splitting the capability to location l into the M and F protocols. This
split is done in a non-syntax-directed way through (t:Subsumption) (of Fig. 4), combined with the
following rule for subtyping on ∆’s:

Γ ` ∆0 <: ∆1 Γ ` A0 V A1 || A2

Γ ` ∆0, A0 <: ∆1, A1, A2
(sd:Share)

Where the following resource split (V) is used:

Γ ` Wait V M || F (recall: Wait , rw l Wait#![])

This split results in the capability to location l being replaced by the two protocols, M and F, in ∆. The
composition check (described in the next subsection) relies on the knowledge that M and F share the
same location. Once the protocols are known to compose safely, however, we no longer need to track
this sharing—each protocol can abstract the location being accessed under a different name, and they
can be used independently. The fork expression is typed by consuming the resources that the fork will
use (such as F in the fork of line 3):

Γ | ∆ ` e : ![] a ·

Γ | ∆ ` fork e : ![] a ·
(t:Fork)

This rule is somewhat similar to (t:Function), but the result type is unit because fork does not produce
a result. Thus, a fork is executed for the effects it produces on the shared state. As such, to avoid
leaking resources, the final residual resources of the forked expression must be empty and the resulting
value pure (note that “!A <: ![]”).

Finally, we show the join function that will “busy-wait” for the forked thread to produce a result.
Its use of both recursion and case analysis should be straightforward as they follow standard usage.
The following text will focus on the less obvious details.

9 λ_.rec R. ∆ = ( Wait⇒ (Wait; M) ) ⊕ ( Result⇒ (Done; Done) )
10 [a]∆ = Wait⇒ (Wait; M) [b]∆ = Result⇒ (Done; Done)
11 lock c; [a]∆ = Wait, (Wait; M) [b]∆ = Result, (Done; Done)
12 case !c of [a]∆ = rw l ![], (Wait; M) [b]∆ = rw l ![], (Done; Done)
13 Wait#x → // must restore linear value [a]∆ = rw l ![], (Wait; M)
14 c := Wait#x; [a]∆ = Wait, (Wait; M)
15 unlock c; [a]∆ = M
16 R // retries
17 | Result#x → [b]Γ = x : int, . . . | ∆ = rw l ![], (Done; Done)
18 unlock c; [b]Γ = x : int, . . . | ∆ = rw l ![]
19 delete c; [b]Γ = x : int, . . . | ∆ = ·

20 x
21 end
22 end
23 end

We omit Γ to center the discussion on the contents of ∆. The alternative type (⊕) lists a union of
types that may be valid at that point in the program. To use such a type, an expression must consider
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each alternative individually via (t:Alternative-Left):

Γ | ∆0, A0 ` e : A2 a ∆1 Γ | ∆0, A1 ` e : A2 a ∆1

Γ | ∆0, A0 ⊕ A1 ` e : A2 a ∆1
(t:Alternative-Left)

The breakdown of ⊕ (line 10) is done automatically by the type system. Thus, the body of the
recursion must be typed individually under each one of those alternatives, marked as [a] and [b].
The type of the resource on each alternative contains a sum type that matches different branches in
the case of line 12. Note that it is safe for this sum type to only match a subset of the branches that
the case lists. The remaining branches are simply ignored when typing the case with that sum type:

Γ | ∆0 ` v :
∑

i ti#Ai a ∆1 Γ | ∆1, xi : Ai ` ei : A a ∆2 i ≤ j

Γ | ∆0 ` case v of t j#x j → e j end : A a ∆2
(t:Case)

This enables the same case to produce different effects, such as obeying incompatible guarantees,
based solely on the tagged contents of v. For instance, the Result branch will recover ownership and
destroy the shared cell (line 19), while the Wait branch must restore the linear value of that cell (that
was removed by the linear dereference of line 12, that left “rw l ![]” in ∆) before retrying. Although
line 19 deletes the cell, we first unlock the cell to fulfill the “Done; Done” guarantee of the final
protocol step.

A rely-guarantee protocol is a specification of each lock-unlock usage, modeled by a protocol
type. Therefore, we will continue the discussion on interference by only looking at the protocols,
while omitting the actual concrete programs that use them.

2.1 Checking Safe Protocol Composition

We now introduce our main contribution: a novel axiomatic definition of protocol composition,
which is later extended to support abstraction. Composing protocols over some shared state requires
considering all possible ways in which the use of these protocols may be interleaved. Thus, regardless
of the non-deterministic way by which aliases are interleaved at run-time, a correct composition will
ensure that all possible uses are safe.

Intuitively, a binary protocol split will generate an infinite binary tree representing all combinations
of interleaved uses of the two new protocols. Each node of that tree has two children based on which
protocol remains stationary while the other is stepped. Since this tree may be infinite, we must build
a co-inductive proof of safe interference. We only consider binary splits when checking composition
but since a protocol can be later re-split, there is no limit to how many protocols may share some
state.

The two protocols, M and F, shown above contain a finite number of different positions. We call a
configuration the combination of the positions of each protocol and the current type of the shared
resources. Each configuration is of the form:

〈 Γ ` ResourcesV Protocol || Protocol 〉

Thus, when we split a Wait cell into protocols M4 and F5, we get the following set of configurations
that simulate the uses done via the protocols (seen as atomic public transitions of lock-unlock uses,
corresponding to the respective rely and guarantee types):

{ Ê 〈 Γ ` WaitV M || F 〉 , Ë 〈 Γ ` ResultV M || none 〉 ,
Ì 〈 Γ ` DoneV Done || none 〉 , Í 〈 Γ ` noneV none || none 〉 }

4 M , ( Wait⇒ ( Wait ; M ) ) ⊕ ( Result⇒ ( Done ; Done ) )
5 F , Wait⇒ ( Result ; none )
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P,Q ::= (rec X(u).P)[UP] | X[UP] | P ⊕ P | P & P | none
| S ⇒ P | S ; P | ∃l.P | ∀l.P | ∃X <: A.P | ∀X <: A.P

S ::= (rec X(u).S )[US ] | X[US ] | S ⊕ S | S & S | none | A ∗ A | rw p A

R ::= P | S

Note: that the structure of allowed protocols is further restricted via protocol composition, beyond the syntactical

categories above. Namely, abstraction is only enabled by the rules of Section 3.3.

Figure 5 Grammar restrictions for checking safe protocol composition: Protocols, States, and Resources.

Configuration Ê represents the initial split of Wait into M and F. Starting from some configuration,
we will leave one of the protocols stationary while we simulate a use of the shared state (a step) with
the remaining protocol. From Ê if we step M we will stay in the same configuration. If instead F is
stepped, we get to configuration Ë that changed the state to Result and terminates the F protocol. By
continuing to step M we have the two last configurations: Ì where the last step of M is ready to recover
ownership, and Í where the ownership of the shared resource was recovered and all protocols have
terminated (i.e. all resources are empty, none).

Upon sharing, the ownership of the shared resources belongs to all intervening protocols; all
protocols can access the shared resources through locking. Ownership recovery means that this
ownership is given back to one single protocol and “revoked” from all remaining protocols. In our
protocols, recovery is modeled via protocol termination, such that a step transitions to a state rather
than to another protocol step. However, to be safe, we must be sure that this permanent ownership
transfer only occurs on the last protocol to terminate, ensuring that no other protocol may accidentally
assume that that shared state is still available. The ownership recovery in Ì transfers Done from
the “pool” of shared resources to the alias that uses the last step of the M protocol. We also see by Í
that this stepping consumes both the shared resource (leaving it as none) and the final “step” of M
(leaving the protocol position also as none).

All protocol configurations shown above can take a step. (Even none can take a vacuous step
that remains in the same configuration since none cannot change the shared resources.) Therefore,
each protocol will always find an expected state in the shared cell regardless of how protocols are
interleaved—i.e. all interference is safe since no configuration is stuck. A stuck configuration occurs
when at least one of the protocols cannot take a step with the current type of the shared resources. For
instance, 〈Γ ` ResultV M || F〉 cannot take a step with F since F does not rely on Result in any of its
available steps. If such stuck configurations were allowed to occur, then a program could fault due to
unexpected values stored in shared cells or due to attempts to access cells that were destroyed using
wrong assumptions of ownership recovery.

Protocol composition ensures that a resource, R (capabilities or protocols), can be shared (split)
as two protocols, P and Q, noted: Γ ` R V P || Q. Fig. 5 lists the grammatical categories (for
protocols, states and resources) that we consider when composing protocols. As exemplified above
we use a set of configurations, C, to represent the positions of each protocol as we traverse all possible
interleaved uses of the two new protocols. C is defined as:

C ::= 〈 Γ ` RV P || Q 〉 (configuration)
| C · C (configuration union)

Protocol composition, applied via (sd:Share), ensures that all configurations reachable through
stepping are themselves able to take a step, as follows:

〈 Γ ` RV P || Q 〉↑

Γ ` RV P || Q
(wf:Split)

C0 7→ C1 C1 ↑

C0 ↑
======================= (wf:Configuration)
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C 7→ C Composition, (c:*)

(c:Step)
〈 Γ ` RV RL[P] 〉 7→ C0 RL[�] = � || Q
〈 Γ ` RV RR[Q] 〉 7→ C1 RR[�] = P || �

〈 Γ ` RV P || Q 〉 7→ C0 ·C1

(c:AllStep)
C0 7→ C2

C1 7→ C3

C0 ·C1 7→ C2 ·C3

Composition — Reduction Step, (c-rs:*)
(c-rs:None)

〈 Γ ` RV R[none] 〉 7→ 〈 Γ ` RV R[none] 〉

(c-rs:StateIntersection)
〈 Γ ` R0 V R[P] 〉 7→ C

〈 Γ ` R0&R1 V R[P] 〉 7→ C

(c-rs:ProtocolAlternative)
〈 Γ ` RV R[P0] 〉 7→ C

〈 Γ ` RV R[P0 ⊕ P1] 〉 7→ C

(c-rs:ProtocolIntersection)
〈 Γ ` RV R[P0] 〉 7→ C0

〈 Γ ` RV R[P1] 〉 7→ C1

〈 Γ ` RV R[P0&P1] 〉 7→ C0 ·C1

(c-rs:StateAlternative)
〈 Γ ` R0 V R[P] 〉 7→ C0

〈 Γ ` R1 V R[P] 〉 7→ C1

〈 Γ ` R0 ⊕ R1 V R[P] 〉 7→ C0 ·C1

Composition — State Stepping, (c-ss:*)
(c-ss:Step)

〈 Γ ` S 0 V R[S 0 ⇒ S 1; P] 〉 7→ 〈 Γ ` S 1 V R[P] 〉

(c-ss:Recovery)

〈 Γ ` S V R[S ] 〉 7→ 〈 Γ ` noneV R[none] 〉

Composition — Protocol Stepping, (c-ps:*)
(c-ps:Step)

〈 Γ ` S 0 ⇒ S 1; QV R[S 0 ⇒ S 1; P] 〉 7→ 〈 Γ ` QV R[P] 〉

Figure 6 Basic protocol composition stepping rules.

Where C ↑ signals the divergence of stepping, consistent with the co-inductive nature of protocol
composition. We use a double line, as in (wf:Configuration), to mean that a rule is to be interpreted
co-inductively. This definition accounts for protocols that never terminate and also ensures that all
protocols can take a step with a given resource.

We now discuss the basic protocol composition definition of Fig. 6. (c:AllStep) synchronously
steps all existing configurations, where each configuration is stepped through (c:Step). We use R∗
(where ∗ is either L or R) to specify the configuration reduction context on one of the protocols of a
configuration, while the remaining protocol remains stationary, i.e.:

RL[�] = � || Q (for the Left protocol, Q is stationary)
RR[�] = P || � (for the Right protocol, P is stationary)

The subsequent stepping rules use R to range over both RL and RR.
We use three distinct label prefixes to group the stepping rules based on whether a rule is stepping

over a protocol (c-ps:*), stepping over some state (c-ss:*), or is applicable on both kinds of resource (c-
rs:*). (c-rs:None) “spins” a configuration since a terminated protocol cannot use the shared resources
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but must be stuck-free for consistency with our definition. The following (c-rs:*Alternative) and (c-
rs:*Intersection) rules “dissect” a resource based on the alternative (⊕) or choice (&) presented. Each
different alternative state must be individually considered by a protocol, while only one alternative step
of a protocol needs to be valid. The situation is the reverse for choices: all choices of a protocol must
have a valid step, but a step of a protocol can choose which resource to consider when stepping. State
stepping, (c-ss:Step), transitions the step of the protocol and changes the state of the shared resources
to reflect the guaranteed state of the protocol. Ownership recovery, (c-ss:Recovery), “consumes” the
shared state (leaving it as none) which models the transfer of ownership of that state back to the
client context that uses the final step of the protocol. Protocol stepping, (c-ps:Step), requires an exact
simulation of the rely and guarantee types when stepping both the simulated protocol and the current
stepping protocol.

Note that the rules above also enable the re-splitting of a protocol by extending an ownership
recovery step. In this situation, we have that the simulation of the original protocol will seamlessly
switch from the protocol stepping rules to the state stepping rules.

3 Polymorphic Protocol Composition

Up to this point, protocol composition does a strict stepping of protocols. Consequently, stepping
requires each protocol to know the exact type representation of the shared resources. Ideally, to
improve both locality and modularity, each protocol should only depend on the type information that
is relevant to the actions done through that alias. For instance, the action done through the F protocol
of page 6 does not need to know the precise type (Wait) that is initially stored in location l. Thus, we
want to be able to abstract Wait as X such that the protocol only keeps the typing information that is
relevant to that protocol’s local perspective on the shared resources:

∃X.( rw l X ⇒ ( rw l Result#int ; none ) )

Similarly, the wait step of the M protocol only depends on the tag of the shared cell enabling everything
else to be abstracted from its perspective:

∃X.( rw l Wait#X ⇒ ( rw l Wait#X ; M ) ) ⊕ . . .

Since rely-guarantee protocols are first-class types, they can move outside the scope of a “module”.
Without this form of abstraction, such a move would either expose potentially private information or
limit how clients may later re-split the shared resources. While enabling protocols to abstract part
of their uses based on their perspective of the shared resources improves modularity and increases
flexibility, it also brings new challenges on defining safe protocol composition and ensuring its
termination. We will focus the discussion on two new aliasing idioms that this kind of abstraction
enables: a) existential-universal interaction, how a universally quantified guarantee can safely interact
with an existentially quantified rely; and b) step extensions over abstractions, how abstractions
enable existing protocol steps to be re-split (i.e. nested protocol re-splitting) yet without the risk of
introducing unsafe interference on older protocols of that state.

Section 4 approaches the decidability problem. The remaining of this section starts by introducing
the basic intuition of how protocol-level abstraction works, before extending our axiomatic definition
of composition to account for abstraction.

3.1 Existential-Universal Interaction

Enabling existential abstraction over the contents of the shared state will naturally allow a greater
decoupling from the actions done by other aliases to that shared state. However, since a protocol
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encodes sequences of steps, ensuring safety must also account for the validity of the scope of the
opaque type. For instance, consider the composition:

Γ ` rw p intV ∃X.( rw p X ⇒ rw p X ; rw p X ⇒ ... ) || ( rw p int ⇒ rw p boolean ; ... )

On the left protocol, the assumption of X extends beyond a single step. Because the right protocol
can change the underlying representation of X, this composition cannot be ruled safe. Indeed, if X
were of a pure type, the left protocol could potentially reintroduce a type that would unsafely interfere
with the right protocol’s assumptions on the shared state. Thus, while the left protocol depends on an
opaque type, it still requires that the “lifetime” of X extends to the next step.

We now discuss the core ideas that enable the safe composition of protocols that interact over
abstractions. First the interaction will only occur via the “lifetime” of the stored type (as it changes on
each step), and then we will use bounded quantification to enable types that are less opaque. Consider
the following protocols that are sharing a location p:

Nothing , ∃X.( rw p X ⇒ rw p X ; Nothing )
Full[Y] , rw p Y ⇒ ∀Z.( rw p Z ; Full[Z] )

The Nothing protocol is defined using X to abstract the contents of the shared cell on a single step,
while also guaranteeing that X is restored before repeating the protocol. Thus, Nothing cannot
publicly modify the shared state, although p can undergo private changes. Conversely, Full is able
to arbitrarily modify the shared state by allowing its clients to pick any type to apply to the ∀ of the
guarantee. Full itself is parametric on the type that is currently stored in the shared cell, Y . Each step
of Full can exploit the precise local information on how the state was modified, by remembering
its own changes to cell p. However, the “lifetime” of X in Nothing is restricted to a single step.
Naturally, to be able to check this composition in a finite number of steps, we must check the changes
done by Full abstractly. To illustrate how composition works in this case, consider the following
split where p initially holds a value of type int:

p : loc ` rw p int V Full[int] || Nothing

Protocol composition results in the following set of configurations:

{Ê 〈 p : loc ` rw p intV Full[int] || Nothing 〉 ,
Ë 〈 p : loc, Z : type ` rw p Z V Full[Z] || Nothing 〉 }

The use of abstraction will mean that each configuration may have different assumptions of type
(and location) variables. Configuration Ê is the initial configuration given by the split above, which
includes the assumption that p is a known location. To step Nothing from Ê, we must first find a
representation type to open the existential. This type is found by unifying the current state of the
shared state (rw p int) with the rely type of Nothing (rw p X). Thus, we see that X is abstracting
int. After we open the existential, by exposing the int type, we see that the step will preserve
int resulting in Nothing yielding the same Ê configuration. To step Ê with Full[int], we must
consider that its resulting guarantee is abstract. The new configuration, Ë, must consider a fresh type
variable to represent that new type that a client can pick. In this case, we used Z to represent that
new type. It is straightforward to see that if we were to step Nothing from Ë we would remain in
configuration Ë following similar reasoning to that done for Ê. Perhaps the surprising aspect is that
further steps with Full will also yield configurations that are equivalent to Ë.

The typing environment plays a crucial role in enabling us to close the proof of safe composition.
Although each step of Full must consider a fresh type due to the ∀, stepping results in configurations
that are equivalent up to renaming of variables and weakening of Γ. Weakening allows us to ignore
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variables that no longer occur free in a configuration. This means that further steps with Full result
in configurations that are equivalent to already seen configurations. Thus, although the set of different
types that can be applied to Full’s guarantee is infinite, the number of distinct interactions that can
legally occur through that shared state is finite if we model those interactions abstractly. Lifetime
conflicts cannot occur with this technique as even if we open an existential, we must still step the new
configuration. Consequently, the problematic composition above would be detected via stepping.

We can use bounded quantification to provide more expressive abstractions that go beyond
the fully opaque types used above (which are equivalent to a “<: top” bound), and convert this
example into one of more practical use. By using appropriate bounds, we can give concrete roles
to the Nothing and Full protocols. Consider that we want to share access to some data structure
among several different threads. However, depending on how these threads dynamically use that
data structure, it may become important to switch its representation (such as change from a linked
list to a binary tree, etc.). Furthermore, we want one specialized thread (the Controller) to retain
precise control over the data structure and to be allowed to monitor and change its representation.
Concurrently, an arbitrary number of other threads (the Workers) also have access to the data structure
but are limited to only access its Basic operations.

W , ∃X <: B.( rw p X ⇒ rw p X ; W )
C[Y] , rw p Y ⇒ ∀Z <: B.( rw p Z ; C[Z] )

As before W is committed to preserve the representation type of X although it now has sufficient room
to use that type as B. C is now more constrained than before since it is forced to guarantee a type
that is compatible with B. However, C retains the possibility of both changing the representation type
contained in the shared state, and also of “remembering” the precise (representation) type that was
the result of its own local action. Finally, note that we can safely re-split W arbitrarily (i.e. WV W || W).
Protocol composition yields similar set of configurations, but with the bound assumption on Z.

This form of asymmetric interaction over shared state relates to the full − pure interaction of
access permissions [3]. A full permission allows exclusive write permission to an object, but also
enables read-only permissions (pure) to co-exists. Consequently, each pure permission must assume
that other permissions can modify the shared object up to a certain type, the state guarantee. While
their work focuses on the read-write distinction, and our work is centered on modeling type-changing
mutations (so all aliases can write), the example shows that we are able to naturally model similar
asymmetric interaction within our protocol framework.

3.2 Inner Step Extension with Specialization

Re-splitting an existing protocol while specializing its interference is possible, provided that its
effects remain consistent with those of the original protocol. Namely we can append new steps to an
otherwise ownership recovery step, or produce effects that are more precise than those of the original
protocol. The first case allows us to connect two protocols together by that recovery step. The latter
case is more interesting: when combined with abstraction it allows specialization within an existing
step (i.e. nested re-splits), enabling new forms of shared state interaction through that abstraction.

To illustrate the expressiveness gains, we revisit the join protocol of Section 2. However, instead
of spawning a single thread to compute the work, we re-split the join protocol in two symmetric
workers that share the workload. The last of the workers to complete merges the two results together
and “signals” the waiting main thread. First, we rewrite the two protocols to enable abstraction on the
M protocol, and add a choice (&) to the F protocol that enables F to use the state more than once until
it provides a result.

F[X] , ( rw p W#X ⇒ ∀Y.( rw p W#Y ; F[Y] ) ) & ( rw p W#X ⇒ rw p R#int ; none )

M , ∃Z.( rw p W#Z ⇒ rw p W#Z ; M ) ⊕ ( rw p R#int⇒ rw p int ; rw p int )
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As before, M will Wait until there is a Result in p. At that point, M will recover ownership of that cell.
Unlike before, M no longer depends on the value tagged as W since it is abstracted as Z. The F protocol
now holds two choices (&): the old step that transitions from Wait to Result, and a new step that
changes the representation of the value tagged as W and used during the wait phase. The F protocol of
Section 2 is a specialization of this protocol since it includes only one of the choices. In here, we
specialize F into two symmetric worKer protocols. To simplify the presentation, we assume that the
worker thread will receive the work parameters through some other mean (such as a pure value shared
among threads). Once a worker finishes its job, it will push the resulting int to the shared state. If it
notices it is the last worker to finish, it will merge the two results together and flag the state as ready,
so that Main can proceed.

K , ( rw p W#(E#[])⇒ rw p W#(R#int) ; none ) ⊕ ( rw p W#(R#int)⇒ rw p R#int ; none )

It is important to note that the new tags/values are nested inside the old W tag. This ensures that
the new usages remain hidden from M and “look” just like the previous F usage. (There are also no
lifetime conflicts since M does not preserve its type assumption on the abstraction beyond a single
step.) However, these inner tags are used by the two workers for coordination: the W#Empty tag means
that neither thread has finished, and W#Result means that one of the threads has already finished. We
can then re-split F as follows (note the required initial type in F, E#[], for this split to be valid):

Γ ` F[E#[]] V K || K

Protocol composition follows analogous principles to above, except that we are now simulating the
steps of the original F protocol with the steps of the two new K protocols:

{ 〈 Γ ` F[E#[]] V K || K 〉 , 〈 Γ ` F[R#int] V K || none 〉 ,
〈 Γ ` F[R#int] V none || K 〉 , 〈 Γ ` none V none || none 〉 }

Each simulation will match the rely and guarantee types of a step in F with a step in K, even if
specializing a ∀ of F to a specific type in K. As before, K can choose which step to simulate when
given a choice (&) of F steps. Similarly, at least one alternative (⊕) of K must match a step in F.
Therefore, the new K protocols work within the interference of the original F protocol, but specialize
its uses of the shared state.

3.3 Composing Abstract Protocols

The composition rules of Fig. 7 complement those of Fig. 6 to enable composing abstract protocols.
Weakening on a configuration (up to renaming), (c-rs:Weakening), is the crucial mechanism that
enables us to close the co-inductive proof when using quantifiers. Thus, when we reach a configuration
that is equivalent up to renaming of variables and weakening of Γ, we can close the proof. The
(c-ss:Forall*) rules do similar stepping to (c-ss:Step) but considering an abstracted guarantee, which
results in a typing environment with the opened abstraction. (c-ss:Open*) exposes the representation
type/location (if it exists) before doing a regular step. (c-ps:Forall*) and (c-ps:Exists*) open their
respective abstraction before doing a regular simulation step. More interestingly, (c-ps:*App) enables
a simulated step to pick a particular type/location to apply before that regular simulation stepping,
enabling step specialization during simulation. In the T.R, we also consider a straightforward
extension to protocol composition that enables subtyping over stepping.

3.4 Discussion & Brief Examples

Above, we showed how our local, isolated protocol types can model core interference concepts over
a relatively small and simple calculus. We refrained from adding support for more precise states
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(c-rs:Weakening)
〈 Γ0 ` RV R[P] 〉 7→ C

〈 Γ0,Γ1 ` RV R[P] 〉 7→ C

(c-ss:ForallLoc)
〈 Γ, l : loc ` S V R[S ⇒ P] 〉 7→ C

〈 Γ ` S V R[S ⇒ ∀l.P] 〉 7→ C

(c-ss:OpenLoc)
〈 Γ ` S V R[P{p/l}] 〉 7→ C

〈 Γ ` S V R[∃l.P] 〉 7→ C

(c-ss:ForallType)
〈 Γ, X : type, X <: A ` S V R[S ⇒ P] 〉 7→ C

〈 Γ ` S V R[S ⇒ ∀X <: A.P] 〉 7→ C

(c-ss:OpenType)
Γ ` A1 <: A0 〈 Γ ` S V R[P{A1/X}] 〉 7→ C

〈 Γ ` S V R[∃X <: A0.P] 〉 7→ C

(c-ps:ExistsType)
〈 Γ, X : type, X <: A ` PV R[Q] 〉 7→ C

〈 Γ ` ∃X <: A.PV R[∃X <: A.Q] 〉 7→ C

(c-ps:ExistsLoc)
〈 Γ, l : loc ` PV R[Q] 〉 7→ C

〈 Γ ` ∃l.PV R[∃l.Q] 〉 7→ C

(c-ps:ForallType)
〈 Γ, X : type, X <: A ` S ⇒ PV R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀X <: A.PV R[S ⇒ ∀X <: A.Q] 〉 7→ C

(c-ps:ForallLoc)
〈 Γ, l : loc ` S ⇒ PV R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀l.PV R[S ⇒ ∀l.Q] 〉 7→ C

(c-ps:LocApp)
〈 Γ ` S ⇒ P{p/l}V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀l.PV R[S ⇒ Q] 〉 7→ C

(c-ps:TypeApp)
Γ ` A1 <: A0 〈 Γ ` S ⇒ P{A1/X}V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀X <: A0.PV R[S ⇒ Q] 〉 7→ C

P{A/X} , “substitution, in P, of X for A”

Note: bound type/location variables of a type must be fresh in that rule’s conclusion.

Figure 7 Protocol composition abstraction extension.

and refined data abstractions of others (such as [15]), and focus instead on typestates [19, 29, 30].
However, this is not an intrinsic limitation of our model. If we consider more precise states, we can
(for instance) model monotonic counters from prior work [24, 11] where each counter shares state
symmetrically. Our local protocols model these uses solely from the perspective of a single alias as:

MC , ∃ { j : int}︸    ︷︷    ︸
J

.( rw p j︸︷︷︸
J

⇒ ∀ {i : int | i ≥ j}︸            ︷︷            ︸
I

.( rw p i︸︷︷︸
I

; MC ) )

The protocol models a monotonically increasing counter on location p. The step relies on location p
initially containing some integer, j, and modifying the cell to store some other value, i, that is greater
or equal than j. This interaction can be reduced to the core existential-universal protocol interaction
discussed above (but, in our calculus, using less precise types: J and I) and where the protocol can be
re-split indefinitely.

While our states are less precise, we can enforce more precise uses of that shared state. The
semantics of prior work [24, 11] differed on whether the counter was forcefully used by clients, or
whether the action was simply available to be used. We can model the two cases explicitly:

∃p.( (!ref p) :: MC ( [] :: MC )
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1 let newMVar = λ _.
2 let m = new Empty#{} in
3 // ‘‘shares’’ the new cell using single MVar protocol
4 Γ ` (rw l Empty#[]) V MVar[l] || none

5 {
6 putMVar = λ val.
7 rec R.
8 lock m;
9 case !m of

10 Empty#x → m := Full#val;
11 unlock m
12 | Full#value → m := Full#value;
13 unlock m;
14 R // retries
15 end
16 end,

17 splitMVar = λ _.
18 Γ ` MVar[l]V MVar[l] || MVar[l]

19 {}
20 takeMVar = λ _.
21 rec R.
22 lock m;
23 case !m of
24 Empty#x → m := Empty#x;
25 unlock m;
26 R // retries
27 | Full#value → m := Empty#{};
28 unlock m;
29 value
30 end
31 end
32 }
33 end
34 end

Figure 8 MVar example.

Enables clients to use the counter an arbitrary number of times or simply thread it through, unused.

∀X.∃p.( (!ref p) :: ∃J.( rw p J ⇒ ∀I.( rw p I ; X ) ) ( [] :: X )

By unfolding the protocol, the function guarantees that a single step of the protocol will be used.
Since we (intentionally) abstract subsequent steps, the function cannot use the counter beyond that
single use. Analogous reasoning can be used to enforce specific, finite, usages.

Adding support for dependent refinement types, and ensuring its decidability (even without
interference), is beyond the scope of our work as we focus on the core composition problem. However,
we believe that the underlying decidability insights made here will carry to a system with decidable
dependent refinement types; even if perhaps requiring more fine-grained conditions to close the
co-inductive proof of safe interference—that are only relevant once more precise typing is considered.

While we use a relatively simple calculus to keep the theory focused on the core of interference-
control, we can for instance model MVars [23]. Fig. 8 shows an MVar, a structure that contains a
single shared cell which is either empty or contains a value of some type. Notable operations include:
putMVar, that waits until the cell is empty before inserting the given value; and takeMVar which
waits until the cell is full to remove the cell’s value, leaving the cell empty. MVars can be shared by
many aliases, each assigned a protocol such as:

MVar[m] , ∃Y.( ( (rw m Empty#Y)⇒ (rw m Empty#Y) ; MVar[m] ) &
( (rw m Empty#Y)⇒ (rw m Full#int) ; MVar[m] ) )

⊕ ( ( (rw m Full#int)⇒ (rw m Empty#[]) ; MVar[m] ) &
∃Y.( (rw m Full#Y)⇒ (rw m Full#Y) ; MVar[m] ) )

The T.R. [20] includes additional examples, including modeling examples of prior work with our
more local protocol types. We can also model a shared pair where each alias keeps its own, local,
precise knowledge on one of the two components of the pair stored in that shared state. The two
aliases, L and R, share a common cell but keep part of that state private to itself. While both can do
private actions over the shared cell, they are guaranteed to not interfere with the precise assumptions
of the remaining alias.

P[A][B] , rw p [A, B]
L[A] , ∃X.( P[A][X]⇒ ∀Y.( P[Y][X] ; L[Y] ) )
R[A] , ∃X.( P[X][A]⇒ ∀Y.( P[X][Y] ; R[Y] ) )

Γ ` P[X][Y] V L[X] || R[Y]
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let x = new 0 in
// share ’x’ as via some

protocols
{
lockMe = λ_.lock x,
// ...
}

Figure 9 Indirect locking.

Thus, we can use the different perspectives of each protocol to
model local knowledge that is hidden from other aliases, within our
core protocol framework without needing additional mechanisms.

Since our types express sharing, we can use standard techniques
to abstract the components of a protocol type after safe composition
is checked. This enables an abstraction to expose a type interface
that indirectly manipulates the shared state, such as indirectly lock-
ing/unlocking state (Fig. 9). We can type the record in such a way to
hide the type in x but still expose some information on sharing that
is useful for later enabling other typestate functions [19]. For instance:

∃A.∃B.∃C.[ ..., lockMe : [] :: (A⇒ B; C)( [] :: (A ∗ (B; C)), add : ( int :: A( [] :: A ), ... ]

Clients can only call add once the type A is available. This could model, for instance, a global lock
on a collection to enable more coarse-grained control over the interference to that collection—but
without exposing the lock to clients. Thus, when lockMe returns, the client receives a type that
expresses that A is available and that a guarantee (B; C) is expected to be fulfilled. However, this
fulfillment can only occur indirectly via the wrapper record as clients do not have a direct way of
accessing or mutating the internals of that shared state.

lock @a; Γ = a : ref @a
let b = !a;
lock @b; // locks loc. of ’b’
unlock @a;
let c = !b;
lock @c;
unlock @b;
...

Figure 10 Hand-over-hand
locking example.

While we do not guarantee dead-lock freedom, it is possible to
type more fine-grained locking schemes such as hand-over-hand
locking (Fig. 10). Consider the protocol of a list’s node:

L[q] , ∃l.( (rw q !ref l) ∗ L[l] ⇒ (rw q !ref l) ; ... )

L is defined over a location q that contains the (abstracted) reference
to the next element of the sequence of locations to be locked. Lock-
ing will enable access to that ref l which can then be locked to gain
access to L[l], the next element in the sequence of locations to lock.
For brevity, we make each step simply consume the L protocol of
the element in that sequence, instead of (for instance) re-splitting.

4 Composition Decidability & Other Technical Results

We now show decidability of protocol composition and discuss the remaining technical results of
our language. The decidability statement comes as a direct consequence of ensuring a regular type
structure via syntactic well-formedness constraints on recursive types. Although applied in the context
of protocol composition, we follow ideas from prior work on ensuring decidable subtyping over
bounded quantification [28, 4]. The main novelty is in extending this kind of reasoning to account for
recursive types with parameters, in order to ensure a regular type structure over our more flexible
recursive types. To achieve this, we apply well-formedness conditions which ensure that there is
only a finite number of reachable (abstract) protocol states. We focus the discussion on decidability
of protocol composition, and point interested readers to T.R. where these conditions are properly
motivated and discussed. Crucially, these well-formedness conditions enable us to state the following:

I Lemma 1 (Finite Uses). Given a well-formed recursive type (rec X(u).A)[U] the number of
possible uses of X in A such that Γ ` X[U′] type is bounded.

I Lemma 2 (Finite Unfolds). Unfolding a well-formed recursive type (rec X(u).A)[U] produces a
finite set of variants of that original recursive type that (at most) contains: permutations of U, or a
set of mixtures of U with some type/location variables representing a class of equivalent (≡) types.
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I Lemma 3 (Finite Sub-Terms). Given a well-formed type A, such that Γ ` A type, the set of
sub-terms of A is finite up to renaming of variables and weakening of Γ.

4.1 Composition Properties, Algorithm, and Decidability

Informally, correctness of protocol composition is based on the two properties: 1) a split results in
protocols that can always take a step with the current state of the shared resources, thus are never
stuck; and, 2) protocol composition is a partial commutative monoid (associative, commutative, and
with none as the identity element). Because of property 2), iterative splittings of existing protocols
remain struck-free, unable to cause unsafe interference. We now state these properties formally
but leave the proofs to the T.R.. The following two lemmas show stuck freedom by properties that
resemble progress and preservation but over protocols:

I Lemma 4. If Γ ` RV P || Q then 〈 Γ ` RV P || Q 〉 7→ C.

Meaning that if two protocols, P and Q, compose safely then their configuration can take a step to
another set of configurations, C.

I Lemma 5. If 〈 Γ ` RV P || Q 〉 7→ 〈 Γ′ ` R′ V P′ || Q′ 〉 · C and Γ ` RV P || Q then Γ′ ` R′ V
P′ || Q′.

The lemma ensures that if two protocols compose safely, then any of the next configurations that
result from stepping will also be safe.

Note that protocol composition does not enforce that the shared resources are not lost. Instead our
concern is on safe interference. Indeed, resources that are never used will never be able to unsafely
interfere. To avoid losing resources, we must forbid the use of (c-rs:None) on non-terminated
protocols and that both P and Q cannot have both simultaneously terminated if there are non-none
resources left. Once that restriction is considered, our splitting induces a monoid in the sense that for
any P and Q for which Γ ` R V P || Q is defined there is a single such R (defined up to subtyping
and equivalent protocol/state interference specification). Since for any two protocols there may not
always exist an R that can be split into P and Q, this is a partial monoid.

I Lemma 6. Protocol composition obeys the following properties:

1. (identity) Γ ` RV R || none.
2. (commutativity) If Γ ` RV P0 || P1 then Γ ` RV P1 || P0.
3. (associativity) If we have Γ ` R V P0 || P and Γ ` P V P1 || P2 then exists Q such that

Γ ` RV Q || P2 and Γ ` QV P0 || P1.
(i.e. If Γ ` RV P0 || (P1 || P2) then Γ ` RV (P0 || P1) || P2 )

Protocol composition is defined as a “split”, left-to-right (V). Simply reading the rules as right-to-
left (W) to compute a “merge” is not safe. For instance, it would enable merging to arbitrary choices
with (c-rs:StateIntersection). Intuitively, merging needs to intertwine the uses of both protocols.
However, since we do not track copies (as we target sharing when that tracking is not possible),
merging cannot “collapse” a protocol into a non-protocol type. In this case “merging” is equivalent to
simply having the two non-merged protocols available in ∆ or bundled using the ∗ type.

The composition algorithm is shown in the T.R. and is a straightforward implementation of the
axiomatic definitions shown above. The algorithm uses a set of visited configurations to remember
past configurations and ensure that once all different protocol configurations are exhausted (up to
renaming and weakening of Γ), the algorithm can terminate. We now state our technical lemmas on
the composition algorithm but leave the proofs to the T.R..
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I Lemma 7. Given well-formed types and environment, we have that:

1. (soundness) if c( Γ, R, P, Q ) then Γ ` RV P || Q.
2. (completeness) if Γ ` RV P || Q then c( Γ, R, P, Q ).
3. (decidability) c( Γ, R, P, Q ) terminates.

4.2 Correctness Properties

The main safety theorems, progress and preservation, that are defined over valid program configura-
tions such that:

Γ | ∆i ` ei : ![] a · i ∈ {0, ..., n} n ≥ 0

Γ | ∆0, ..., ∆n ` e0 · ... · en
(wf:Program)

Stating that a thread pool (e0 · ... · en) is well formed if each thread can be assigned a “piece” of
the linear typing environment (containing resources), and if each individual expression has type ![]
without leaving any residual resources (·). Note that the conditions on each thread (ei) are identical to
those imposed by (t:Fork). For clarity, both safety theorems are supported by auxiliary theorems
over a single expression, besides the main theorem over the complete thread pool.

We now state progress over programs:

I Theorem 8. If Γ | ∆ ` T0 and live(T0) and if exists H0 such that Γ | ∆ ` H0 then H0 ; T0 7→ H1 ; T1.

live(T ) means that the thread pool T contains at least one “live” thread such that the thread is neither
a value nor is waiting for a lock to be released (which includes deadlocks). Γ | ∆ ` H ensures that the
Heap is well-defined according to Γ and ∆.

We define Wait(H, e) over a thread e and heap H such that the Evaluation context is reduced to
evaluating the configuration: H ; E[lock ρ, ρ′] · T where ρ ↪→ v < H which contains at least
one location (ρ) that is currently locked or was deleted and, therefore, the thread must block waiting
(potentially indefinitely) for that lock to be available before continuing. “Early” deletion of shared
resources results in a pending guarantee. Since well-formed threads cannot leave residual resources,
this situation is ruled out for correct programs, but may occur on the theorem below.

Progress over expressions is defined as follows:

I Theorem 9. If Γ | ∆0 ` e0 : A a ∆1 then we have that either:

e0 is a value, or;
if exists H0 and ∆ such that Γ | ∆,∆0 ` H0 then either:

(steps) H0 ; e0 7→ H1 ; e1 · T, or;
(waits) Wait(H0, e0).

Preservation ensures that a reduction step will preserve both the type and the effects of the
expression that is being reduced (so that each thread’s type, ![], and effect, ·, remains unchanged).
As above, we use a preservation theorem over programs that makes use of an auxiliary theorem on
preservation over expressions:

I Theorem 10. If we have Γ0 | ∆0 ` H0 and Γ0 | ∆0 ` T0 and H0 ; T0 7→ H1 ; T1 then, for some
∆1 and Γ1, we have: Γ0,Γ1 | ∆1 ` H1 and Γ0,Γ1 | ∆1 ` T1.

So that a well-formed pool of threads (T0) remains well-formed after stepping one of these threads
(resulting in T1). Preservation over a single expression must still account for the resources (∆T ) that
may be consumed by a newly spawned thread (T ):
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receive(c) ,
rec R.
lock c;
case !c of

// 1. waiting states (A..Z)
A#n → ... // analogous to case below
| Z#n → // restore linear content
c := Z#n;
unlock c;
R // retry

// 2. desired (receive) state
| ReadyToReceive#v →
c := Idle#{}; // "received"
unlock c;
v // value received from "channel"

end
end

send(c,v) ,
rec R.
lock c;
case !c of

// 1. waiting states (A..Z)
A#n → ... // analogous to case below
| Z#n → // restore linear content
c := Z#n;
unlock c;
R // retry

// 2. desired (idle) state
| Idle#_ →
c := ReadyToReceive#v; // "sent"
unlock c;
{} // result of send is empty

end
end

Figure 11 Simple encoding of send and receive functions via a shared cell.

I Theorem 11. If we have H0 ; e0 7→ H1 ; e1 · T and Γ0 | ∆0,∆T ,∆2 ` H0 and Γ0 | ∆0,∆T ` e0 :
A a ∆ then, for some ∆1 and Γ1, we have: Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 and Γ0,Γ1 | ∆1 ` e1 : A a ∆ and
Γ0,Γ1 | ∆T ` T.

We complement our main results with the following “Error Freedom” corollary to show that our
system cannot type programs that allow data races and the dereference of destroyed memory cells, i.e.
that our system ensures memory safety and race freedom.

I Corollary 12. The following program states cannot be typed:

1. (Data Race) Simultaneous read/modify by two thread over the same location (we also ensure
read-exclusive accesses):

H;E0[ρ := v] · E1[!ρ] · T H;E0[ρ := v] · E1[ρ := v′] · T

2. (Memory Fault) Accessing a non-existing/deleted location:

H;E[ρ := v] · T H;E[!ρ] · T (where ρ < H)

3. (Ownership Fault) Attempt to delete a non-existing location:

H;E[delete ρ] · T (where ρ < H)

The proof is straightforward due to our use of locks to ensure mutual exclusion and the fact that
our protocols discipline the use of shared state. Thus, these errors are ruled out by either protocol
composition or by the resource tracking of the core linear system.

5 Protocol Expressiveness

We show the expressiveness of our protocols by modeling typeful message-passing concurrency,
using a straightforward encoding of message-passing via shared memory interference (Fig. 11). The
encoding itself should be unsurprising as it follows well-known ideas from the literature, so we defer
less important details to the T.R. to focus instead on the most interesting aspect of this example: how
our protocol framework is able to type such uses and ensure their safety.
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We encode a more primitive, “low-level” view of typeful message-passing concurrency via the
causality of shared memory interference. We focus on the non-distributed setting where a channel
can be precisely encoded as a low-level shared cell. Channel communication and its changing session
properties are emulated indirectly via inspection of or interference over the contents of that shared
cell. Thus, our functions to send/receive a value simply hides the underlying Waiting states that may
be needed when the cell is not available. A receiving step can be modeled by a protocol of the form:

Wait[A..Z] ⊕ ( rw c ReadyToReceive#V ⇒ rw c Idle#[] ; NextStep )

where Wait is a sequence of retry steps that leave the state unmodified, until a value of type V is
“received”. Sending uses a similar protocol but where we must wait for an Idle cell before “sending”.

let c = connectSeller() in
c : buy!(prod) ; price?(p) ; details?(d)

send(c, GET_USER_PRODUCT() );
let price = receive(c) in
let details = receive(c) in
close(c)

end
end

end

Figure 12 Buyer code.

The T.R. includes the complete “Buyer-Seller-
Shipper” example (the canonical and simple example
used in session-based concurrency works) while in here
we only take a look at the main aspects of the Buyer’s
interaction with the channel (Fig. 12).

We model a channel using a capability to location
c. For brevity, we omit “rw c” from “rw c A” since all
changes occur over that same location. The Buyer’s type
uses standard π-calculus [21] notations where ! sends
and ? receives a value. In our protocols, these actions
are mapped to the rely type (receive) and the guarantee
type (send).

buy!(prod)︸        ︷︷        ︸
idle0#[]⇒ buy#prod

; price?(p)︸       ︷︷       ︸
price#p⇒ idle2#[]

; details?(d)︸          ︷︷          ︸
details#d ⇒ []

Buyer starts by sending a request to buy some product, then waits for the price, and finally receives
the details of that product. Under that interaction protocol, we simply map sends to a guarantee type
of a step, and receives the a rely type of a step.

Our protocol interactions are both non-deterministic and may contain an arbitrary number of
simultaneous participants. To ensure that the desired participant (Buyer) is the only one allowed
to received (take) the price, we must mark the contents with a specific tag so that only Buyer has
permission to change that state. To handle the non-deterministic interleaving of protocols, we must
introduce explicit “wait states” that allow a participant to check if the communication has reached the
desired point to that participant or if it should continue waiting. We abstract these steps as Wait as
they simply recur on that same step of the protocol (i.e. “busy-wait”).

idle0#[]⇒ buy#prod ; Wait ⊕ ( price#p⇒ idle2#[] ) ; Wait ⊕ ( details#d ⇒ [] )

The richness of our shared state interactions means that we can immediately support fairly com-
plex session-based mechanisms (such as delegation, asynchronous communication, “messages to
self”, multiparty interactions, internal/external choices, etc.) within our small protocol framework.
However, this flexibility comes at the cost of requiring a more complex composition mechanism.
Protocol composition accounts for both non-deterministic protocol interleaving and “multi-way” com-
munication, features which are usually absent from strictly choreographed session-based concurrency
(favoring instead strong liveness properties over more deterministic, linear compositions).

Naturally, more complex examples are possible. In here our focus is on showing the core insights
that enable us to relate the two techniques: 1) mapping receive/send to our rely/guarantee types; 2)
adding explicit waiting states to account for non-deterministic protocol interleaving; and 3) tag the
content of a cell in order to ensure that only the right participant will be able to mutate the state at
that point in the interaction. (Recall that we do not guarantee deadlock freedom, nor termination.)
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6 Related Work

Our work relates to prior work on rely-guarantee protocols [18]. We show that these protocols are
useful to reason about concurrency and significantly improve the flexibility of protocol composition.
Namely, we allow the composition of abstract protocols (enabling more local typing as in Section 3),
show that our composition is decidable, and provide a novel axiomatic definition of composition that
is straightforward to implement. Since thread-based interference is rooted in alias-related interference,
the technique itself is mostly indifferent to whether sharing occurs in the sequential or concurrent
setting. Still, we address all technicalities that make concurrency possible (such as adding support to
arbitrarily many threads, locking locations, well-formedness changes to the rely/guarantee types to
ensure matching lock/unlock of locations, etc). Furthermore, by considering the concurrent setting
we are able to express and relate rely-guarantee protocols to typeful message-passing concurrency.

Our work is also related to recent work on more precise tracking of interference. Chalice [17]
uses a simplified form of rely-guarantee to reason about shared state interference by constraining a
thread’s changes to a two-state invariant, relating the previous and current states. Monotonic [8, 24]
uses of shared state (where all changes converge to more precise states) are less dependent on aliasing
information, which simplifies checking at the expense of expressiveness. Dynamic ownership recovery
mechanisms [33, 25] choose some run-time overhead and dynamic safety guarantees to enable more
flexible ownership recovery than purely static approaches. Rely-guarantee references [11] adapt the
use of rely-guarantee to individual reference cells with support for dependent refinement types in a
sequential language. Although the use of refinements adds expressiveness to the description of sharing,
they do not support ownership recovery, nor address decidability, and typechecking can require manual
assistance in Coq. Access permissions [33, 3, 2] control alias interference by categorizing read-write
uses into different permission kinds. Our design omits the read-write distinction to focus exclusively
on structuring alias interference using more fundamental protocol primitives. Interestingly, although
we only model write-exclusive uses, our types can enforce effectively read-exclusive semantics by
ensuring that any private change in a cell will be reverted to its original public value. However, this
simpler form of read-only cannot capture their multiple, simultaneous readers semantics. Still, by
modeling interference in a more fundamental way, we gain additional expressiveness beyond their
most permissive share permission as we can model uses beyond invariant-based sharing. In [5]
Crafa and Pavodani introduce a high-level (actor-like) model for sharing (type)state via join patterns.
We target a more low-level programming paradigm (which builds typestates through type abstraction
rather than as a first-class language feature), enabling us to introduce abstraction at the level of
protocols and support protocol re-splitting in ways that are not expressible in their work.

Several recent works use partial commutative monoids [7, 16, 6] to model sharing by leveraging
the concept of fictional separation [7, 12]. Commutative monoids offer the underlying general
principle for splitting resources, enabling seemingly unrelated components to interact via aliasing
under a layer of (fictional) separation. We compare more closely to [16] due to our common use
of L3 [1] and type-based approach. In [16], Krishnaswami et al. define a generic sharing rule
based on programmer-supplied commutative monoids for safe sharing of state in a single-threaded
environment. Their work does not approach the issue of decidability of resource splitting, and requires
wrapping access to shared state in an module abstraction that serves as an intermediary to access
shared state. Our work focuses on a custom commutative monoid that enables first-class sharing
without (necessarily) needing a wrapping module abstraction. Although our protocol splitting is a
specialized monoid, we showed that this mechanism is relatively flexible, decidable, and give an
algorithmic implementation. Other technical differences between our works abound such as their use
of affine refinement types (enabling more fine-grained types), our use of multi-threaded semantics
and allowing inconsistent states (i.e. locked cells) to be moved around as first-class, etc.
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Protocol-based mechanisms for safe interference are also used by other approaches, such as in
program logic-based systems (e.g. [14, 31, 32, 22, 9]). By generally targeting manual proofs (and
somewhat more involved specifications) these works generally fit into a different design space than
ours, although share some interesting similarities. While we make concessions on expressiveness to
achieve decidable protocol composition and re-splitting, these works focus instead on the expressive-
ness of their concurrency specification. LRG [9] supports lock-free structures but requires a special
frame-rule to support framing over rely-guarantee conditions. We simply integrate protocols into the
language (as linear resources) meaning that the standard frame-rule suffices. Supporting lock-free
concurrency in our system would require reinterpreting a⇒ step as a single-cell, atomic, conditional
operation; with the shared resource (stored in the cell) being immediately extracted/inserted from/into
the cell, rather than just accessible after locking. CaReSL [32] and Iris [14] support “islands”/regions
of memory that are shared together and whose imprecise state must be considered when using. Our
composition rules enforce that a protocol carries all information on imprecise states, which is then
deconstructed via (t:Alternative-Left) and case analysis. Our protocols can group shared state using
the ∗ operator to define shallow “regions”, while their works allow for far more rich specifications
of atomic regions of any depth. Iris [14] further supports a form of re-splitting via a “view shifting”
mechanism, to repartition (or create) shared regions. FCSL [22] encodes protocols via auxiliary/ghost
state. Although done in a compositional way, it can require checking for safe interference (“stability”)
after a split since a safe split does not necessarily imply safe interference in all situations. Our
protocol composition mechanism is essentially a form of checking for safe interference early, at the
moment a protocol is split, by checking that all possible future uses are safe resembling a form of
“pre-computed” stability check.

Protocol composition itself can also be seen as a form of model checking (to check that each state
has a successor) that uses abstract states to ensure a finite state space, but in a system that is more
intimately integrated with the language. Our protocols are first-class resources that can be specialized
by clients, even abstracting (leaving out) later steps. Thus, our protocols guide the programmer on
how to reason locally about (safe) interference by mapping its uses of locks to a local protocol type
that models the alias perspective on the shared state. While our work focuses on modeling the core
interference phenomenon within a small calculus, rather than precisely typing existing programs, we
still showed that extensions may be used to model at least some existing programs within our model.

7 Conclusions

We defined a flexible and decidable procedure that ensures the safe composition of interfering abstract
protocols that share access to mutable state. While employing a relatively small protocol framework,
we are able to model the core interference principles of complex shared state interactions within
our core calculus. Finally, we showed the expressiveness of our protocol framework by discussing
how it can capture in a unified way both shared memory interference and typeful message-passing
concurrency.
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