Using Types to Enforce Architectural Structure

Jonathan Aldrich

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

University of Washington

2003

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that | have examined this copy of a doctoral dissertation by
Jonathan Aldrich
and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final
examining committee have been made.

Chairs of Supervisory Committee:

Craig Chambers

David Notkin

Reading Committee:

Craig Chambers

David Notkin

Alan Borning

Date:

In presenting this dissertation in partial fulfilment of the regmients for the Doctoral
degree at the University of Washington, | agree that the Litslagyl make its copies
freely available for inspection. | further agree that extensopging of the dissertation is
allowable only for scholarly purposes, consistent with "fair usedrescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertataynbe referred

to Bell and Howell Information and Learning, 300 North Zeeb Road, P.O. Box 1346,
Ann Arbor, Ml 48106-1346, to whom the author has granted "the right to reproduce and
sell (a) copies of the manuscript in microform and/or (b) printedesagfi the manuscript
made from microform."

Signature:

Date:

University of Washington

Abstract

Using Types to Enforce Architectural Structure

Jonathan Aldrich

Chairs of the Supervisory Committee:
Professor Craig Chambers
Professor David Notkin

Computer Science and Engineering

Software architecture describes the high-level structure oftaae system, and can be
used for design, analysis, and software evolution tasks. Howeveme@xils decouple
architecture from implementation, allowing inconsistencies to aglatenas a software
system evolves. Because of the potential for inconsistency, erggeedving a program
cannot fully trust the architecture to accurately describe thygepiies or structure of the

implementation.

This dissertation explores a new approach: integrating archaédescriptions into an
implementation language, and using a type system to ensure thairctiectural
structure is consistent with the code. The approach is embodied iAr¢chdava
language, which extends Java with features that document the soétwehitecture and
data sharing within a system. ArchJava’s type system enfooresiunication integrity,
the property that implementation components communicate only along consecti
declared in the architecture. ArchJava is flexible enough toidesarchitectures that
may change at run time, and it supports many of the same codieg aty idioms that
programmers use in Java. Several case studies applying Ar¢bJaxiating programs
of significant size provide preliminary evidence that ArchJavaragtical and can aid

software evolution tasks.

Page
IS A T > iii
Chapter 1: 10 o 3o 1o] o [PPSR 1
1.1 Software ArChItECIUIEccoeii i 1
1.2 Communication INTEGIItYcceeeiiiiiieeeiieiicre e e e e e 2
1.3 Consequences of Conformance Violationscccovvviiivieiiiiiiennn. 3
I LY T [€T = | 4
1.5 Enforcing Conformance USIiNg TYPES....ccoeeieiiiiiiiiieiiiiiiiieee e 6
1.6 CONDULIONSciiiiiiiieieee e 7
1.7 Thesis Statement and Outline.............oooiiiiiiiiiii s 8
Chapter 2: The Archdava LanQUAaGgE.........ccoiiiiiiiiiiiiiiiiaee et e e 9
2.1 A Brief Tour of ArchJava..........cccccooiiiiiiiiiiiieeee e 9
2.2 AlIBSIAVA ... e e 12
2.2.1 Annotations for Data Sharing..........ccccceevvvevvviiveiiiiicceen, 13
2.2.2 PrOPEITIES. ..ottt ettt e e e e e e e e e e eeeeaeaaeees 18
2.2.3 Java Integrationcccovvviiieiiiiiiiieie e e e e e 21
2.2.4 EXAMPIES ..o 24
2.2.5 SUMMATY .ottt et e e e eeaa s 25
2.3 Architecture CONSIIUCES.........uuuuiiiiiiiiei e 26
2.3.1 Components and POrS..........uuuuuiiiiiiiieeeeeeeeeeeeeeeeene s 26
2.3.2 Component COMPOSITION........uuuuuiiiaaeeeeeeeeeeeeeeeeeieeeieaes 28
2.3.3 Dynamic ArChiteCtUresS..........cceeeeiiiieiieeeeer e 30
2.3.4 Architectural Style EXamples..........ooviiiiiiiiiiiiiiiiiiieee e, 33
2.3.5 SUMMATY .coiiiiiii e e 37
2.4 Communication INEGIILYoovviiiiiiiiiiiiiee e 37
2.4.1 Inter-Component Communication.............ccceuvvvvvveiiiineeeennn. 37
2.4.2 Integrity Definition...........oooiiiiiiiiiiiiiie s 38
2.4.3 ENfOrCEMENT ..ccciiiiiiiiieeee e 39
2.4.4 ARelaxed SYStemccoooiiiiiiiiiiiiieieii e 40
245 SUMMATY .ottt e e s 42
2.5 ArchJava Implementation ... 42
2.6 RECENE ChaNQESuiiii i i i 44
2.6 SUMMATY ..ttt e et e e e e e et e e e e e e erb e e e e e ernan e eeas 44
Chapter 3: FOrmMaliZationcoiiiie e 45
3.1 The ArchFJ Core LanQUagEcccevveiieeeeiiiiiiiiiiieeeeeeeeeeeeaeeeeeeeensnnnnnns 46
I e (0] o= 4 1S PR 60
3.3 SUMMATY ..ttt e et e e et e e e et e e e aa e e e e e e enans 68

TABLE OF CONTENTS

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

References

EVAIUALION. ...t 69
4.1 Alias Annotation EXPreSSIVENESScoooeveeviiiiieeeeeeiiiiie e 70
4.2 Case Study: APNYASoooeeeeeecie e 74

4.2.1 Methodologycooviiiiiiiiiiiiiiiee e 74
4.2.2 Reengineering APhydscceeiiiiiiiiieiicceeeeee 75
4.2.3 Software EVOIULION..........cooiiiiiiiiiiic e 81
4.2.4 ArchJava Language Changes.........ccccccceeieiiiiiiieieeeeneeeeeeenanns 84
4.2.5 Alias Annotations for Aphyds..........cooooiiiiiiiiiiiiiiicie e 84
4.2.6 Aphyds Case Study SUMMary.........cccccceevvveeeeeerivvnnnnninnneenns 85
4.3 Case StUdY: TAPIALS.......ccueuuuiuiiiiiiiiaee e e e e e e e e e e e 86
4.3.1 MethodolOgyccceveveiiiiiiiiiie e 86
4.3.2 Reengineering TapratS......cccooueeeeeeiiiiieieeiiieiiiie e 86
4.3.3 Comparison to Aphyds Case Study.........ccccceeeeeeeieviiivieiinnns 93
4.3.4 Benefits of ArchJdava...........ooouuuiiiiiiiiiiiieeeeeeeeeee 94
A4 SUMIMAIY ..iitiiieiiiiee ettt e et e et e e e et e e e et r e e e et e e e et eaeea e eeanns 95

RElAIEA WOTK.....eeiiiiiiiiiiiee et 96
5.1 Architecture Description LAangUAaQES..........couvvrieiiiirirminiiaieeeeeeeeaeeeeeee 96
5.2 Module and EffeCt SYStEMS........coovvviiiiiiiiiiiii e 97
5.3 ENfOrCING DESIGN...cceeiiiiiiiiiiiiie et e e e e eeeeeeannnees 98
5.4 Type Systems for Alias CONtrol..............uuvviiiiiiiiiiiiiee e, 100
5.5 SUMMAANY ..o e e et e e 103

Critique of the ArchJava Project ... 104
6.1 Language DeSIgN.......uuuuuuuiiiiiiiiee e et e e e e e e e raanae 104
6.2 Experimental Evaluation................uuuuiiiiiiiiiineeeeeeeeeee 105
6.3 LeSSONS LEAMMNEd........uuuiiiiiiiiiiiiiiiiiieeeee e 105

CONCIUSION. ... e e e e e e e as 107

... 108

LIST OF FIGURES

Figure Number Page

1. The WordProcessor COMPONENT ClASSiiiiiiiiieieeiieiieeieeiiitesss e e e e e e e e e e eeeeeeaennnnnes 10
2. Alinked list class with unique lINks and IteMSccooiiiiiiiiii e 13
3. The AddressSAPPHCALION ClaSS.......ccoooii i 14
4. A shared Singleton ODJECT........ccoiiiiiieeeere e e e e e e e e e e e e aaaaaane 16
5. A method that uses a lent reference to traverse a linked list looking for am integje

6. Value flow between alias annNotatioNS............oooiiiiiiiiiiiiiiii e 18
7. Preventing a JDK defect uSing AlIASJaVAuuuuiiiiiiiiiiiee e 19
8. A List class and an iterator OVer the liSt.........ccccciiiieiiiiii e 24
9. A Lexer class that uses an InputStream as part of its representationcc........e. 24
10. A Parser component iN ArCNJAVAcouuiiiie it 27
11. A graphical compiler architecture and its ArchJava representation...............cccceeee.... 28
12. A Web Server arChiteCUIE..........oooi i 31
13. A pipe and filter architecture implemented in ArchJava...........ccccceeviiieeeeiiiiiieeeeiiiiinns 34
14. A blackboard architecture expressed in Archdavaoouuuuiiiiiiiiiiiin e 35
15. Two components that communicate via a callback object............cccccoeiiiiiiiiiiiiiiiinnnns 36
G (ol o I 0] = o G 46
17. ArchFJ EValuation RUIES........cooiii et 49
18. ArchFJ Congruence and Error RUIES ..o 51
19. ArchFJ Subtyping and Group EQUAlItYccooiiiiiiiiiiiie e 52
20. ArchFJ TYPECNECKINGevtiiiiiiiie e e e e e e eees 54
21. Class, Method, Port, Connection, Store, and Machine Typing.......ccccceevveeeieeeeeeennennee. 55
22. ArchFJ AuXiliary DefiNitiONS........uuueiiiiee et e e e e e e s 57
23. More Auxiliary DefiNItIONSooiiiiiiiiiiiiiieer ettt e e e e e e e e e eeeeeeenes 58
24. The architecture Of APNYAS ..o e 76
25. ArchJava code for the Aphyds and AphydsModel components............c.cccccccceeeeeeeennnn. 79
26. A visualization of Aphyds’ arChiteCture..............oovvviriiiiiiiie e 80

27. The architeCture Of TAPIaLSuuciii i e e e e e e e 87
28. ArchJava code for the Taprats COMPONENT............ouvuiiiiiiiiiiiiie e 92

29. A visualization of Taprats’ arChiteCtUrecoooeeiiiiiiiiiiiiiiiice e 93

ACKNOWLEDGEMENTS

First, | would like to thank my wife, Becky Billock, for her increditdupport throughout
my graduate career. She has been amazingly understanding and supyuetiveam
swamped with paper deadlines. She has provided me with encouragemerit avhe
down, a sounding board when | am pensive, and joy all of the time. bevilbrever

grateful.

| thank my parents for fostering a love of learning from day one, larays encouraging
me to put forth my best. | appreciate my mom for reading tarome the very beginning.
| thank my dad for always being ready to answer my scientifistoues. They gave me

the best start anyone could have.

A huge thank you goes to my advisors, Craig Chambers and David Notkin. ngooki
back, | cannot believe how much they have taught me over the lagiassx yThey have
provided great advice not only on technical issues, but also on the intaagg#cts of
maturing as a researcher. | appreciate the encouragementedbdde from the other
members of my committee, Alan Borning, Gaetano Borriello, and Biswmnaford. |
also want to thank those who mentored me in computer science befduatgrachool:

Ron Tenison, Rusty Whitney, Lougie Anderson, Mani Chandy, and others.

| would like to thank the many other people who have provided helpful comments on
various parts of this dissertation: Doug Lea, David Garlan, Toddt®iillsSorin Lerner,
Keunwoo Lee, Vassily Litvinov, Vibha Sazawal, Matthai Philipose, Anthcsyiarca,
Stefan Sigurdsson, Matt Lease, Andrei Alexandrescu, and many anonyenygers.
Without their suggestions, this work could not have been as strong. | aiealtike to
thank Scott Hauck, Craig Kaplan, and the researchers at IntedrBlesgeattle for their

time and for access to the programs used in my case studies.

\

| would like to thank Craig Chambers, David Notkin, David Garlan, Doug hed
Susan Eggers, who spent hours writing recommendation letters forl meo thank the
many people | interacted with during my job search—it was a wondexfrience
getting to know new people and getting exposure to new ideas. Finatyld like to

thank the faculty at Carnegie Mellon University for giving me a job.

This work was supported in part by NSF grants CCR-9970986, CCR-0073379, and CCR-
0204047, NSF Young Investigator Award CCR-945776, and gifts from Sun
Microsystems and IBM. | am also grateful for a National dneé Science and
Engineering Graduate Fellowship from the Department of Defensara#a¢hievement
Rewards for College Scientists fellowship from the ARCS Foumaawhich supported

me earlier in my graduate studies.

Vi

Chapter 1

Introduction

Building and evolving large software systems is Higgest challenge facing software engineers today
[Par72, LB85]. The sheer size and complexity gbl@ption and system software—millions of lines of
code in many cases—means that no single enginé&aoisledgeable enough to confidently change every
part of it. Thus, each engineer must focus on onenore components of the system. In order to
effectively evolve a component, however, an engimaest often understand how that component interact
with other parts of the system. For example, winedifying the invariants of a data structure, agieeer
must discover what code within and outside the comapt relies on those invariants, and make appatgpri
modifications to that code. Understanding how congmts interact is especially difficult in many reoul
systems, which communicate indirectly through sthatata structures, dynamic dispatch, and events. T
evolve these programs effectively, an engineemafigeds an abstraction of the possible run-timestygnd
aliases of each object involved in the change. hQalustractions are difficult to gain, and if they a

incorrect, engineers are likely to inject defectglreey evolve the software system.

System scale poses challenges not only to corestreut also to a broad range of other software
development issues. For example, careful engingéeichniques can largely eliminate security hfies

a small software system. However, it is extremghgpllenging to eliminate these errors from a large

system, because it is difficult to analyze how oolnind data may flow between secure and untrysaeid

of the system. Similarly, it can be difficult tgolate the cause of a performance problem in alarg

program because of the complex ways in which sys@mponents interact. Although there is no panacea
for solving these problems, a common underlyingdss the need to understand and control how difiter

parts of a software system communicate.

1.1 Software Architecture

For years, software architects have used inforrhah-level design models as conceptual tools for
managing the complexity of large software systenWhether drawn informally on a white board, or
included in more formal design documentation, th@selels describe the high-level interactions betwee
different components in a software system. Theninbf these models is to communicate to an entire
engineering team part of the global knowledge neemedevelop and evolve each component of the

system.

In the last decade, the discipline of software iéecture has provided a formal semantic framewor#t a
tools for reasoning about these high-level desigdets [PW92, GS93]. Software architecture is tigh-h

level organization of a software system as a ctilacof components, connections between the
components, and constraints on how the componewésact. Describing architecture in a formal
architecture description language (ADL) [MTOO] caid in the specification and analysis of high-level
designs. For example, an architectural model eaartalyzed to prove the absence of deadlock [AGH7],
to determine whether secure information could ftovan untrusted component. Software architectare ¢
also facilitate the implementation and evolution lafge software systems. For instance, a system’s
architecture can show which components a module msgract with, help identify the components

involved in a change, and describe system invaritiiat should be respected during software evaiutio

Existing ADLs, however, are loosely coupled to iewmpkntation languages, causing problems in the
analysis, implementation, understanding, and emsiubf software systems. Some ADLs come with tools
that generate code to connect independently desdlopmponents [SDK+95,LV95]. However, there is no
guarantee that the components themselves obey¢hieatural constraints of the system. Instehdsé
ADLs depend on component developers to follow stylédelines that prohibit common programming
idioms such as data sharing. Other ADLs are puwglynodeling and analysis, requiring programmers t
implement the system without any automated supp@B97,MQR95]. Thus, it may be difficult to trace
architectural features to the implementation. Nafethese systems guarantees consistency between
architecture and implementation, so while the aeciire may be analyzed for certain propertiegetie

no way to know if the properties hold in the imptartation.

Even if a system is initially built to conform ttsiintended architecture, as the system evolvesitbess
new requirements, its implementation may becomerisistent with the original architecture over time.
This inconsistency causes problems for engineerskimg with the system, making it difficult to
understand parts of the system in isolation, angsiog program errors when engineers rely on their
inaccurate architectural models. In summary, isdancy between architecture and implementation

pervades existing systems, causing problems bdtbrman reasoning and automated analysis of programs

1.2 Communication Integrity

In order to enable architectural reasoning aboutrgalementation, the implementation must confornitgo
architecture. A system conforms to its architextifirthe architecture is a correct abstractionhaf tun-
time behavior of the system. Tlemmunication integrityproperty defines how architectural structure

constrains run-time communication in the implemgote] MQR95,LV95]:

Definition [Communication integrity]: Each component in the implementation may
only communicate directly with the components toiokhit is connected in the

architecture.

Enforcing communication integrity is challengingedto programming language mechanisms that obscure
communication pathways, including references, dbjeand first-class functions. Previous systems ha
made serious compromises in order to enforce conwation integrity. For example, analysis-based
systems have been limited to fairly simple architedd models in order to make the analysis scalable
[MNSO01,LR03].

Systems can enforce communication integrity byriestg the implementation language to prohibit
pointers and other problematic features. For ex@n®DL is a domain-specific language for real-time
telecommunications applications, providing a sticetl language without pointers or dynamic dispatch
[ITU99]. However, shared data is an important amidiely recognized form of inter-component

communication, and forbidding it entirely is uniieit in the context of general-purpose languages.

Luckham and Vera suggest that developers follove guidelines (such as avoiding shared data) ierord
to preserve communication integrity [LV95]. Notlpulo these guidelines place significant restricti@n
implementers, there is no guarantee that every raeotfta team will follow the guidelines, as the quler

does not enforce them.

In summary, no previous technique exists for autmaly verifying full conformance between a rich

architectural specification and an implementatioa general-purpose programming language.

1.3 Consequences of Conformance Violations

The lack of automated conformance checking serjoogimpromises the benefits of architecture during
implementation, testing, and software evolutiononhunication integrity states that an architectigre
complete. For example, the architecture shouldwsladl of the components that could possibly
communicate with a given component. An engineen ighenhancing that component can effectively use
this knowledge to make sure that the enhanced coempointeracts properly with all the existing
components in the system. However, an engineeroahnot trust the architecture to be complete fialist
back on more labor-intensive techniques for findihg other interacting components, or else risk

introducing defects into the code.

Communication integrity is also crucial for predegvessential analysis properties. For examplea in
security review, an architecture could be usedniarmresrate all of the possible information flows besw
secure and untrusted parts of the system. Thésenation flows could then be analyzed in more ii@ta
the source code. However, if communication intggs not enforced, the architecture may not shdw a
information flows that are present in the real esystand so the architectural analysis cannot tstetiuto
be correct. Without communication integrity, ttmuce code of the entire system must be painstgking

analyzed, and the architecture provides little ieatthe implementation level.

In order to facilitate certain analyses or providgortant implementation properties, an architeetym
select ararchitecture styldor an application [GS93]. For example, the pipelarchitectural style enables
analysis of application throughput based on théopmiance of individual components, and the restrirst

it entails on data flow can make reasoning aboutprdation within a component easier. However,ghes
benefits are lost if the implementation violates tonstraints of the pipeline architectural stykexisting
research efforts have shown how an architecturebeanhecked against style constraints [GAO94]; but
these checks guarantee nothing about the propeftibge implementation unless the implementatioeysb

communication integrity.

As the discussion above showsmmunication integrity is the fundamental confoneeproperty relating
architecture to implementation, upon which othenfoomance properties rely Communication integrity
verifies which components communicate, providing the foundatianokher architectural properties that
showhow these components communicate. For example, irsteraywith communication integrity, one
can add a type system describing what kinds of detaexchanged, or a temporal protocol showing the
order of messages between components, or pre- astdcpnditions that place constraints on the data
passed into and out of each operation. Howevehowt communication integrity, it is difficult tqpscify

or verify any of these architectural propertiescédaese the specification will be incomplete if some
communication paths are left out, and the verifcavill be unsound if some data and control flcave
ignored. Thus, communication integrity is not nigrene of many properties relating architecture to
implementation; it is a core property essential ¥erifying conformance to many other architectural

properties.

1.4 Design Goals

This dissertation presents the first technique doforcing conformance to architectural structureain
general-purpose programming language. In ordendke this statement more precise, it is necessary t
define the goals of my system, ArchJava. Thisisealiescribes several choices in the design space o

enforcing conformance, and explains the choicesemad

Flat vs. Hierarchical Architectures. Flat design notations, such as UML class diagrfRa898], are
useful for understanding small-scale relationslhipsveen classes and objects in a system. Howgnesr,
do not scale well to systems made up of hundreddasises, because show only relationships between
classes, not higher-level system design. Archdaypgorts hierarchical architectures, so that aldpee
can describe the relationships between subsystertie dhighest level, and then break these subsgstem

into parts recursively.

Class vs. Instance Architectures. Some tools show architectural relationships betw@erd units of
source code, such as classes [MNS01,MW99,SSW96]LRBRhough class-based architectures can be
helpful, understanding run-time relationships bemveobjects is often crucial to understanding and
evolving a program. In recognition of this, a n@niof recently developed architecture description
languages model dynamic relationships between coergoinstances [LV95,MK96,MOR+96,ADG98].
ArchJava models instance relationships between ooengs so as to more precisely capture the dynamic

structure of a program.

Visibility vs. Communication. A major line of work in programming languages haet developing
expressive module systems that hide informationhimita component by restricting its visibility
[MTH90,FF98]. Module systems such as that of Mlvéndeen proposed as architecture description
languages [BHL94]. However, existing module systamnly restrict the visibility of data, which is tho
sufficient to control all communication between gmments. For example, the definition of a function
component A may not be visible in component B,ibAt passes the function to component B as a cisur
then B can still invoke it. Thus, current modujstems do not enforce communication integrity. The
ArchJava system can be thought of as an extendetllen@ystem that ensures that all inter-component

communication is declared at the architecturallleve

Dynamic vs. Static Checking. Systems such as Rapide provide a run-time monftat tan check
conformance between an executing program and dntertural specification [LV95]. In contrast, the
goal of ArchJava is to check architectural confarogastatically (except for casts), so that whenogam
compiles correctly the developer has a guarantaetkie program will conform to its architectureran

time.

Forbid vs. Allow Sharing. A number of architectural description languagesalisage or forbid sharing

data between components [LV95,MOR+96]. This immatation style may be appropriate for some
applications, but many programs benefit from comication through shared data. ArchJava’s desigh goa
is to permit existing implementation techniques;luding communication through shared data, but to

require developers to declare whatever communicagipresent in their program.

Interface vs. Structure vs. Behavior. There is a spectrum of architectural specificatimd verification
from interface checking through structural checkiodpehavioral checking. Existing module systemd a
type systems essentially check interface conforedmmtween a module and its implementation. ArcJav
carries this further to check that the connectitmicsure at the architectural level is a conseveati
approximation of the communication structure in te-time system. Other architecture description
languages model some aspects of behavior as walh as the temporal sequence of events in a
component’s interface [AG97]. However, previous l&Dhave been unable to statically enforce either

structural or behavioral properties in the impletagon of a system.

Non-Technical Goals. ArchJava has non-technical goals besides the aoafize goals listed above.
ArchJava should be practical enough that | canuatalit on existing programs. It should be expvess
enough to support common programming idioms anéinigoes. Finally, it should provide value for

software engineering tasks.

The Scope of ArchJava. There are a number of goals of previous architecti@scription languages that
ArchJava does not attempt to address. ArchJave lasguage-based techniques to address architectura
conformance, so it does not explicitly support laenge interoperability. However, the techniquesiuse
ArchJava could be applied to other languages, achitacture interchange languages such as xADL and
Acme could be used to define architectures thdtudeccomponents written in ArchJava and components
in other languages [GMW97,DHTO02]. ArchJava curdyemodels only architectural structure, leaving out
important architectural issues like behavior madgland architectural style that are addressed hgrot
systems [GAO94,LV95,AG97]. Itis my hope that #mmnantic connection that ArchJava enforces between
architecture and implementation will eventually aidspecifying and verifying these properties i th

implementation as well as the architecture.

Summary. Some previous systems statically enforce architatttonformance in a weaker setting—one
that eliminates shared data, or models archite¢tuagimited way. However, ArchJava’s goal oftstlly
enforcing full conformance between an instanceakthaarchitecture in a general-purpose programming

language has been an important open problem tkatved in this dissertation.

1.5 Enforcing Conformance Using Types

This dissertation presents a new approach to enfprarchitectural conformance: declaring the
architectural structure of a system within a gelRpuapose programming language and using a typersys
to verify architectural conformance. This strategieates a close link between architecture and
implementation, sidestepping some of the problehenforcing integrity between an implementation and
separate architecture description. | have chosesxtend the Java language, forcing us to confitost
challenges posed by modern language constructspianviding the opportunity to evaluate ArchJava on
existing programs. In ArchJava, components aréndisished objects (not classes), allowing us a&soa

about architectural relationships between compoimstences.

In order to support static conformance checkindeveloped a type system that ensures communication
integrity. The type system is static in the saemse as that of Java: run-time checks are doneabmigsts
and array writes. A type system can support moeeige checking than an analysis-based technigue, i
part because the types express the programmeeistinthich is otherwise difficult to infer. Compalrto

global analysis-based techniques [LR0O3], ArchJatygde system uses only local checks, and is soued e

if not all code is available at compile time. Besa the typechecker verifies simple, local rules,

typechecking errors are understandable to the user.

In order to specify an architectural hierarchy, llava builds on ideas from ownership type systems
[NVP98]. Together with uniqueness types [Min98knership types also enable reasoning about how data
is shared between components. Controlling shaimgyrn, allows ArchJava to constrain communiaatio

between components more strongly than the visihilinstraints imposed by typical module systems.

Because ArchJava enforces architectural conformaheebenefits of architecture can be achievedust
at the architecture phase of a project, but througthe software lifecycle. ArchJava’s typechegkinles
guarantee that the implementation will stay comsistvith the architecture as the system evolveghab
engineers can be confident that they understand domaponents in the system interact when performing
software evolution tasks. Architectural conformairt ArchJava provides a solid structural foundafior

reasoning about the implementation of a systemnaagprovide benefits to automated analyses as well

1.6 Contributions

The contributions of this dissertation are as fofio

e Architecture within Implementation. ArchJava is the first system to integrate a rich
architectural description into a mainstream progrémy language. ArchJava extends Java with
architecture description constructs, so that deako can specify an architecture during design
and then fill in the architecture with Java implentagion code. ArchJava includes components,
ports, explicit connections, and other standardufea of architecture description languages.
Components are objects, supporting instance-baselitectural reasoning, and ownership

declarations are used to specify hierarchicalimahips between components.

» Lightweight Alias Control. In order to control communication through shadath, | developed
AliasJava, a lightweight and practical type systm controlling aliasing in object-oriented
programs. AliasJava extends generalizes ownergiup systems using ownership domains,
which allow programmers to categorize objects Ingical groups and then specify the permitted
aliasing among those groups. AliasJava is bothenpwecise and more flexible than previous
ownership-based systems. For example, it is tret éwnership system powerful enough to
constrain aliasing between sibling objects thateh#ive same owner. By default, AliasJava
enforces the same owners-as-dominators propergttes ownership type systems, but unlike
other systems, it gives developers the flexibility relax this property where necessary to
implement common programming idioms such as itesatw events. AliasJava is also the first
system to combine ownership-based encapsulatidnumijueness, a combination that is essential

to expressing important architectural constraists/all as many practical idioms.

« Enforcing Architectural Conformance. ArchJava is the first system to enforce full stanal
conformance between a rich architectural descriptind general-purpose implementation code.
Components may declare ownership domains in paltswing objects in these domains to be
shared with connected components. ArchJava’s sypeem builds on that of AliasJava, ensuring
that components can only communicate via the iate$ declared in connections, or via objects in

shared ownership domains that are declared in costh@orts.

e Formal Validation. In order to validate the correctness of this epph, | present a core
language ArchFJ incorporating the core construtsrchJava. Although ArchFJ is simpler than
ArchJava, it is still quite expressive, modelingmpmnents, connections, ports, ownership,
uniqueness, objects, mutable fields, and methold.cdl formalize ArchFJ using a set of type
judgments and rewriting rules, which collectivelgfide the static and dynamic semantics of the
language. | prove properties of type soundness @mimunication integrity for ArchFJ,

increasing confidence that the full language er@®monformance as well.

» Empirical Validation. | have implemented a compiler that compiles Aastalsource down to
ordinary Java bytecode, allowing programs to be aorany Java virtual machine. Using case
studies on 4,000 lines of library and applicatiode, | demonstrate that the alias-control system is
practical enough to apply to existing code with fevanges—the first empirical validation of any
ownership-based alias control system. Two casfiestion 10,000 line programs demonstrate the
practicality and benefits of ArchJava’s architeetwwonstructs. This experience suggests that
ArchJava typing rules encourage loose coupling éetwcomponents, and may make evolution

tasks easier by showing how components interact.

1.7 Thesis Statement and Outline

The thesis of this dissertation can be stated |bmifsr

A lightweight and practical type system can be usezhforce architectural conformance
in general-purpose implementation languages, sutippr more effective program

reasoning and software evolution.

The next chapter introduces ArchJava as an extertisidava, explaining the language through a sefies
examples and showing how the type system enforoesntinication integrity. Chapter 3 formalizes the
core of the language using type judgments and tiegriules, and gives a formal proof that the type
system enforces architectural conformance. Chapemaluates the practicality and the utility otAdava
through several case studies. Chapter 5 compan@sldva to related work, and Chapter 6 critiques th
ArchJava project: what was effective about the lmgg, and what lessons have been learned for future

projects. The last chapter concludes with a dsoasof future work.

Chapter 2
The ArchJava Language

This chapter presents the ArchJava language anthiespinformally how the type system enforces
communication integrity. The first section of theapter provides a brief tour of ArchJava through a

example architecture, providing a broad overviewheflanguage before other sections dive into detai

Section 2.2 begins by presenting AliasJava, a sééomk subset of ArchJava that allows developers to
specify and verify aliasing relationships in anestjoriented system. Controlling aliasing is & tlore of
enforcing communication integrity, because unret&d object references permit non-local commurocati
between components. AliasJava uses type annaatisspecify references that are unique or unaljase
references that are confined to within a particolnership domain. These constructs allow prograram

to specify how objects are shared between archi@atomponents.

Section 2.3 builds on AliasJava by presenting laggufeatures for specifying architectural structure
Developers use component classes in place of reglalsses to indicate that the objects created fhase
classes are part of the architecture of the syst€@omponents communicate through ports, which are
endpoints for communication that declare detailgdrfaces. Connections link the ports of companent
together, allowing the components to communicaB@mponents, ports, and connections are all standard
constructs of architectural description languageshJava is unique in integrating them into a ma@zn

programming language, so that a type system cappked to verify communication integrity.

Section 2.4 defines communication integrity morecgsely and shows how the architecture constructs
combine with the aliasing annotations to enforcegrity. ArchJava has been implemented, and the
techniques used are discussed briefly in Sectibn Einally, section 2.6 discusses the differermtsveen

the current versions of ArchJava and AliasJava amviously published descriptions of the languages
[ACNO2a,ACNO02b,AKCO02].

2.1 A Brief Tour of ArchJava

ArchJava models architectures usag@mponentshat communicate througtonnected portand objects in
sharedownership domains For example, the rectangle at the top of Fidushows the architecture of a
hypothetical word processor. At the highest lewbé word processor is made up of two component
objects, shown as nested rectangles: the usefaotéeand the document. Just as objects are iratzoht
from classes in Java, component objects are imstadtfromcomponent classés ArchJava. ArchJava’s
component classes can have all the features ohamdiJava classes, but in addition can contain
architectural modeling features. These architettmrodeling features allow developers to speci® th

communication between components more precisely thgoossible with ordinary classes. The code

10

WordProcessor
v - owned \\\
/ AY
; Interface Document Y
1 cTTTTTTT ~. |doc doc cTTTTTTT S \
1 \ owned \ H i owned v 1
1 1 1 N /’ 1 1 1
: ‘\ oo /II .7 data \\ ‘\ oo /I II
‘\ N - : O \I A S i / II
\\\ \‘ . C?JI j //
public component class WordProcessor { | public component class Document {
domain owned; | port doc{
private owned Document doc; ! domain data;
private owned Interface ui; i provides unique Position search(
connect doc.doc, ui.doc; ' lent String q);
/I additional source code... ' provides void insert(lent Position loc,
} ' data Text text);
b}
public component class Interface { |
port doc { i domain owned ;
domain data; | owned Documentindex<data> index;
requires unique Position search(:
lent String q); ! /l additional source code...
requires void insert(lent Position loc, 1}
data Text text); '
|
|
|

/I additional source code...

}

Figure 1. TheWordProcessor component class describes an architecture made @b an Interface and ¢
Document component that are part of itsowned ownership domain. The twosubcomponents of the wor
processor communicate through connectedloc ports. The doc port of the Interface component clas
declares two methods that it requires thddocument to implement, while the corresponding port inDocument
declares that it implements these methods. Both pge declare the ownership domaindata , representing
document information shared between the two objects All fields, parameters, and results of referencéype are
annotated with aliasing information—either the owneship domain that owns the object in the field, oldent
(indicating a temporary alias to an object), orunique (representing the sole reference to an object).

below Figure 1 shows three component classes:WoedProcessor *

is a template for the entire
application, while thénterface andDocument component classes are templates for the usefaoger

and document components.

In the diagram in Figure 1, the user interface dodument component objects are nested within thel wo
processor, indicating they are parts of the wordcessor. In order to declare this nesting relatign
within the source code, the word processor declaneewnership domaiowned that holds the objects
nested within it. In the diagram, ownership doreaane represented with rounded, dashed rectangtes.

the source code, ownership domains are declardd thit keyworddomain . The document and user

L In the text and examples, program code is shovatomstant-width font, and language keywords arebivld .

11

interface also declare ownership domains (also daowened) to store their nested components and

objects.

In order to indicate that the document and usarfate component objects are in thened domain of
the word processor, the type of tdec andui fields are annotated with th@wned domain. This
annotation indicates that the objects to which éhfislds refer are part of that domain. Sectiod 2.

describes ownership domains in more detail, anta@gphow they can be used to restrict aliasing.

ArchJava uses ports to declare the interfaces faredommunication with external components. Port
interfaces are more precise than ordinary Javafémes in three ways. First, ports declare not flas
methods that a component provides (for examples#aech andinsert methods in theloc port of
Document) but also the methods that component requires @biponents to implement (for example,

thelnterface ~ component requires an implementation of those saatbods).

Second, ports can declare ownership domains thaicoobjects that are shared between the component
and the outside world. For example, the documadt wser interface each declare ttetda ownership
domain in theirdoc ports, representing document data that is shaetdelen the components. The
arguments and result types of methods declarediits gan be annotated with these ownership domains.
For example, th&ext argument of thensert method must be part of tltata ownership domain.
Figure 1 shows other aliasing annotations as wélhe search method returns &osition that is
unigue , indicating that there can be no aliases to th&tipa object. Thansert method accepts a
Position parameter that ient , meaning that it may be used for the durationhef method call but
persistent aliases to it may not be created. Thesetations are discussed in more detail in the ne

section.

Finally, a component can have multiple ports, dgfishing the protocols used to communicate with
multiple external components. A Java class carlypachieve this effect by implementing multiple
interfaces, but there is no way to tell which déemse which interfaces. ArchJava makes connégctivi
information explicit by declaring connections betwecomponents. For example, the word processor
declares a connection linking tli®c ports of its subcomponents. This connection bit#srequired
methods in the user interface to the correspongirayided methods in the document, so that these

components can communicate.

The architecture constructs of ArchJava allow davets to model hierarchical architectures, andigpebc
specify the control flow and data sharing betwebant Section 2.3 describes these architectural

constructs in more detail, and explains how theylmaused to enforce communication integrity.

12

2.2 AliasJava

The AliasJava type annotation system is designedufiport reasoning about aliasing in large object-
oriented software systems. AliasJava allows dper®to express the lack of aliasing througigueness
and controlled aliasing throughwnership AliasJava expresses aliasing constraints usimgtations on
reference types. Since values of primitive typenca be aliased, these types are not annotated. fullh
ArchJava language, discussed in Section 2.3, buldsthis foundation by adding an architectural

framework.

Each object in the system is eitharique or else part of anwnership domaithat is declared by another
object. A unique object has only one persistefd@remce to it, although temporalgnt aliases may be
created. Objects within a single ownership doneain refer to one another, but references can anbsc

domain boundaries if the programmer specifiéslabetween the two domains when they are created.

Each object declares a set of named ownership dgmadihese domains are nested within the domain tha
owns the object, so that ownership defines a favéstees where each parent owns its children aed t
roots of the tree are unique. Unique objects mayasigned to an ownership domain, attaching one
ownership tree as a subtree of another. The stitasgbdelow explain how these relationships ardaded

as type annotations within the program source andthey are enforced by the type system.

In this section, | present the annotations as a system for Java programs that provides globalagiees
about aliasing. However, adding alias annotattors large legacy program may require significdfare

The annotations can also be applied to verify lpcaperties within a subsystem, treating the artiots at
the edge of the subsystem as unchecked assertius® this methodology in my case studies in Sacti
A promising alternative is inferring alias annatat for a closed subset of the program automatjcatid

other work presents early results in this direcfid®kdC02].

Subsection 2.2.1 describes the alias annotationsigh a series of examples. A more precise dd&otip
of the core annotation system is provided by thenéd semantics in section 3. Subsections 2.2.22a23

describe the properties guaranteed by AliasJavaistation system, and how the annotations integnate
the full Java language. Finally, subsection 2shdws more examples of the annotation system ierdcd

illustrate its expressiveness.

13

class LinkedList {

private unique Object item; unique LinkedList list =
private unique LinkedList next; new LinkedList(new Object(), null);
list=" new LinkedList(new Object(), list);
public LinkedList(unique Object o, unique Object o = list.getltem();
unique LinkedList n) { list = list.getNext();

item = 0; next = n;

}
public unique Object getltem() {
unique Object temp = item;
item = null ;
return temp;

public unique LinkedList getNext() {
unique LinkedList tempNext = next;
next = null ;
return tempNext;

Figure 2. A linked list class withunique links and items

2.2.1 Annotations for Data Sharing

Unique. When an object is first created, itusique—that is, there is only one reference to the objé@tte
type annotatiorunique describes a reference that does not have petsaiases. Figure 2 illustrates

uniqueness through a linked list class where athefelements and all of the links amrgque .

In general, after anique variable or field is read, the source location trhes dead (that is, unused by
subsequent code)—otherwise the read reference vimmuldn alias of the supposedly unique source. A
standard intraprocedural live variable analysigsed to verify this criterion founique local variables.
When aunique field is read by a method, that method must sefitid to another value before executing
any statement that could result in reading theimaigralue of the field a second time, such as thotkcall

or exception-throwing expression. For examplerigure 2, thegetitem method sets thikem field to

null so that no aliases to thaique value exist when the value is returned.

In AliasJavaunique can be considered a universal soutoeéque values can be assigned to a location
with any other data sharing annotation. The cas®és not true, as the other data sharing annotatio

not guarantee that a value is unique.

Ownership Domains. An ownership domaitis a group of related objects that are conceptyelly of the
object that declared the domain. Each object it gfaa single ownership domain. An objeabwneris

the object that declared its ownership domain,iemdwnership domain is i®wning domain

Ownership domains are illustrated using a simpldress lookup application, such as one might findaon

PDA. The diagram at the top of Figure 3 illustsatiee ownership domains in the application at mne.t

14

AddressApplication

public class AddressApplication {
domain name, address, owned;
link owned ->name, owned->address;

1 public class Table<key,value>
' extends Map<key,value>
' assume owner ->key, owner ->value {
| domain owned ;
private owned Table<name,address> addrBook; ! link owned ->key, owned->value;
|
private address Addr lookup(name String n) { | private owned Set<key> keys;
return addrBook.get(n); | private owned List<value> values;

|

|

|

|

|

|

|

|

|

|

|

|

|

}

/I application Ul, etc., not shown...

public value Object get(key Object k) {
for (int i=0;i<keys.size(); ++i)
if (keys.get(i).equals(k))
return values.get(i);
return null ;

}
}

Figure 3. TheAddressApplication class declares three ownership domainstame, address , and owned.
The owned domain is linked to thename and address domains, allowing theowned addressBook object tc
refer to names and addresses. ThaddressBook ’s formal domain parameterskey and value are bound tc
the name and address domains, respectively.

Solid circles represent objects, and dashed circlepresent ownership domains. The
AddressApplication object declares three ownership domains:rthme domain holds names that
the user may want to look up, thddress domain holds address objects, anddthamed domain holds

the application’'saddrBook object. TheaddrBook object is a table mapping names to addresses, and

declares a single ownership domaimned, which holds its internal data structures.

The domains irAddressApplication are declared in the second line of Figure 3 ufieglomain
keyword. In order to indicate that an object ist g a domain, the type of the object is annotatét the
domain name. For example, in Figure 3, #uelrBook is an object of typdable that is part of the
owned domain. When an object is instantiated, it isegifresh ownership domains that are distinct from
the ownership domains of all other objects. Foraneple, the owned domain inside one
AddressApplication object is distinct from the owned domain inside other
AddressApplication objects, and is also distinct from tbened domain ofTable objects such as
addrBook . In AliasJava, thewned domain is a default domain that is built into eatlect, and need

not be explicitly declared, although Figure 3 dsedor clarity.

15

Domain Parameterization. The Table object needs a way to refer to the ownership doesntdiat hold
the table’s keys and values. These domains carnateclared inside thEable , because the keys and
values are typically owned by the table’s cliehtstead, th&able is given formal domain parameters for
thekey andvalue domains, and the implementation of the table ttsese names to refer to the domains
of key and value objects. Clients of the table nsupply domains as actual parameters when they tef
aTable . For example, the declaration addressBook instantiatekey with name andvalue with

address .

Link Declarations. Sometimes objects in one ownership domain neetkfeer to objects in another
ownership domain. For example, thedrBook in theowned domain needs to refer to name and address
objects in thename andaddress domains. Alink declarationallows references from one domain to
another. Each class must declare all allowed lbétsveen a domain it declares and any other doniains
scope. The diagram in Figure 3 shows link dedfamatas arrows. For example, the arrows from the
owned domain ofAddressApplication to thename andaddress domains allow references in the
direction of the arrow (but not the reverse dimg}i The third line of code in Figure 3 shows hibnvse
links are declared in source code using the operator. As a shorthand, bi-directional links dze

declared with the operator.

If a class relies on a link between two formal domparameters, it must state this explicitly usang
assume clause in the class declaration. For examfddle objects need to store references to their keys
and values, and so the owner of the table musnked to thekey andvalue domains. Thus, the table’s
class declaration states the assumption that bie’saowning domain (denoted with tlogvner keyword)

is linked tokey andvalue .

Defaults. Explicitly specifying linking assumptions and lirdeclarations can be inconvenient, so the
AliasJava language includes defaults that coveirihst common declarations. Since tvened domain
is declared implicitly inside every object, objetitigt don't need to distinguish different groupsobjects
don’t have to declare any domains at all. The wefannotation for object fields iswned, so if this

domain is appropriate, no annotation is necessary.

Since an object typically needs to refer to objemtsed by its formal domain parameters, all classes
assume that thewner domain is linked to every domain parameter. Tdenthe owned domain
convenient, AliasJava also assumes thatatltaed domain is linked to every domain parameter of the

class, as well as to every domain declared witenclass.

16

class Singleton { boolean contains(lent LinkedList head,
private static shared Singleton val int i){
= new Singleton(); for (lent LinkedList list = head;
list I= null ; list = list.next) {
public static shared Singleton get() { lent Integer item = (Integer) list.item;
return val; if (item.intValue() ==)
} return true
public void doSomething() {
/I application specific code return false
}

}

shared Singleton s = Singleton.get();
s.doSomething();

Figure 4. Ashared Singleton object Figure 5. A method that uses dent reference to
traverse a linked list looking for an integer
With these defaults, none of thesume andlink declarations in Figure 3 are necessary, and nbtteo

owned domains need be declared.

Method Parameterization. Sometimes it makes more sense to parameterizegke smethod rather than
the whole class. For example, thable class might include the method below, which retuan iterator
over the keys in the table. The callemetKeys specifies théter domain, which will own the iterator.
As with class parameters, the method must dedterdiriking assumptions it makes between the meghod’
domain parameter and other domains in scope. Tétaan can also declare links between the domain
parameter and domains declared in the class. »ang@e, since the iterator must refer both to thgsk
and the internal set that stores the keysg#t&eys method assumes that ther domain is linked to
thekey andowner domains. It then declares a link betweenitte domain and the internalwned

domain, allowing the iterator to access the sé&eygs.

public iter Iterator<key> getKeys<iter>()
assume iter->key, iter-> owner {
link iter-> owned,;
return new Tablelter<key, owned>(keys);
}

Shared. Figure 4 illustrates the Singleton design pattesgd to create a single instance of an object that
is used throughout an application [GHJ+94]. Situgleobjects are sometimes shared throughout a
program, and thus cannot be confined by an owninjgod. References to such objects are annotated
shared , representing the fact that these objects mayhaeed globally. Formallyshared is modeled as

an ownership domain that is an implicit parametealb objects. Unfortunately, little reasoning cha
done aboushared references, except that they may not alias noredhgeferences. However, shared
references are essential for interoperating witbtiexy run-time libraries, legacy code, and stégdds, all

of which may refer to aliases that are not confittethe scope of any object instance.

17

Lent. Figure 5 shows a method that could be part olLthkedList class from Figure 2. This method
checks if an integer is stored in a linked listtttlamade up ofinique LinkedList and Integer
objects. This would be difficult to express withetannotations presented so far, becaasgains
would have to destroy the linked list while trawegsit in order to avoid creating aliases to thed and
elements in the list. Instead, the method usefetite annotation to create temporary aliases to theueniq
objects in the list. These aliases must be destrawhen thecontains method returns, so that the

uniqueness of the linked list is preserved acraiis tocontains

As shown in this example,umique object can be passed to any method lagpta parameter. The called
method can pass on the object dsrd parameter to other methods, but cannot returnstare it in any
field. Thus, the uniqueness of tlemt object is restored when the method returns. [€he type can
also be used to temporarily passocamed object to an external method for the duration afiethod call,
without any risk that the outside component migtefk a reference to that object. Therefaet can be
considered a universal sink: values with any dljpe annotation may be assigned ferg¢ location. The
converse is prohibitedent values may only be assigned to otleet locations. Lent can be thought of
a restricted capability that can be used to acaessbject, but cannot be used to store the ohjeatfield.

Lent is the default annotation for method argumants$local variables, and may be omitted.

Other annotations. In designing the annotation system, | chose to doen precisely specifying the
aliasing relationships between objects in the systdJsing this criterion, | decided not to includeew
annotations that are used in some of the relatedk.wlthough package-based confinement [BV99]
provides a middle ground between the gloffzdred domain and domains that are local to an object, |
chose not to include it because object ownershi $¢ronger property and | wanted to keep the syste
simple. Read-only annotations [NVP98,MP99,BNROI)BRcan also express useful invariants about a
system, but they are orthogonal to aliasing andes®@ not included in the design. These annotationd

probably be added to the system in a natural way.

18

unique

owned a, B... shared

\/

lent

Figure 6. Value flow between alias annotations

Summary. Figure 6 shows the constraints that the type atinotaplace on value flow. An arrow
indicates that data can flow between variables with annotations in the direction shown. The fegur
shows clearly thatinique is a universal source (any variable can be asdignmique value), and that
lent is a universal sinklént variables can be assigned a value with any typetation). The other
type annotations (the built-in domaios/ned andshared , as well as declared domainsp, etc.) must

be kept separate from each other.

2.2.2 Properties

AliasJava ensures uniqueness and ownership intarthat restrict the aliasing patterns that canuocc
during program execution. Section 3 proves thesariants for a subset of the full language. The
uniqueness property states that variables andsfieith theunique annotation hold unique references
(ignoring temporaryent aliases). In the presence of concurrency, enfgrtie uniqueness property

requires synchronization on unique field readslissussed in section 2.2.3.

Uniqueness. At a particular point in dynamic program executidna variable or field
that refers to an object is annotatedinique , then no other field in the program refers

to 0, and all other local variables that refeotare annotatetént

ArchJava enforces two key properties that resttiesing between ownership domains. The first ergp

is link soundness

Link Soundness. If D; andD, are ownership domains, and an object that is ovayda|
refers to an object that is owned By, then there must be an explicit declaration ligkin
D, to D,. Furthermore, iD; andD, are ownership domains that are visible in the same
scope, and an object thattiansitivelyowned byD; refers to an object that fisansitively

owned byD,, then there must be an explicit declaration ligkia to D..

Link soundness ensures that inter-domain referemcesonly present between linked domains. Link
soundness is enforced by making sure referencegéetobjects are legal given the linking assumption

and declarations in scope, and checking that thénlj assumptions of a class are fulfilled whenehet

19

public class Class {
private shared Object signers owned [J;

/I compiler error: cannot return owned state to clients
public owned Obiject[] getSigners() {
return signers;
}

}

Figure 7. In an early version of the JDK, thegetSigners method of Class
returned the internal array holding the signers ofa class, allowing clients to modit
the list of signers. If the array had been declagtowned using AliasJava, the typ

system would have caught this security hole.

class is instantiated. For example, in Figurei8 fegal to instantiat&@able with actual parametersame
and address and an owning domaiowned, because the owned domain is linked name and
address , fulfilling the assumption stated in the class deraof Table . Chapter 3 gives the formal

typechecking rules that enforce link soundness.

As the second part of the definition shows, linkrsiness constrains not just references from a doai

to another domaib,, but all references from the ownership tree roatd?] to the ownership tree rooted at
Ds. In order to enforce this hierarchical relatiopsha class that links one of its ownership domé&insne

of its ownership parameters must assume a corrdspprelationship between its owner domain and that
ownership parameter. For example, in Figure Jithhebetweenowned andkey in Table is only legal

because the table assumes a link between its amadethekey domain.

Ownership domains provide a stronger kind of engiapisn than Java'private and protected
modifiers, which restrict only the visibility of feeld, not the accessibility of the object insithe ffield. For
example, Figure 7 illustrates a defect in an eaglgion of the Java Standard Library that was chbyea
private object escaping to clients. In this bug, the ggcgystem functiorClass.getSigners()

returned a pointer to the internal array used doesthe principals that had signed a class, réther a
copy. Clients could then modify the array, makthg class appear to have been signed by a trusted
principal, and thus potentially allowing malicioaplets to pose as trusted code. In Figure dartay has

a type indicating arwned array ofshared signer objects (the array notation is discussethdu in
subsection 2.2.3). With this declaration, the cibenpvould have caught this bug at compile time;aese
public methods cannot return objects owned by firaeownership domains. The bug is fixed by retugni

a copy of thesigners array fromgetSigners , rather than the actual array.
The encapsulation property enforced by AliasJaealiedcapability-based encapsulatigAKCO02]:

Capability-based Encapsulation. ObjectO, cannot refer to objed, unless a name (or

capability) for O,’s ownership domain is in scope in obj€xt

20

An ownership domain name acts as a capability é@essing objects that are part of the domain.nlf a
object can’'t name a domain, it can't refer to ot§dn that domain. Initially, each object has théque
capability to access the objects in the ownershipains that it declares. The object can sharegyalility

by passing the corresponding domain as an actua¢mship parameter of another object. If an ownprsh
domain is never passed as an ownership parantaerpnly the owner can refer to objects in that @iom

Conversely, an object that has no formal domaiarmaters can only refer to the objects that it owns.

To ensure that capability-based encapsulation anmgful, ownership annotations must be consisigeat

time:

Ownership Soundness. At a particular point in dynamic program execntiof a
variable or field referring to objeat has an ownership annotation denoting ownership
domaind, then all other variables or fields that referotaat any subsequent point in
dynamic program execution, are either annoté#atl or have an ownership annotation

denoting the same domain

Link soundness and capability-based encapsulatigetiier place stronger constraints on aliasing than
either could alone. Even if there is a link fromeadomain to another, objects in the first domairstnhave
a capability for the second domain in order toré&deobjects in that domain. Link soundness ersstivat a
domain cannot be shared arbitrarily, but can oelypassed as a domain parameter to objects whosr own

is linked to the domain.

Program Reasoning. Through uniqueness and ownership domains, Aliasdapports static, source-level
human and automated reasoning about aliasing iectbjiented systems. This dissertation applies
AliasJava’s alias-control system to verify the commmation integrity property, ensuring that the

implementation of a system is consistent with ith#ectural design.

Other researchers have applied ownership-base@nsysto a variety of other problems, including
eliminating data races [BR01] and deadlocks [BLR®2pporting code updates [BLS02], checking effects
[CDO02], proving representation independence [BN@2K verifying program invariants [SD03]. Most of

these systems rely on tbemners as dominatoencapsulation property in order to address thesglgms:

Owners as Dominators. If objecto refers to another object , theno is inside (i.e.,

transitively owned by) the owner of .

The owners as dominators property ensures thag tn@r no pointers from the outside of an objedhéo
inside—only the other direction. The owners as dwaars property prohibits many useful idioms,

including iterators and event callbacks, but itnievertheless useful for proving certain properties.

21

AliasJava occupies a unique point in the desigreespaith the appropriate link specifications, ihdae
used to enforce owners as dominators, but withrdthk specifications, it is flexible enough to qgrt
idioms like iterators and event callbacks. Forrepke, to support owners as dominators, a classldghou
specify a link fromowned domain to each of its ownership parameters, bugma link from an ownership
parameter to thewned domain (or any other internal domain). In fabtstset of links is the default in the
AliasJava system; a program with no explicit lirkirspecifications enforces owners-as-dominators.
Linking assumptions between ownership parametesliasJava are analogs to the assumptions in other
systems stating that one parameter is within amotfehus, AliasJava can be used to enforce the same
properties as other ownership-based systems iddfault case, while still providing additional flbiity

if it is needed.

2.2.3 Java Integration

The Java language has several features that prefsalienges for an alias control system. | disthss

AliasJava handles of a number of these featureswbel

Subtyping. Java’s declared subtyping relation is extended aliis annotations. When a class is defined,
it must provide values for the ownership parametefsthe classes and interfaces it extends and
implements; these values can be any of the ownengarameters of the subclass, shrared . For
example, a class declaration might look liklass C<a, B, y> extends B< o, B> implements

I< v>. When a method or field is overridden, the owling member must declare its parameter types and
return type with annotations that exactly match t¢verridden member, under the ownership parameter
mapping induced by the inheritance declaratiomsgdneral, it would be sound to override a methdad w
covariant parameter types and a contravariant tréygok, but AliasJava requires an exact match to be

consistent with Java’s existing semantics for dderg methods.

This. Since the current objethis is an implicit argument to all instance methods,type annotation
must be specified. This is done with an annotati@at comes immediately after the argument lishisT
type may be one o$hared , unique , lent , or an ownership parameter. Usetlis within the
method must be consistent with its annotation, ahdnethod calls, the receiver is treated as another
parameter that must follow the rules for thes alias annotation. Because the vast majority ahous

have dent annotation fothis ,lent is the default in the system and need not be @iplspecified.

22

Constructors. Like methods, constructors must specify an aliamgation forthis . Semantically, a new
statement is treated as an allocation oh&ue object followed by a method call to the construdto
initialization. For example, the expressioew Foo() is modeled as the sequence of statements
unigue Foo temp = allocate Foo; temp.Foo() . If the constructor'shis annotation is
lent , the allocated object will remaimnique . If the constructor'shis annotation isshared , the
allocated object will beshared , and if the constructor'this annotation isunique , the result of the
new expression must be dead. Thus, the alias anoltafia newly allocated and constructed object will

beunique in the common case where the constructii's annotation igent

Inner Classes. Non-static inner classes implicitly import the paeders of their surrounding class. The
inner class can have its own additional parametengcessary. Thus, the fully qualified type ofianer
class is of the fornpackage.EnclosingClass< o...>.InnerClass< {...> An inner class can refer
to the domains declared in the enclosing classlu@img owned) using a name of the form
EnclosingClassName.domainname . The domains of the inner class can be referemaddtbut
qualification. Anonymous classes defined withirfuaction may not accessnique or lent local
variables from the function’s scope, because sachsses could create internal persistent referestossd

in the inner class object, which may violate theetgystem'’s invariants.

These special rules do not applystatic classes defined within another class. Such dadseot have
an implicit pointer to an object of the enclosingss, and so they follow the same rules as ordidiagses,

with no special access to their enclosing class.

Static Fields. Static fields are not associated with any particolsject instance, and so they cannot be
declared with a domain as the type annotation (edsall that no field may havelant annotation).

Static fields can banique if they are read and written in a way consisteitth heunique annotation.

Concurrency. Concurrency is orthogonal to this work, except passible data races when reading a
unique field. In the presence of concurrency, sede unique fields must be synchronized to pretieot
threads from reading a unique variable simultanigpgseating two aliases of a supposedly uniqueeal
In order to guarantee uniqueness in the preseno®rafurrency, the compiler will eventually include
concurrent modehat performs additional checks. These checksrernthat aunique value can flow

from an object field into another ndeAt location only within a block of code synchronizealthe object

23

whose field is being dereferenced (or the fieldsldring class, in the case of static fields). Tigkl that

was read must also be set to another value bédferertd of the synchronization block.

Casts. Because a class may extend a class that has fewameters, ownership parameters may be hidden
when an object is treated as its supertype. Fample, aList object with a single parametdata may

be upcast to typ®bject , which has no ownership parameters. Later, tliggrammer may want to
downcast a variable of typeObject to typeList with the expressioflList<data>)o . In order to
preserve soundness, the run-time system must diwbkthat objecb is of typelList , and also that the

List 's ownership parameter data .

In the implementation, a tag object is allocatadefach declared domain. Each parameterized offi@ets
the tag objects representing the actual domainedoh of its ownership parameters. Run-time doitaajs
are also passed to methods that have ownershipnptaes. This run-time information is assigned at
object-creation time. Note that AliasJava doesnesd to store the domain of each object in theesys

the system incurs space overhead only for objbatsare parameterized.

When an object is cast to a parameterized typeruhdime owner for each of its parameters is chdck
against the corresponding owner specified in thet, gnd arAliasCastException is thrown if the
check does not succeed. In this way, AliasJavpa@ip upcasts and downcasts in a way that does not

violate the semantics of the type annotations.

Arrays. An array must be given an alias type for each adiayension. The alias type of the objects
inside the array is given next to the type of thgots, while the modifier for each dimension of tirray

is next to the corresponding brackets. For exampke variable declaration Stack< B> owned []
unique [] array refers to aunique array ofowned arrays ofx stacks that hold objects of alias type
B. This syntax is consistent with the syntax donst arrays in C++. An array dereference of the form

array[0] would yield a value of type Stack< g> owned []

Following Java, AliasJava supports covariant subtyfior arrays. In order to preserve type sounsings
must do a run-time alias check whenever an obgdtdred into an array, to ensure that the dynamic
ownership parameters of the object are compatilifle the dynamic ownership parameters of the array.
This check uses the same run-time alias annotatifmnmation that is used to support sound casts, as
discussed above. AliasJava keeps track of théaeship between arrays and their ownership pamrset

using a global hash table, since this informatiannot be stored in the array itself. The keyshia hash

24

interface Iterator<element> {
element Object next();

}

public class List<element> {
private owned Link<element,
void add(element Objecte){ ...}

owned> front;

public i Iterator<element> iterator<i>()
assume i->element, i-> owner
link i-> owned {
return new Listlter<element, owned>
(front);
}
}

publiccl ass Lexer{
owned InputStream stream;
Lexer(unique InputStream s) {
stream ='s;
}
unique Token getToken() { ... }

}

void lexerClient() {
unique InputStream stream =
new FilelnputStream(file);
unique Lexerl= new Lexer(stream);
l.getToken();

}

class Listlter<element, link>
implements Iterator<element>
assume link->element {
private link Link<element, link> cur;
public element Object next() {
element Object e = cur.o;
cur = cur.next;
return e;

Figure 8. AlList class and an iterator over the list Figure 9. ALexer class that uses arnputStream
as part of its representation. ThelnputStream s
passed to the constructor as anique reference.

table are weak references, so that the arrays t{@id ownership information) can be reclaimed bg th

garbage collector when they are otherwise unredehab

The Java Standard Library. AliasJava is implemented on top of the standarch Mdvtual Machine
(JVM), and applications can use the Java standamaty that is provided with the VM. Unfortunatethis
means that Java’s reflection interfaces provideag to get around the alias type system. This cbeld
remedied by replacing the existing reflection lifgravith one that dynamically checks for violatioofsthe

alias type system.

Another issue is that since | did not modify thenstard library, the runtime system does not record

time ownership parameter information for parameesticlasses and methods created and called by the
standard library code. Thus, the parameter infaongor some methods and objects will be missihg a
some run-time casts. In the implementation, tloasts always succeed, but a number of other charees
possible in principle. In the future, | hope tophpan improved version of alias annotation infeen
[AKCO2] to the standard library, and provide theatated library along with the ArchJava distribatio

2.2.4 Examples

In this subsection, | present three examples thlahathstrate the expressiveness and benefits of the

annotation system.

25

Iterators. Iterators are a challenge to many ownership-babasl @ontrol systems. For example, none of
the early ownership type systems supported itesgtd/P98,CPN98,CNPO01], and more recent systems
support them only as inner classes [Cla01,BLS03h®robjects that cannot escape the stack [CDO02].
Figure 8 shows how kist class can be defined to returnlgerator object that can access its internal
representation (the links in the list) without egjpg that representation to clients. Whenltlst class
creates d.istlter , it instantiates the second ownership parametéistiter with owned, thereby
delegating a capability to access the list's regmesgtion. The.istlter is then returned as an object of
typelterator , which hides access to the links in the list.e@$ of thdterator cannot access these
links through thelterator interface, nor can they cast therator to Listlter , because the
List has not given them a capability to access itsesgtation. Furthermore, the programmer is
protected from accidentally returningLastlter , because théistlter ’s argumentowned is an

internal domain otist and therefore may not appear as part of any typleei public interface dfist

Uniqueness and Ownership.The combination of thenique annotation with ownership annotations is
crucial to the expressiveness of the annotatiotesysit allows us to express important idioms thgither
class of annotation system could alone. For exentpeLexer class in Figure 9 accepts an input stream
that becomes part of its representation. The imefgation of theLexer relies on the state of the
InputStream , and therefore the specification béxer should require that external clients do not

modify the state of the stream after passing ih&olexer.

In AliasJava, thénputStream argument td_exer ’s constructor isunique , forcing the client to give
up its other nortent references to the stream. TimputStream is then captured into the lexer as an

owned reference, which is encapsulated within the letgect.

2.2.5 Summary

AliasJava’s annotations allow programmers to expi@sd enforce important aliasing properties such as
uniqueness, encapsulation, temporary sharing, @&nsispent sharing. The next section describes how
programmers can express the architectural structiusesystem, and shows how these aliasing anootati

can be used within that framework to describe ingrtrclasses of architectural communication.

26

2.3 Architecture Constructs

The ownership domains of AliasJava are sufficientdefine hierarchical architectures, and to state a
communication integrity theorem that all commurimatbetween ownership domains follows linking
specifications. Thus, ownership domains providelihsis for the key technical result of this disgem.
However, although this model of architecture spesitommunication structure, it provides little igig

into the way that objects in different domains camioate.

In order to specify architectural communication enqrecisely, software architecture researchers have
developed component port, and connection abstractions. Architectural elements are moddbgd

components, distinguished objects that communidat@a more structured way. Ports represent the
endpoints of communication between components; sheyv method calls that are sent and received by a
component, and declare ownership domains that hezed between those components. Explicit

connections link ports together, showing which comgnts communicate and using what protocols.

ArchJava adds new language constructs for compsneudrts, and connections in order to allow
developers to specify architecture in a precise. whlye rest of this section describes the langukegign,

describing by example how to use these constructsxpress software architectures. Throughout the
discussion, | show how the constructs work togetbeenforce communication integrity. Reports on the

ArchJava web site [Arc02] provide more informatiorgluding the complete language semantics.

2.3.1 Components and Ports

A components a special kind of object that communicates vather components in a structured way.

Components are instancescoimponent classgsuch as tharser component class in Figure 10.

A port represents a logical communication channel betveeeomponent and one or more components to
which it is connected. Ports declare two sets ethads, specified using tlpeovides andrequires
keywords. Aprovidedmethod is implemented by the component and islablai to be called by other
components connected to this port. Converselyh eaquired method is provided by some other
component connected to this port. A componentimavke one of its ports’ required methods by segdin

message to the port. For example,gjhese method call;extToken on the parser'’sx port.

27

public component class Parser {
public port in{
domain symbol;
provides void setinfo(symbol Token t, symbol Syminfo s);
requires symbol Token nextToken() throws ScanException;

public port out {
domain symbol;

provides symbol Syminfo getinfo(lent Token t);
requires void compile(unique AST<symbol> ast);

public void parse() {
symbol Token tok = in.nextToken();

unique AST<symbol> ast = parseFile(tok);
out.compile(ast);

unique AST<symbol> parseFile(symbol Token lookahead) { ... }
void setInfo(symbol Token t, symbol Syminfo s) { ... }
symbol Syminfo getinfo(lent Tokent){..}

.

Figure 10. A parser component in ArchJava. TheParser component class uses tv
ports to communicate with other components in a compiler. The parser'sin port
declares a required nethod that requests a token from the lexical analyr, and ¢
provided method that enters tokens into the symbol table. fe out port requires a
method that compiles an AST to object code, and pwides a method that looks up toker
in the symbol table.

Because ArchJava is built on top of the AliasJamao#ation system, the parser code is annotated to
describe aliasing constraints on the data strustitrenanipulates. Unlike regular classes in ArghJa
component classes do not have ownership paramdtetead, they specify data sharing more expliciy
declaring ownership domains in their ports, whigdpresent groups of objects shared with other
components. For example, in Figure 10, bothitheand theout ports ofParser declare the domain
symbol , representing tokens and symbol table informafiorthe compiler that is shared with other
components. Domain declarations of the same nartieeisame component class, such as the declaration

of symbol inthein andout ports, refer to the same domain.

ArchJava’s ports specify both the services implaegrby a component and the services a component
needs to do its job. Required interfaces make mipeies explicit, reducing coupling between
components and promoting understanding of compseriansolation. Ports also make it easier to reaso

about a component’'s communication patterns.

28

Compiler

out in ut in
scanner [P—{ parser [codegen

public component class Compiler {
private final owned Scanner scanner = ...;
private final owned Parser parser = ...;
private final owned CodeGen codegen = ...;

connect scanner.out, parser.in;
connect parser.out, codegen.in;

public static void main(shared String args shared []) {

new Compiler().compile(args);
}

public void compile(shared String args shared []){
/I for each file in args do:
...parser.parse();...

}

Figure 11. A graphical compiler architecture and is ArchJava representation. Th
Compiler component class contains three subcomponents—Saanner , a Parser , and
a CodeGen. This compiler architecture follows the wellknown pipeline compiler desigi
[GS93]. Thescanner , parser , and codegen components are connected in a line
sequence, with theout port of one component connected to thén port of the nexi
component.

2.3.2 Component Compaosition

In ArchJava, hierarchical software architectur@ipressed witttomposite componentahich are made
up of a number of subcomponents connected togethesubcomponehts a component instance owned

by another component. Singleton subcomponentbeateclared afinal fields of component type.

Figure 11 shows how a compiler’s architecture camxpressed in ArchJava. The example shows that th
parser communicates with the scanner using onegohtand with the code generator using anothdre T

architecture also implies that the scanner dogiscommunicate directly with the code generator. A
primary goal of ArchJava is to ease software eimtutasks by supporting this kind of reasoning abou

program structure.

Connections. The symmetricconnect primitive connects two or more port instances thge binding
each required method to a provided method with dame name and signature. The arguments to

connect may be a component’s own ports, or those of supooents infinal fields. Connection

2 Note: the ternsubcomponent instandedicates (dynamic) composition, whereas the tsmponent subclassould
indicate (static) inheritance.

29

consistency checks are performed to ensure thdt esquired method is bound to a unique provided

method.

A connection also equates shared ownership domoéith® same name that appear in connected poass. F
example, if the scanner declagk@main symbol in itsout port, that shared ownership domain will be
equivalent to thesymbol domain in then port of the parser. Thus, any data annotatedvaga by the

symbol domain may be shared between the scanner and-pasé in fact, between these components

and the code generator as well, sisgmbol also appears in the parsensist port.

Provided methods can be implemented by forwardimgdations to subcomponents or to the required
methods of another port. The detailed semantieaathod forwarding are given in the language refeze

manual on the ArchJava web site [Arc02].

ArchJava uses Java’s default synchronous, callranon semantics for method calls across ports.
However, some applications may need alternativeection semantics such as asynchronous, event-based
communication. Other work describes an extensioArthJava that allows developers to define and use

connectors with application-specific semantics [ABG].

Inheritance. Component classes can inherit from other compodsses, or from clas3bject . The
compiler’s also allows component classes to intfesith ordinary classes (with a warning), at thet aifs
weakening communication integrity guarantees fdreiited methods, so that developers can use non-
component-based legacy frameworks like the Java libtHries. Component subclasses inherit methods,
ports, and connections from their superclasses. mgooent subclasses may also override method
definitions and specify new ports and new providezthods in old ports. However, component subctasse

may not specify new required methods because thilsl break subtype substitutability.

Design Support. ArchJava supports architectural design witlcomplete components and ports
annotated with the keyword, which allow an architéz specify and typecheck an unimplemented
architecture specification. That architecture #fmtion can then filled in with code, facilitaina

seamless transition between design and implementati

Communication Integrity. The compiler architecture in Figure 11 shows thdtilevthe parser
communicates with the scanner and code generater,stanner and code generator do not directly
communicate with each other. Instead, their conmaeation must be mediated through the parser, or

through objects in theymbol ownership domain that they both share. If thegimn in Figure 11

30

represented an abstract architecture to be impletien Java code, it might be difficult to verifiiet
correctness of this reasoning in the implementatiBor example, if the scanner obtained a referémdtiee
code generator, it could invoke any of the codeegaior's methods, violating the intuition communézh
by the architecture. In contrast, programmershzase confidence that an ArchJava architecture ateiyr
represents communication between components, bedhaslanguage semantics enforce communication

integrity.

Communication integrity in ArchJava means that congmts in an architecture can only call each asher’
methods along declared connections between poRsithermore, components can only communicate
through persistently shared data if the componeath declare shared ownership domains that arestherg
via architectural connections. Each componenh@architecture can use its ports to communicatie wi
the components to which it is connected. Howeaerpmponent may not directly invoke the methods of
components other than its subcomponentaniqgue components, because this communication may not
be declared in the architecture, and thus may t@ot@mmunication integrity. Nor may a component
access data owned by other components, or datastipairt of a non-local shared ownership domain. |

discuss communication integrity more thoroughlgéation 2.4.

2.3.3 Dynamic Architectures

The constructs described above express architecsre static hierarchy of interacting component
instances, which is sufficient for a large classsgétems. However, some system architectures reequi

creating and connecting together a dynamicallyrdeteed number of components.

Dynamic Component Creation. Components can be dynamically instantiated ugiegsamenew syntax
used to create ordinary objects. For example,reigd shows the compilerraain method, which creates

aunique Compiler component and calls itbmpile method.

Connect Expressions. Dynamically created components can be connecteettieg at run time using a
connect expressionFor instance, Figure 12 shows a web server tethire where &outer component
receives incoming HTTP requests and passes themgihrconnections té@/orker components that serve
the request. TheequestWorker method of the web server dynamically creat®8aker component

and then connects iserve port to theworkers port on theRouter .

31

Greate WebServer

workers
serve Worker

public component class WebServer {
private final owned Routerr = new Router();
connect r.request, create;
connect pattern Router.workers, Worker.serve;

public void run() { r.listen(); }
private port create {
provides r.workers requestWorker() {
final owned Worker newWorker = new Worker();

r.workers connection = connect (r.workers, newWorker.serve);
return connection;
}

}
}

public component class Router {
public port interface workers {
group stream;
requires void httpRequest(stream InputStream in,
stream OutputStream o ut);

public port request {
requires this .workers requestWorker();

public void listen() {
unique ServerSocket<stream> server = new ServerSocket(80);
while (true){
unique Socket<stream> sock = server.accept();
this .workers conn = request.requestWorker();
conn.httpRequest(sock.getinputStream(), sock. getOutputStream());

}
}

public component class Worker extends Thread {
public port serve {
group stream;
provides void httpRequest(stream InputStream in,
stream OutputStream o ut) {
this .in=in; this .out = out; start();

}

public void run() {
/I gets requested file and sends it on the output s tream
}

}

Figure 12. A web server architecture. TheRouter subcomponent accepts incomir
HTTP requests and passes them on to a set\&forker components that respond. When
request comes in, theRouter requests a new worker connection on itsequest port.
The WebServer then creates a new worker and connects it to tHeoute r. The Router
assigns requests t®Vorkers through its workers port.

32

Communication integrity requires each componentexplicitly document the kinds of architectural
interactions that are permitted between its suboompts. Aconnection patteris used to describe a set
of connections that can be instantiated at run tireig connect expressions. Each connect pattern
declares a list of (component type, port type) faallowing connections between the ports of
subcomponents of the specified type. For examptenect pattern Router.workers,
Worker.serve describes a set of connections betweenRbater subcomponent and dynamically

createdVorker subcomponents.

Each connect expression must match a connectioarpateclared in the enclosing component. A connec
expressiormatchesa connection pattern if the connected ports anetickd and each connected component
is an instance of the type specified in the patferra subtype). The connect expression in the seeber
example matches the corresponding connection paterause the andnewWorker components in the

connect expression conform to the tyResiter andWorker that are declared in the connection pattern.

Port Interfaces. Often a single component participates in sevesahections using the same conceptual
protocol. For example, thRouter component in the web server communicates with raéVeéorker

components, each through a different connectionpo# interfaceis instantiated into a concrete port
whenever a connection is declared between the iptatface and a port or port interface of a remote
component. The created port object is the endpfmntcommunication through the corresponding

connection.

Each port interface defines a type that includésfathe required methods in that port. part interface
type combines a port’s required interface with imstance expressiothat indicates which component
instance the port belongs to. For example, inRbater component, the typihis .workers refers to
an instance of thevorkers port of the currenRouter component. Similarly, in th&/ebServer , the

typer.workers refers to an instance of tidrkers port of ther subcomponent.

Port interface types are a simple form of dependgme, since the type depends on the value of the
instance expression. In order for the type sysierrack the instance expression soundly, it masgab
final variable or field—a standard restriction in depenidgpe systems. Thus, iif was not dinal

field, we could not declare the typeafnnection to ber.workers

Port interface types can be used in method sigesitsuch asequestWorker and in local variable
declarations such aonn in thelisten method. In ArchJava, the required methods ofr& gem only

be called by the component instance the port belobmg Therefore, required methods can only bekiesgo

33

on expressions of port interface type when theaimtst expression ighis , as shown by the call to

httpRequest within Router.listen

Concrete port declarations, such as the portsepérser in Figure 10, are syntactic sugar forade a

port interfacegp and a final variable of port interface tyihés .p .

Ports are instantiated from port interfaces whenaveonnection is made. A connect expressionmstar
connection objecthat represents the connection. This connectigacbimplements the port interface
types of all the connected ports. Thus, in Figli?e the connect expression implements the intesface
newWorker.serve and r.workers , and so it is legal to assign the connection dbjecthe

connection variable, which has typeworkers

Removing Components and Connections.Just as Java does not provide a way to explicidietd
objects, ArchJava does not provide a way to explialelete components or connections. Instead,
components are garbage collected when they ar@ngel reachable through direct references, running
threads, or architectural connections. Similady,connection cannot be disconnected; however, the
resources used by the connection will be reclaimieen the connection object is no longer reachabler.
example, in Figure 12, Worker component will be garbage collected when the esfes to the original
worker flewWorker) and the references to its connectioosnfiection andconn) go out of scope,

and the thread withid/orker finishes execution.

2.3.4 Architectural Style Examples

This subsection shows how ArchJava can expressrtenidnvariants of two commoarchitectural styles
discussed by Garlan and Shaw [GS93].

34

public component class PipeAndFilter {
private final owned Source source = ...;
private final owned Filter filter = ...;
private final owned Sink sink = ...;
connect source.out, filter.in;
connect filter.out, sink.in;

}
public component class Filter {
public port in{

void accept(unique Datad){

/Il process data and send out
out.accept(process(d));

public port out {
requires void accept(unique Data d);

private unique Data process(unique Datad){...}

Figure 13. A pipe and filter architecture implemented in ArchJava.

Pipe and Filter Architectures. Figure 13 demonstrates a pipe and filter architecttyle, in which the
architectural components are filters that acceptream of data along an input pipe and produceva ne
stream of data along an output pipe. HigeAndFilter component class shown is a simple instance
of the architectural style with a source, a simid a single filter between them. Théter component

accepts data on its input port, processes the datbsends the new data out its output port.

An important invariant of this architectural stysethat the filters do not share state; they conicaia only
through the pipes connecting them. The alias atioois in the system express and enforce this ienviar
Because th&ource |, Filter , andSink components share no domains, they cannot dirshdye any
data® Theunique annotations in the ports express the invariantwihen a data structure is passed from

one filter to another, the first filter gives up mferences to the data.

This example also shows the practical importancecarhbining uniqueness and ownership in the
annotation system. The data passed between comgoméght be a complex data structure that includes
multiple internal objects with nontrivial internaliasing. A type system with only uniqueness could
express passing a unique reference to a data sgubketween components, but could not express the
constraint that aliasing is allowed within the dstiaucture but not beyond it. Similarly, a systeith only
object ownership could express the limited scopaliaking within the data structure, but could express

the architectural invariant that the first compardgmes not retain any references to the data sneict

3 | am ignoringshared annotations, but widespread use of these is pomctipe and could be flagged by the
compiler.

35

public component class Blackboard {
private final owned Database store = ...;
private final owned Clientlcl=..,
private final owned Client2c2=..,;
connect cl.info, store.info;
connect c2.info, store.info;

}
public component class Database {
public port interface info {
domain data;
requires void notify(lent Message change);
provides data Data getData(lent Spec spec);
provides void update(data Data d);
}
}
public component class Clientl {
public port info {
domain data;
provides void notify(lent Message change);
requires data Data getData(lent Spec spec);
requires void update(data Data d);

}
}

Figure 14. A blackboard architecture expressed irrchJava.

Blackboard Architectures. Figure 14 shows a blackboard architectural stylbere computational
components surround a central data store. The @oembs in the blackboard architecture communicate
exclusively by modifying shared state in the datmes Component actions are triggered by charméset

data store made by other components.

In the Blackboard component class, the connections show the cofinel between the computational
components and the data store. These controldtmwmections specify that componeatsandc2 do not
call each other’'s methods directly, but instead momicate only through method calls to the store—and
this specification is verified by ArchJava'’s typestem [ACNO02b]. The alias annotations, in turrsatée

the data sharing relationships between the compenékglance at the port of tligatabase component

shows that thetore , cl, andc2 components all share the same ownership dodzan .

The interface of the database shows in more dwtail data structures are shared between differats pha
the architecture. Initsfo port, the data store definesemjuires method that it calls to notify clients
whenever data has changed. This method passemgecmessage to the computational components; this

message ilent , indicating that the clients may not store peesisteferences to it.

The database also implements two methods allowirgts to get data and to update the store. Hbee,

specification of what data is requested isrd parameter ofetData , but the returned data is annotated

36

public componen t class EventArchitecture {
private final owned Subjectsub=..;
private final owned Observerob =..,;
connect sub.notify, ob.observe;

}

public component class Observer {
private owned State state;
link callback-> owned;

public port observe {
domain callback;
requires void register(callback Callback cb);

}

public void run() {
data.register(new MyCallback< owned>(state));

}
}

public interface Callback {
public void notify();
}

public class MyCallback<st> implements Callback {
private st State state;
public void notify() { state.update(); }

}

public component class Subject {
private callback Callback cb;

public port notify {
domain callback;
provides void register(callback Callback cb) {
this .cb =cb;
}

}

public void run() { ... cb.notify(); ... }
}

Figure 15. Two components that communicate via @allback object.

with the ownership domaidata , indicating that it is shared persistently betwddferent components in

the architecture.

Event-based Architectures. Figure 15 shows how an event-based architecamée defined in ArchJava
following the subject-observer pattern and usingallback object for communication [GHJ+94]. The
architecture links theotify port of Subject to theobserve port ofObserver . When the observer
starts up, it creates an object of tydgCallback , passing it a reference to the observer's stdieis
reference is passed to the subject and is storad internal field. When an event of interest esauithin
the subject, it invokesiotify on the callback, which then updates the statehefdbserver. The

connected ports declare the shared ownership darteiack , which is used for the callback object. In

37

order to allow the callback object to access therimal state of the observer, tB&server class declares

a link from thecallback domain to th@wned domain of the observer.

2.3.5 Summary

ArchJava allows developers to specify the softwanhitecture of a system as a hierarchy of compionen
instances. Connections describe which componeititinvthe architecture communicate, and the methods
and ownership domains declared in ports show thalsl®f the communication through method calls and
shared data. The next section explains in moraldeiw ArchJava’'s type system enforces commurocati

integrity, ensuring that the code implementing stesyn conforms to the architectural specifications.

2.4 Communication Integrity

Communication integrity is the key property enfardey ArchJava, ensuring that communication in the
implementation obeys the architectural specifigatiolntuitively, communication integrity means that
components can only communicate with their neigbbiar the architecture. In this section, | define

communication integrity more precisely, justify tthefinition, and explain how it is enforced.

2.4.1 Inter-component Communication

Before defining communication integrity, we musfide inter-component communication. To do so, we
need the concept of an objecigchitectural domainwhich can be found by ascending the ownership tre
until an ownership domain declared in a compongntached. If an object imique , we assign it a

distinguished architectural domainique .
Definition [Inter-component communication]: Two componentsommunicatavhenever:

1. Direct call: Component instanc& or an object in one of its ownership domains diyeaccesses

(invokes a method or reads or writes a field ofhnponent instancB, or

2. Connection call: Component instanc@ invokes a method of component instafé¢hrough a

connection, or

3. Shared data: An object with architectural domai accesses a non-component obcandA

andB are in different architectural domains.

Java also allows indirect communication via thetirma system (through native methods) and statlddie
Formally, the runtime system (including all natimeethods) and static fields are modeled as parhef t
ownership domaishared that is implicitly declared in every componenthus, communication through

native methods and static methods and fields &éteas shared data communication.

38

2.4.2 Integrity Definition

Communication integrity in ArchJava is defined alofws:

Definition [Communication Integrity]: All run-time inter-component communication fallgo one of
the following categories of communication, eachwtfich is documented explicitly or implicitly in the

architecture:

1. Unique communication: ObjectA invokes a method on a component instaBdkat is annotated

unique , or

2. Parent-child communication: ObjectA invokes a method on a component instaBaghich is

owned byA, or

3. Connection communication: Component instancé invokes a method on component instaBce
through a connection that matches a connect patiegite component instance that directly owns
bothA andB, or

4. Lent communication;: Component instance or obje&tinvokes a method on a non-component
objectB that has been temporarily lentApwith either dent annotation or a domain parameter

of a method, or

5. Shared data communication: Object A accesses some object B in a differenhitactural

domain, and the architectural domain#AafndB are linked.

Discussion. Many definitions of communication integrity are pitde. | believe that the definition above
is a good choice because it allows many differémtik of architectural communication to be expressed

and because it permits only local communicatiomvbet components.

The first category is communicating wittuaique component that will be later passed on to angbber
of the architecture. One typical use of this isew initializing a component in a component factory
Communicating with auniqgue component can be thought of as a special caseaoénpchild
communication (category three), amique refers to a reference that is owned right now roayy be
transferred in the future. Such communicationl$® anherently local, since there can be no alidses

unique component.

Parent-child communication could in principle bésumed under connection communication. However,
case studies with ArchJava have shown parent-adldmunication to be so common in practice that
without direct support for it, writing programs wdube considerably more awkward. Parents initaliz

their children by calling their constructors, amgy commonly invoke service methods on their chitdr

39

This kind of communication is also local, since e@omponent has only one owner, which is the only

component permitted to invoke methods directlyton i

Connection communication is the core form of comitation supported by ArchJava. It is a natural
conceptual idiom, as shown by the innumerable #rchiral drawings created by system designers
everywhere. Furthermore, since connections arg patmitted between a parent and its children or

between sibling component instances, it is alsalloc

The fourth category allows a component or objectetmporarily lend one of its ownership domains to
another component, so that component can perfome saction. Conceptually, lending a reference to a
domain to another component is like giving up owhar of that domain for the duration of the method
call, letting the other component access the objecthe domain, and then getting exclusive owrnprsh
back when the method returns. Thus, the abilityetal domain references through method parameters
allows temporarily ownership transfers. Treatiegtldomain parameters as a transfer of ownership is
more problematic if components are multithreaded, ib this case an ownership-based locking protocol

can be used to ensure exclusive access to an diwme@Emain [BLRO2].

The fifth category, shared data communication, emmasses all forms of communication through shared
data—another form of communication that is essertialmany systems. In typical programming
languages, communication through shared data mariirarily non-local, causing significant problem
when understanding and evolving software systemsArchJava, shared data communication is local at
the architectural level, because each componenbelgncommunicate with objects in its domains, &mel

objects in a domain can only communicate with disj@cdomains to which it is linked in the archiige.

This definition of communication integrity is noefect; some aspects of the system (such as thalglo
domainshared) give up locality in order to support standardalaioms like static fields. However, |
believe that the definition is a good compromiseegithe goal of supporting existing Java progrartls w
few changes. Furthermore, | argue thay definition of communication integrity that is intded to be

general-purpose will have to support the categaie®mmunication described here in some way.

2.4.3 Enforcement

Enforcing communication integrity is essentially sering that all instances of inter-component
communication fall into one of the architecturatipcumented categories. Consider the cases of inter

component communication:

40

Direct call case. The ArchJava language ensures that if the recafea method call is a
component, then either the receivertiss , or the receiver isinique or part of theowned
domain. In the case tiis , the communication is within a component. In¢hses ofinique
and owned, the communication is unique communication andempiachild communication,

respectively.

Connection call case.The type system must ensure that the componahbtms both the sender

and the receiver declared a connection between.th&#henever a connection is made, the
compiler verifies that the components in the cotinacare owned by the current component, and
that the current component declares a connectrpatteat matches the components being

connected.

Shared data case.Consider the annotation on the objBcbeing accessed. If the annotation is
unigue , there is no inter-component communication ocogrinstead, the calling component
is modifying one of its own unique data structurdfsthe annotation is a locally declared private
domain (such aswned), there is again no inter-component communicati@mtause the receiver

of the access is part of the same component aetider. If the annotationlent or the domain

parameter or a method, the communication is lemneonication.

The remaining case is when the accessed objedanistated with an ownership domain that is either
declared in a port of the current component ordemain parameter of the current object. We wish t
show that this case is shared data communicafltns will be true if and only if architectural doma
of the accessing object is linked to architectd@hain of the accessed object. But this is guaeght

by the link soundness property, so we are done.

2.4.4 A Relaxed System

The system as presented so far is expressive entmugbver a wide range of programming idioms.

However, initial experiences with earlier versiomisthe system showed that some relaxation may be

needed in practice, for at least two reasons [AGI}t02

Reuse of legacy Java codelibraries written in Java were not designed witltilava-style components

in mind, which can create problems when reusingdH#raries in an ArchJava program. For example,

Java’'s Swing graphical user interface [ELW98] inlds a number of classes that applications extend to

build their interface logic. In the system | inity developed component classes could not extedithary

Java classes, so a developer would not be abledelra Swing-based GUI as part of the architecture.

41

| chose to allow component classes to extend Jagaas and interfaces for the purposes of reusoary
Java frameworks such as Swing. When reusing legaeg classes, developers may want to annotate them
with ownership parameters. Therefore, the compbokasses that inherit from the parameterized tibra
classes may also have ownership parameters, ewaghtcomponents do not have ownership parameters

in the original ArchJava language.

Communication integrity is relaxed to treat a comgrat’s inherited interface as an additional podt tis
implicitly connected to any object with the capépito access the component. Thus, if one compiisen
owned by another, only objects with a capabilityatacess the parent’s owned state can use thetatheri
interface. Similarly, the ownership parameters @omponent allow data sharing with any object kizest

the right capability, which is more flexible bustestructured than sharing objects via ownershipaitos

in ports. Thus, this solution relaxes communigaiictegrity in a controlled way, allowing more flble
access to a component through its inherited interfaut preserving the guarantees for communicaimn
the component’'s ports and ownership domains. ThehJava compiler produces a warning message,

letting developers know that integrity guaranteresralaxed when components inherit from classes.

Evolution to component code. ArchJava intentionally builds on Java, in partteat developers can
express and verify the architecture of existingaJarograms using ArchJava. A transition from piaea
to ArchJava is likely to be more effective if pragrmers can convert one class at a time into a coemto
class [ACNO2a]. This is difficult in the systemsdebed above, because once one class is convettea
component class, all objects that it communicatiés will also have to become component classe$is t

ports can be linked up to the component in theitecture.

The solution to this problem is to allow ports ® defined in classes as well as components, aatolw
connections to link object ports to component porhat way, when converting a single class into a
component class, the component class’s ports cdimke to ports in neighboring classes, withoutyfu
converting these classes into component classater,lthe neighboring classes can also be convanted

component classes one at a time.

Connections inside a componéhtan link any object owned &y or one ofC's domains taC or any other
component or object th& owns. These connections (or connect pattern® ilbentical to connections
between components; the only difference is thabatfinary object (or class) is specified insteadaof

component instance (or component class).

Connections between a component and an object ptuatly allow more communication than connections
between components, because an object can be shmamedfreely than a component. However, they

represent a principled relaxation of ordinary, lirtemponent connections, because although the tsbjec

42

may be shared according to their alias annotatommunication between the object and the connected

component is still declared by the architecturaireztion.

This solution also supports the idiom where a ealbobject needs to access the surrounding componen
For example, the callback code in Figure 15 cowldehbeen written to call a method on the surroundin
Observer component rather than updating thate object directly. The developer simply connects
the callback object to the observer component enabserver’s architecture. In Java, such callbacks
often implemented as inner classes. Since inregses have access to the outer class object, AschJa
allows the inner classes of a component to call deenponent’'s methods, as if there were an implicit

connection between them in the architecture.

With the changes described, | believe that ArchJdavilexible enough to express many Java programs

without major implementation changes. The casdies$uin chapter 4 evaluate this claim.

245 Summary

Communication integrity means that all communicatizetween components must be declared at the
architectural level—either through required and pied methods in connected ports, or through the
declaration of an ownership domain in connectedspomhe ArchJava compiler enforces communication
integrity via local rules governing how refereneeith different alias annotations can be used. Bsea
integrity is enforced through the type system, progners can develop applications much as theysa@ u

to, but gain the assurance that architectural ptiggeare maintained during implementation and w@ianh.

2.5 ArchJava Implementation

A prototype compiler for ArchJava is publicly awdile for download at the ArchJava web site [Arc02].
The compiler is implemented on top of the Baratasfructure [BS98]. The compiler accepts a list of
ArchJava files (.archj), compiles each one dowdawa source code, and invokagac on the resulting
Jjava files. The compilation technique is moduka,that when a source file is updated, only thataind
the files that depend on its interface need toelsempiled. ArchJava’s typechecking rules are mardahd

local, so that programmers can easily identifydaiese of a typechecking error.

As of this writing, some of the features of Archdaare not yet implemented. These include ownership
domains (other than the default domawned), design support, and some static and dynamickshec
However, the main alias-control constructs of Al (aside from named domains) and the architdctur

modeling constructs of ArchJava are all implemented

The ArchJava compiler translates each componess ¢taan ordinary class with the same name in Java,
leaving the fields and method bodies substantiatishanged. Each port interface in the ArchJavacsou

code is compiled into a Java interface containhgrequired methods of the port interface. Anmadi

43

port generates the same thing as a port interfacecll as an associated field that holds the pmtaince.
All variables of port interface type are compiledl variables of the interface generated for thatt por

interface.

Each connection is compiled into a “connection €lathat implements all of the interfaces of the
connected ports. The connect expression instastihis class, passing the connected componetit® to
constructor. The constructor assigns the connemedponents to internal fields. Whenever a require
method is invoked on that connection, the conneatigject invokes the corresponding provided method

the appropriate component.

Although in ArchJava the source code is the cambniepresentation of the architecture, visual
representations are also important for conveyieitactural structure. Parts of this dissertatise hand-
drawn diagrams to communicate architecture; howevieave also constructed a simple visualizatiasi to
that generates architectural diagrams automatidedi;n ArchJava source code. | have also begun to
develop an IDE for ArchJava using a plug-in for thelipse development environment. In the future, |
intend to expand this IDE to support graphical siog and editing of ArchJava architectures, refactp

of Java code to express its architecture, and ratieg with architectural analysis tools. | alsarpto
provide other tools such as archjavadoc program that would automatically construct graphend

textual web-based documentation for ArchJava achites.

Performance. The main cost of the implementation techniqueenhsing standard connections, is that
calls through connections are routed through caiomeobjects, adding a layer of indirection to Hystem.
The current compiler is a prototype and does notfop® any optimizations; however, future
implementations could use well-known techniques kpecialization to eliminate this indirection immy
cases. Casts that involve ownership parameteosiralslve a small additional overhead, as doesttzes
type-passing technique. The most significant oeadhis incurred by applications that use custom
connectors. Since the compiler implements custonmectors by reifying each method call, calling a

method across a custom connector is a relativgdgmsive operation, even if the connector is simple.

Thus far, the only applications of significant steewhich | have applied ArchJava are interactamg] thus

it is difficult to benchmark their performance. Aimdependent evaluation of ArchJava on a
microbenchmark that exhibited a very fine-grainedhaecture measured an overhead of about 10%
relative to Java code with a similar decomposifiéh02]. | expect that most realistic applicationsuld

use architectural features at a more coarse grathso | anticipate that the time overhead wilidgly be

less than this in practice. | currently have noaswmeement of the space overhead of ArchJava, but

assuming that components and parameterized cléssgs as collection classes) tend to be largepéetx

44

the that space overhead of storing information tb@uership parameters and ownership domains will b

small in comparison.

2.6 Recent Changes

The ArchJava and AliasJava languages have evolguificantly from their initial presentations
[ACNO2a,ACNO02b,AKC02]. The changes are summarizeldw.

AliasJava. The major change to AliasJava is the generalizaifoswnership types to ownership domains.
This extension allows developers to more precisglgcify aliasing relationships between groups of
objects, and also guarantees that inter-componemiminication through shared data is mediated by

ownership domains declared in the architecture.

ArchJava. The most significant change to ArchJava has beernntiegration of AliasJava’s alias control
constructs. In the earlier version of ArchJave, garent of a component was the component thateckéa
This turned out to be awkward in practice [ACNO2md so now the owner of a component is its parent.
As a result of this change, the system better stppdioms like component factories [GHJ+94], since
unigue components can be created anywhere in the sysiem,passed to the appropriate place in the

architecture where they become owned by their pax@nponent.

2.7 Summary

The ArchJava language extends Java with constthatsmodel software architecture as a hierarchy of
component instances. Components communicate thremplicit connections as well as through shared
objects that are part of architecturally declaregnership domains. Component communication is
mediated through connectors that can have usemeteemantics, even linking components on different
machines. ArchJava’s type system uses ownershipirzgarity to enforce structural conformance beme
architecture and implementation. Thus, engineanshave confidence that the code behaves accataing

the architectural documentation, and can use tiosvledge to build and evolve systems more effelstive

The next chapter formalizes a core subset of thehJava language and proves that the type system

enforces architectural conformance.

45

Chapter 3

Formalization

The previous chapter introduced the ArchJava lagguand gave an informal argument that its type
system enforces integrity. However, Java is a ¢exfanguage, even without the ArchJava additions.
Since Java provides many ways to communicate bateemponents, there is a risk that in designing the
ArchJava type system, | may have omitted some carwation path that could be used to violate
integrity. Thus, we would like some assurance thatinformal correctness arguments for ArchJaea ar

valid.

One way to gain increased confidence in the tyjséesy is to use formal techniques to model the ArehJ
language, and then prove properties about the fommalel. A standard technique, exemplified by
Featherweight Java [IPW99], is to formalize a claneguage that captures the key typing issues while
ignoring complicating language details. Feathegheidava (FJ) formalizes the core of Java, inclydin
classes, inheritance, immutable fields, and methddwe rules specifying the static and dynamic sdits

of the language are small enough to fit on one pagéing it feasible to prove formal properties atbihe
system. Since FJ does not include many featurdsndd, including field writes, interfaces, inneasdes,
etc., there is no guarantee that the propertiegeprof the formal model extend to the full Javaglzemge.
However, to the extent that the formal system motled most important parts of Java, the proofseeme

confidence in the full system.

In this chapter, | formalize the ArchJava as Arch&Xore language modeled after Featherweight Java.
Because | want to formalize the core constructbath Java and ArchJava, ArchFJ is considerably more
complex than FJ. However, it remains small enoaghermit a precise, formal semantics and to permit

formal reasoning.

In addition to the Java features modeled by FJhRicmodels core architecture constructs including
component classes, port interfaces, connect patserd connect expressions. It also models theatiae

control constructs of AliasJava, includimmique , lent , ownership, and class-level parameterization.
Ownership domains are modeled in a simple way:obJects and components have a single domain
owned, but components can declare additional domairnsoits, so that the language can model shared
data. In order to reason effectively about unigssn ArchFJ models mutable fields instead of FJ's

immutable fields.

ArchFJ also makes a number of simplifications redato ArchJava. Static connections and portslefte
out, as they are subsumed by dynamically creatademtions and port interfaces. As in Featherweight

Java, the model omits interfaces, inner classed, smme statement and expression forms, since these

46

CL:u= clasC <, opextends C s cassumes v-> 5 owner knks owned T M}
| componentclass Extends E {inks a>BTEMIXY
| o= portinterface P { domain R M}
M:a=T mTXT { ., rewdm
R := requiresT mTXT ; .
X == connectpattern K.P,
e u=v A
| new E<p>()
| ef A
| ef=e,e
| (Me_
| e.m(e)
| e
v = /L

I

| connect (x.P)
| null

| error

TV = AE<p>
| vP
| Uv.P)
| NULL
AB = lent | unique |p
p,g = ¢| «o| owned
S u={ ¢ S>E<(>(v)| domain(f) }
T n={x > T}
s ={ ¢ >T| domain (/)}

Figure 16. ArchFJ Syntax

constructs can be written in terms of more fundaaieanes. ArchFJ does not have static fieldst sts0
omits theshared ownership domain, which can be modeled as a dowiam top-level component or
object. These omissions make the formal systerplsinough to permit effective reasoning, whildl sti

capturing the core constructs of ArchJava.

3.1 The ArchFJ Core Language

Syntax. Figure 16 presents the syntax of ArchFJ. The naeitalvleC ranges over class hamé&sranges
over component and class naméstanges over typed{ ranges over component class nanfesanges
over fields;v ranges over values; ranges over expressiori3ranges over port interface nam8s;anges
over stores{ and drange over locations in the store, whéliie used to represent the valughié , andm

ranges over method names. Generic alias annaagi@nrepresented yor B, where actual parameters

47

are sometimes denoted@®r q and formal ownership parameters and domains aneady Greek letters

o,R.... As a shorthand, an overbar is used to repressatuence.

In ArchFJ, classes are parameterized by a listliaf annotations, and extend another class thatahas
subsequence of its ownership parameters. adsumes clause gives the assumptions about linking
between parameters. ArchFJ’s classes have onlguifiein owned domain, which is automatically linked
to each ownership parameter of the class. Howela&sses may declare links from ownership parameter
to theowned domain as long as corresponding links from theesparameters to tr@vner domain were
assumed. Each class defines a set of fiedalsl methods!; the predefined clagdbject has no fields or
methods. Component classes can extend anotherooemipclass, oObject . Component classes also
define a set of link declarations, port interfacgsand connection patterns. A port interface is a list of

required methods, provided methods , and domain declarations.

Because we want to reason about communicatioreiprbsence of assignment and object identity, ArchF
adds mutable fields and field assignment to Fler&fore, a stors maps locationg to their contents: the
class of the object or component, its actual ownprparameters (for ordinary objects) or ownership
domains (for components), and the values stordtd firelds. | will write 5[/] to denote the store entry for
¢ andg[¢, i] to denote the value in thi¢h field of S[/] . Functional store updates at locatibrare

abbreviated ¢ - E</>(v)] .

Locations are also used to represent ownership ilsmaheowned domain of an object or component is
represented by that object’s location Domains declared within a component are reptedely a fresh
location, distinct from the component’s locatiowhen two ports are connected, the domains declared
the ports become equivalent. Domain equivalenceefgesented by mapping each domain to its
equivalence class representativie- lomain (/s,)), Which uniquely represents the set of equivalent
domains. | assume a fixed class taBIemapping regular and component classes to theinitiefis. A

program, then, is a tupl€T,S,e) of a class table, a store, and an expression.

Expressions include object creation expressioedd fieads and writes, casts, and method calls.er8ev
method calls may be executing on the stack at caret,to reason about ownership we will need to know
the receiver of each executing call. Therefore, élkpression forn® > e represents a method body

executing with a received.

Values represent irreducible computational resaltsl, include locations and connections. bk value

is a distinguished location. ArchFJ representiedatasts and null dereference errors with an eipli

48

error value. Variables are also considered values lsecany value (including variables) may appear as
the instance expression in a port interface typée set of variables includes the distinguishedatée

this used to refer to the receiver of a method. Neithe error value, nor locations, nof > e
expressions may appear in the source text of thgram; these forms are only generated during remuct
Locations and variables are tagged with their aljpe, which otherwise might not be inferable stlty.
These tags are useful for proving type soundnesiseiriormal system, but they do not affect the tiore

semantics of the program and therefore do not existe implementation.

In the compiler for the full language, an analysisures that eaalmique variable is consumed only
once, with all other uses treating that variabldem¢ . ArchFJ models the results of this analysis by
explicitly tagging all values with their alias anation. Thus, ainique variable will be annotatelégnt

at all of its uses except the consuming use, wiev#l be annotatedinique . Similarly, the compiler for
the full language performs an analysis to deterrfie¢unique fields are overwritten immediately after
being read. Instead of modeling this analysis &lyn ArchFJ provides a destructive read operation
(again, identified by theinique tag on the field read) that overwrites the fieldhwull after every

read.

Expressiveness.While ArchFJ has been simplified considerably frAmahJava, it is still quite expressive.
For instance, the example architectures in Figdt245 can be expressed in ArchFJ with only minor
rewriting (e.g., since ArchFJ doesn’t include cartrgatements, we must replace connect stateméthts w

pairs of connect patterns and connect expressions).

Types. Ordinary types consist of an alias annotattoand a class name parameterized with annotagions
Annotations may bdent , unique , owned, or a parametep. Actual ownership parameters in the
source text must be ownership parametersf the enclosing class, or the built-owned domain.
However, during reduction, these parameters magepkaced with locationg, indicating the object that
corresponds to that actual ownership parameteus,Tihcations are included in the type syntax so e

can give alias types to expressions in an execyiiogram. There is also a type representitdj L
Finally, the type system includes port interfageety ¢.P) and a union type that matches any one of a set

of port interface types.

49

¢OlocationfS) €T)=classC< >a S S['€<#C Jinull (R-CN EW
S, 8 F newC< >() - /s
¢,¢, , 0domain(S) dom#ing)=y, S Sf Ks 2, npll Gi0ln ¢ donfa)) ¢, (R-KN EW
S, 6 Fnewk() - ("
o o — .
S[T £ </®&) fields@”, _ <T$)B=B # unique (R-R EAD
S, 0 Fiu Pu,S

S[1 € <i&) fields@®, <T#$)=
S=S[(E < nuv})],)
S, 0 F (f uniaue limu’qus ' (R-U NIQUEREAD

S[1 € </t) fields@*, <T$)=

S=S[¢ ~E<(X[vv})], (R-W RITE)
S, 6 ki vs€® eSS '

S[1 £ <I'&) AE _ iéﬁE<f> c ! (R-C AsT)
S, 6 KAE<>y (° 8¢

P O — (R-C ONNECEAST)
S, 0 K.B) connectP) ¢ - conned®), S/
S, 6 KT) null -null S (R-N uULLCasT)
S[} € <(&) mibodyA E/* <Txe=(e x ,=le/ Seithis ' updateOS,e) (R WK

S, 6 F i) - reps ,

S[T K <)’ miodyK ¢/ Txes(e Jv)x, s =le/ S fthis '=update[S,e ,) (R-C XTI NVK
S, 8 F connect(A).m() ks,

S, 6 F ¢ w By, SP (R-C ONTEX}

Figure 17. ArchFJ Evaluation Rules

Reduction Rules. The evaluation relation, defined by the reductioles given in Figure 17, is of the form
S,8+e - €e,S read"“Inthe context of stoi® and received, expressiore reduces to expression
e’ in one step, producing the new st&e” | write - * for the reflexive, transitive closure of. Most of
the rules are standard; the interesting featureshaw they manipulate architectural constructs laoa

alias annotations are tracked.

The R-CNew rule reduces an object creation expression teshflocation tagged amique . The store is
extended at that location to refer to a class withspecified ownership parameters, withnalll fields.
The rule for component creation is similar, exddatt components may not have ownership parameters i
the formal system. Instead, the store keeps todcé set of fresh locations representing the dosnain

declared in that component’s ports.

50

There are two rules for field reads. The RAR rule applies to normal (non-unique) reads of kiffe; it
looks up the receiver in the store and identiffesith field. The result is the value at field pogitioin the
store. The result value is annotated with the tatimm on the field read. The RNDUEREAD rule is
similar, but applies to reads annotateduagjue . Here, the result is always a value witlurdque
annotation, but the value of the field that wagdrisaupdated toull in the store, written gsnull /v] .
This reflects the “destructive read” semantics ¢ tformal language, which models the user-level

language’s requirement thamique fields be updated after unique reads.

The R-WRITE rule is straightforward, updating tlh field of the receiver object with the value it to
field f;. As in Java (and FJ), the R&r rule checks that the cast expression is a suldf/fiee cast type.
Note, however, that in ArchFJ this check also iesithat the ownership parameters match, doingtia e
run-time check that is not present in Java. Sigildhe rule for a cast to a port interface tygeifies that
the named port interface type is one of the ongbkénactual connection. A cast ofall value to any
type always succeeds. If the run-time check indhst rule fails, however, then the cast reducehdo

error expression (following the cast error rules in Fe8).

The method invocation rule RWK looks up the receiver in the store, then usesribedyhelper function
(defined in Figure 22) to determine the correcthrodtbody to invoke. The method invocation is repth
with the appropriate method body. In the bodypatiurrences of the formal method parameterstaisd

are replaced with the actual arguments and thelvexcerespectively. Execution of the method body
continues in the context of the receiver locatidine rule for invocations on connections is simiktcept
that thembodyhelper function also determines which of the cotettcomponents defines the invoked
method. For both invocation rules, the store idated with thaipdateDfunction, which unifies domains

in the store according to connections made in tathad body.

When a method expression reduces to a value, tBONREXT rule propagates the value outside of its

method context and into the surrounding methodesgion.

51

S, 0 ke e,S '

RC-R EA
S, 6 kef fef 'SA (9

S,0 ke e,'S '

(RC-R ECWRITE)
S, 0 ref pg=,8 yeuf & & .5 ., '

S0t 2'S (RC-A RAMNITE)
S, 0 vf ee (v ee=S [
S, 0 e e,'S (RC-C AsT)

S, 6 K)e (@e,S ' '

SSkFe-e S
S,0 Fem(e) - e.m(e), S

(RC-R ECM NVK

S 8t+e e S

(RC-A Rd NVK
S, Fvm(v ;..v,,,e..e) - vm(V ;..V,4,6,64..8,), S

S,/ kFe-e S

(RC-C ONTEX}
SkFire-/lr>e S

S, Fnulf *_error S, (E-R EADNULL)
S, 0 F null.f vre —errorS (E-W RITENULL)
S, 6 F null.my) —error, S (E-l NvKNULL)

S[T £ </'&%) AE <CAE > (

— E-C As
S, 80 KAE<>Y (% - en@ (7

(PO
S, 6 K.R)(connécP)! erdr

(E-C ONNECCAST)

Figure 18. ArchFJ Congruence and Error Rules

Figure 18 shows the congruence rules that allowateh to proceed within an expression in the omfer
evaluation defined by Java. For example, the RM2HELD states that an expressierf reduces to
e'.f whenevere reduces te’ . The congruence rule RCeRTEXT shows the semantics of thie> e

construct: evaluation of the express@nccurs in the context of the receivanstead of the received

The error rules, also in Figure 18, define the s#ios of a failed cast or null dereference. Whendke
run-time checks necessary for a cast fail, the egstession reduces to arror value, which is how the
system models the exception that is thrown by thle language when a cast fails. Similarly, null

dereference errors are modeled by reducing theessgiom to therror value.

52

= o B 4 o
CT(E) [componerjt classE< : o, Bextends E< o> ... (S UBTYPEC LASS)
E <E
T <T (S UBTYPER EFLEX)

T<T'T 'T< "

(S uBTYPET RAN9

T <T"
v.P <A Object (S UBTYPEP OR)
NULL < T (S UBTYPEN ULL)
% (S UBTYPEU NION)
cC <cC’

A=lent 0OA A ' B #@nique)
AC<pg> <AC 'm >

(S UBTYPEALIAS)

Op O} (a->p) Ollifiks()
(p> owney Olinkstinique C K >) £ ->0); Mlinky)
T F unique C 9 > <qC p< >

(S UBTYPEA SSIGN)

C<C' q pIA}

unique C<pg > < uniqgue C < >

(S uBTYPEU NIQUE)

2(¢)=domain (7_,) >(¢"y=domain (7_.)

ecr ecr D OMAINE QUALITY,
S ke=r (©)
O¢Odomain(Z) 3(f) A E< ¥ sz (f) E; > A # unighie A> = (S UBTYPES TORB

Figure 19. ArchFJ Subtyping and Domain Equality

Subtyping Rules. ArchFJ's subtyping rules are given in Figure 1bt$ping of classes and components
is based on the immediate subclass relation giyethidextends clauses irCT. In the S-KTENDS rule
and elsewhere, the brackets indicate optional gyatal ellipses indicate syntax that does not affieet
rule’s semantics. The subtyping relation is raflexand transitive, and it is required that theeenb cycles

in the relation (other than self-cycles due toexflity). Every type (including port types) is absype of
Object , NULLIis a subtype of every type, and a union typesstaype of all its member types.

The general subtyping rule for types that havesadianotations and parameters follows the clasyjsiulot
relation. A type with any annotation can be assibto alent type, but if the types are given owners then
the owners must match. The subtyping rulesuiique verify that the system preserves the linking
constraints in the signature of each class. Whemigue object becomes part of some domgjrthe rule
SUBTYPE-ASSIGN ensures tha is linked to each parameter of the formarhique type, and that all of

the assumed links from domain parametemsvwaer are actually present. This rule uses the typéisf

53

from the surrounding type judgment; | omit the ®iile when invoking the subtype judgment because th

type used is always clear.

The subtyping rule $&TYPE-UNIQUE for unique objects ensures that if one or more parameters are
forgotten via subsumption, then all of the forgottactual domain parameters are still present in the
remaining domain parameter list. This guaranteasit the unique object is later assigned to aaanthe

test in rule 8BTYPE-ASSIGN will ensure that the owning domain is linked to/ dnidden parameters of the

object as well as to the explicit parameters.

Types are considered equivalent up to equalityoofiains, defined in rule @MAIN-EQUALITY ; we assume
this rule is applied implicitly whenever necessarsing the store typing from the surrounding judgment.
A subtyping relation on store types is useful foowing type preservation; one store type is a ehtyf
another if the subtype has the same type as thertgpp for every location in the supertype’s domain

except possibly that a domain is substituted fonigue annotation.

Typing Rules. Typing judgments, shown in Figure 20, are of therfa,=,7,,6 e T, read, “In the type
environmentI', store typingZ, receiver classl4 receiver instanced, and set of assumed linkisiks,
expressiore has typel.” For a judgment of the fornm,z,7,,6 Fe T to be well-formed, we require that
r.z1,60 F a1, and any ownership annotationghat appear i must be bound as parameters or domains
of Ta

The T-C\WaR and T-XVAR rules look up the type of a variablelin The T-loc rule looks up the type of a
location inX. Both the variable and location typing rules raggign the expression a supertype of the type
in the store type or variable map (for exampld@ annotatioi is lent but the store type of the location
is unique). The object creation rule verifies that any fatrarguments assumed to be linked within the
instantiated class are actually linked in the aurredass. The typing rule farull assigns it the type
NULL

The connection rule assigns the connection a utype of all the connected ports. If the instance
expressions in the connection are variables, tinés is a connection in the source text, and so the
connection must match a connect pattern declaratiothe enclosing componerit. If the instance
expressions in the connection are locations, theretmust be a matching connect pattern in themmoon

owner (for simplicity, we omit parent-child conniects from ArchFJ).

54

rx)<:AE p< >

— T-CV Al
rzT.6 Fx*AE p< > (R
rx)=v.p (T-XV AR
N1, Fx:v.P
S(O)<AE <(> (T-L 09
rs716 k™ AE <i>
CT(E) =[component]class E<g>... pength() xglengtif)
Hp>p); DlinkS(uniqueEjp; Np-p i ;)Ominks() (TN EW
rT,6 F newE<p>(): uniqiep>
r=T,6 Fnul : NULL (T-N uLL)
rIT.e FvAAK
V=X = Eonnect pattern K.P Oconnects) BK AK Aolned)
v =/ = ¢onnect pattern K'P Oconnectts(¢)) BK AK ' O (= owndE, () (T-C ONNECY
rs=T06 F connectiv.B): (v.PJ
rs7.60 Fe, T éields(T f,)F < AE<p>, -
(T, = A K,)= (meaninge,,d) =this 0O meanin@,,0)ewned A enique) (T-R EAD
rsT0 Fef PAE<p>
r=T0 ke, T , Gels(If)= T &I7T0 F ,
T<T T2, & H° ; R
T,=A K= (meaninde,d)zthis [meaning\&pwned [Amique) (T-W RITE)
rzT1.60 Fef=e,e T, R
7,0 Fe:T (T AEsp> T AE<gp) 'A A=> =' (TC asy)
N1 HT)e: T c
2T .0 Fg 1T, Tty 0T0T)=7—F<o'—’
T, .0 Fe:T , T . M{ET T , < ,'
T, =A K= (meanindeg,d)this O meaning\dpwned O Amique)
T,=U(V.P)= (this O meaning ,6)) (T4 R
M0 0 Fe. m(é):T
rz16 -1 "' Tr,Z, &/TH (T-C ONTEX)

rzT.6 F©* se:T

Figure 20. ArchFJ Typechecking

The rule for field reads looks up the declared typthe field using théeldsfunction defined in Figure 22.
Because the read ofumique field may be annotatddnt , the rule checks that the field type is a subtype
of the type with the field read annotation subsgtitifor the one in the field type. If the receivera
component, the receiver must be the current commdhis . Rule T-WRITE, for field writes, is similar.

The cast rule checks that the annotation in theegwession matches the annotation of the valeealse

55

lent .. TO MOKINE li kst ") O e

— = 7 7)7 _ (T-C LASS)
class E<pg> extends E <p> assumes o-> B, owner links owned ; TH M OK
lent .. TO linkisri y={o-> @
(E acomponent classCE ©bject) MJX OKleki . (T-C OMPONENT
component class Kextends E {inks o> 3 TEMIX OK
CT(E) =[component] class E<pq>_ _extendsE<p>’ T ovekrilgp>, T T’ I s =)
&, thid }T Doy nule: TEF T o T T AE<pP o
X: unique E<p; {ET,__ this } 4o X = occurs at mos once i@ other than in the form "™ (T-M ETH
TmTXYT & retuen} OK in E
CT(K)=componentclass &tends E{{ftMIX'M M 0O '
E #Object = portinterface P{ domain RM} H (TP oR)
portinterface ’dmain o RM}OKinK

Omi (mtypen, this null P ,)Eent K , F) =

(0 #i st. mtypen, this,lent K J)Te?m K ;3% 0 Ok#j mtpslent K) not)defined

— (T-P ATTERN
connect pattern (K.P) OK IN K

dom(%) = don(S)
S[} E< #(\) 4)BDE<> (
S[}= domain (/') < ()=¢ domain (/)
(S[} €< #) O fieldgthislent E< > (T) = Ofedt, null,v:T A 71,0, <)
() =AE<eV) 0,), ¢, OWES(> ¢)) = linked(Z, adomai(¢,), adomait,))

> Fs (T-S TORB
z FS , 0 % leBbject, nulle: T F
(Z(¢) = unique E<Z>):z occurs at most once in $an@e U other than in the forf"
connect (E O(rang®)@)domain o domain@)domain ol domaifg) =
ecr(S, lookup(S, ¢; ,a) = ecn(S, lookugdS,? , ,
(p(S (o) = ecr(HS./; o) (T-M ACHIND)

> F (CTS,e)T

Figure 21. Class, Method, Port, Connection, Stor@and Machine Typing

annotations cannot be changed via casts (in fathei full language, annotations are omitted frasts for

this reason).

Rule T-INvK looks up the invoked method’s type using théypefunction defined in Figure 22, and
verifies that the actual argument types are sulstgbehe method’s argument types. If the invoaatfoon
a component, the component must either be the rtuo@mponenthis , or be annotatedwned or
unigue . If the invocation is through a port interfaceay then the instance expression mushize , as
in ArchJava. Finally, the T-@ITEXT typing rule for an executing method checks thehods body in the

context of the receiver class and instance.

56

Class and Store Typing.Figure 21 shows the rules for well-formed classnigins and stores. The rules
for well-formed classes have the form “class dedtian E is OK,” and “method/port/connection is OK in
E.” The class rule checks that none of the fieldet/arelent , and ensures that a subclass’s linking
assumptions are at least as strong than those siijiterclass. It also verifies that any methodbkeérclass
are well formed. The component class rule endinasa component only inherits from another compbne
class, or from clas®bject . It also checks for well-formed ports and conim, in addition to the well-

formed method check. Finally, linking declaratidm& component must not vary with inheritance.

The rule for methods checks that the method bodayelstyped, and uses tlwverridefunction (defined in
Figure 22) to verify that methods are overriddethvai method of the same type. It verifies tiaigue
arguments occur at most once in the body of thénadebther than with annotatident , enforcing the
constraint thatunique values are only consumed once. For componensadaghe port typing rule
verifies that only subclasses @bject may define new ports, or new required and providedhods
within a port. It also ensures that the methodaigres in the port are a subset of the methodareecin
the class body. The typing rule for connect patieferifies that for each required method thereusique

provided method with the right signature.

The store typing rule ensures that the store typesc type to each location in the store’s dontladt is
consistent with the classes and ownership parameéterthe actual store. The equivalence class
representative for each domain must be consistetitel store and its type. For every value in Hlfithe
type of the value must be a subtype of the declaypd of the field. The last two clauses in therest
typing rule check that for every pair of domaingttlare assumed to be linked, either explicitly in a
assumes clause or based on the implicit link between thwaer of an object and that object’s parameters,
the corresponding architectural domains are linkedhe architecture. This condition is required fo

enforcing integrity.

Finally, the rule T-McCHINE checks that an entire machine configuration idl ¥ermed. The first two
clauses in the rule check that the expression tmd are well typed. The third clause verifies hainters
annotatedunique in the store type really occur only once in thege of the store together with parts of
the executing expression that are annotatgdue (in addition, the value can occur any number roes

in parts of the executing expression that are atedient). Finally, the fourth clause checks that
connected domains are properly unified. For eammect expression in the range of the store or the
executing program, for each pair of unified domaitise rule ensures that the equivalence class

representatives for the two domains are equal.

57

Field lookup:
fields(e, Object)=+

CT(E) =[component] class E<p g3 extends F<p>{T f ..}

fieldSAF<p>)=Tf 'T [o/fi/dle/ ' e/, this]T pwned
fields(e,AE<p 4>)F f, TT

Connection lookup:
connectfObject)=

CT(K) =component class Kextends E finks a>BETEMIN Eondect§)=
connectéK) = %, X

Method type lookup:
CT(E)=[component] class E<p> {.M.} .ImTXT { ,.e} Mtun O
mtypém,e,AE<p>)p ple/ , olileed }TEhiT F

—

this

CT(E) =[component] class E<pg> extendsE<p>{ M }.. m. is not Mefined in
mtypém,e, A E<pg’>')= mtypee AE<p> ')

CT(E)=component class K ... doméing) o [VE(AK<>] ¢
port P{domain o RM Oport§) requires TmTXT R .. O
mtypdm,e,v.P)= (/olle/, ownle/ , thB T x L -
mtypgme,v.P)F R, T
mtypgm.e, UP)E Tx , T
Method body lookup:
CT(E) =[component] class E<pg> extendsF<p>{ M }. Tm@TXT { . reurn e;} M
mbodym,e,A E<pg’>' #palge/’ , awned,]Tthis ()
CT(E) =[component] class E<pg> extendsF<p>{ M }.. m. is not Mefined in

mbodym,e,A E<pg>"')= mbadfe AF<p> ')

mbodym, £,A K5 ' >)=(xe)
mbodym,(AK< 7' >)=T'xe,)

Valid method overriding:

mtypém,this T)T A'E<p> T ' = T= TOT'=ADA'=
overridgm, T.T AF<pg> T-)

Figure 22. ArchFJ Auxiliary Definitions

Auxiliary Definitions. Most of the auxiliary definitions shown in Figur@ 2re straightforward and are
derived from FJ. The field and connection lookufes return the list of fields and connections igiveen
class. The base caG&dbject has no fields. Field types are translated tostireounding typing scope by
substituting actual parameters for the formal patens of the receiver, and replacing occurrences of

owned andthis in the type with the receiver expressemn

58

Ownership relations:

5(¢) = A E<p>

owner(Z, /) =A
S(0)=AK 2(¢) = domain (/") S(¢) =unique C<p> s(f) =1 C<p>

adomairfZ, /) =/¢ adomain(Z, /) =/¢ adomair{Z, /) = unique adomairfZ, /) = adomaift, /')
linked(=, ¢,) linked(=, unique ,¢) H)=AK<E L-> DlinkK< > /) 2O=AC<t rOf
linked(Z,7,¢") linked(Z,7,¢")
Helper functions:

CT(C)=class C<o,p>extends C< @ssumes v-> 5 owner links owned (TEM

links(A C<pg>)E = ¢ thén ¢ oljpler of @ {y-> 5e->owner, e->owned } Cowned -> vowner -> v | v d o}

CT(K) =component class Kextends E { links o> B ...}
links(A K< &) /¢ group§]) {o-> 3 [owned->v | v O groupdd

e=@0 ezl A=6 Az6
meaninde, 6) =this meaninde, 6) = meanindA, 8) =owned meanindA, 8) =A

Domain equality and helper functions:
ecr(S, 0) = ectS,) S[}= domain (¢') S[} K< #() domdaing) =p a=p
Skei=r ecr(S, 0)=1' lookup(S, ¢,a) =¢,

Store updates:
ecr(S, lookudS ¢,a)) =, 8c(, lookup /' o))=/

unify(S, ¢ ¢ o) =S[domain(ng,{ domain)}

other

Ooi,j such that domain «0OR O domain o0OP S=unifyS, 4 {; o)
updatedS, connect (.P))& '

Oconnect (/,P), 8S =, updat&X, _connect(.P), ;)
updatedS,.e, connec(.R) $= ,

Figure 23. More Auxiliary Definitions

ArchFJ follows Java’s lookup rules for method typesl method bodies, with straightforward extensions
for port types and union types. The method bodykdp rule mbody for connections chooses the
component providing the method. It is guaranteed to chas@ique component because ThE ATTERN
rule implies that only one of the components inoanection defines each method. It then computes th
actual method body using the uso#bodyrule. Bothmbodyand mtypetranslate types to the surrounding
typing scope in the same wayfaalds The expressionzy)=A K< ¥] and the corresponding substitution
[¢/d] inthemtyperule for port interface types only apply if the wal is a location (we take the store type
¥ from the surrounding typing context). Finallyetbverriderule checks that an overriding method has the

same type signature (except for the typthed) as the method it overrides.

59

Figure 23 presents more auxiliary definitions. Denerfunction looks up the owner of a location in the
store type—it can return another location wrique . The adomainfunction finds thearchitectural

domain of a location as follows: the architectural domaiha component or domain is itself, the
architectural owner of anique object or component ignique , otherwise the architectural domain is

defined to be the architectural domain of the digemwner

The linked function evaluates whether two domains are linkedhe store type. Thinked relation is
reflexive, so each domain is linked to itself (allng objects in the domain to refer to other olgeatthe
domain). Theunique architectural domain is linked to all other donsaiso thatunique objects can
access objects in other architectural domains. dameain is linked to another if they were both destl

by a component that declares the linking relatignshplicitly (or implicitly, in the case adwned). Also,
the owned domain of an object is implicitly linked to each tbe ownership domain parameters of the

object.

The links function returns the set of links declared in thesume and links clauses of a class
declaration. It also takes into account the iniphssumption thabwner andowned are linked to each
ownership parameter of the class. The functiomstedes formal ownership parameters into actual
parameters, and if the alias annotat#oan the type is a domain, it replacasner with A. The definition

of links for component classes is similar, except thatieitlyl declared links are used instead of assumed
links. Themeaningfunction allows us to reason about expressionsnaptations that are equivalent to

this orowned, even after these variables are replaced wittesponding locations.

In the dynamic semantics, two domains are considegpivalent if they have the same equivalencesclas
representative (a similar rule in Figure 19 applieshe static semantics). The domain equality 1isl
applied implicitly as needed during reduction. Taer function looks up the equivalence class
representative of a domain. Tlheokup function returns the actual domain location repnéeg a

particular domain of a component.

Finally, theupdateDfunction produces a new store where the equivalelass representatives of domains
in a set of connections have been updated to tefeg equalities. For each pair of domains withsame
name declared in connected ports, timfy rule is invoked. This rule identifies the equivale class
representative for each domain, chooses one ailyifrand updates the store replacing the other

equivalence class representative with the chosen on

60

3.2 Properties

The most important property enforced by ArchFJosmunication integrity. We separate communication
integrity into two parts, one for control flow beten components, and one for communication through

shared data.

The control communication integrity theorem covdiect accesses (calls, field reads and field wyite
from one component to another—cases 1, 2, and Beotommunication integrity definition in section
2.4.2. The theorem states that if a program i$ typed and there is an access on a component,ttieen
sender is either that same component (no inter-ooet communication), or that component’'s owner
(case 2, parent-child communication), or the remeicomponent isunique (case 1, unique
communication). Furthermore, if there is a methoacation through a connection, then the sendenés

of the connected components, and there is some awenp that is the owner of all components in the
connection, and that owner component declared aemrpattern to which the connection conforms (case

3, connection communication). A more formal statahof the theorem follows:
Theorem [Control Communication Integrity]l: If = F (CTS.e T and
S,8 ke -e,S ' according to one of the rul@sinvk, R-READ, R-UNIQUEREAD, OF R-WRITE,
where the typing of the receiver is 031,68 F AAK , then

/=@ 0ownel=, () =600 owne(s, () = unique . Furthermore, if such a reduction occurs

according to the rule R-Cxtinvk where the typing of the receiver is

O, 3T ,,6 - connec(P: T, then 607 and exists ¢, such that
connect pattern K.P Oconnect§(7,)) , and e, 0O ¢, ¢, =owner(Z,(,) and
X/) <A K |' N

Proof: The ¢* case is proved by a case analysi®orif A=unique , then the subtyping

test in ruleT-Loc implies thatowne(Z,/)=unique . If A=6, then by ruleT-Loc we have

ownelX,/)=6or ownelZ,/)=unique . Otherwise, rulg-invk requires that=6.

The connect (A.m(y) case is proved by noting that ratenvk checks thate 0 ¢, and

the remaining conditions are guaranteed by TudennecT. |

The data communication integrity theorem covergsasand 5 of the integrity definition in sectiod.2.

Consider a well-typed program where there is aregg®n a non-component object. If the object is

61

unigue this does not represent inter-component commuaitabecause the object is not shared. If the

object islent then we have lent communication (case 4).

The interesting case is when the receiver is gfanhe architectural domain and the sender is fasbme
other architectural domain (case 5). The datansonication integrity theorem states that the aectitral
domains are linked in the architecture, a propehgt is verified in the store typing rule. Thus,

communication between domains conforms to architattieclarations. More formally:

Theorem [Data Communication Integrity]: If 3 F (CTS,e)T and
S, e -e,S ' according to one of the rul@sinvk, R-READ, R-UNIQUEREAD, OF R-WRITE,
where the typing of the receiveris 3T,, 6 - /*AC<g>" , then eitheA=unique , or

A=lent orlinkedZ,adomair{Z,8),adomair{z,A)).

Proof: The cases whergis unique orlent are trivially valid. In the case whefes

part of some domaiA, by the conditions implicit in all typing ruleg has typeT, andA
must be bound as a domain or ownership paramefgy. df A is owned, the property is
trivially satisfied becausewned is linked to itself. IfT4is a component type amflis
one of its ownership domains, then the componesweed domain is linked toA by
default, as shown in the definition bhked If A is a parameter of a non-component
object, the store typing rule guarantees that tiohitectural domain of the object is

linked to the architectural domain of its parameter |

Type Soundness. | prove type soundness using standard theoremgpef preservation and progress.
Type preservation states that if a program is wgled and reduces one step, without resulting ¢ast
failure or null dereference, the resulting progranalso well typed and the resulting expression stode

type is a subtype of the previous type.

Theorem [Type Preservation]: If = F (CTS,e)T and s,6 e - ¢e,S then either

< %T'<T suchthat' + (CTs,e 9T ', or elsee’ has arerror subexpression.

Before proving type soundness, a lemma is requitating that if a method is well typed, then whetual
arguments of the proper types are substituted dondl parameters in the method body, the resulting

expression is well typed in the appropriate surdum context.

62

Lemma [Term Substitution]: If &1 thid T O nulle 1T, ,
(()=AE </'>, CT(E)=[component] class E<p> ..., and we have type substitution
W=[dp /¢ owned, (thig] ~ such thatz()< @(,.), 0, 3T, 0k T< 0¥ ,

ande, =W(e,), thend, SAE< ¥ ¢ eT <,) W

Proof of Lemma: The lemma is proved by induction on the structdreowith a case

analysis on the form of the expression.

Casel: ¢ must be one of the values substituted for one of the variabbes(including

this). In this case, we know that,z,T,, 8 v T ,<: W(,)so the case holds.

Casex is impossible, because all variablegjhave been substituted with value®in

Casenull : Has the typ&lULL as before.

Caseerror is impossible since the original expressgnand variables would not be

well typed.

Case newEkg> : This expression will have the same type as leefavith actual

ownership parameters substituted for formal parameteqs

Casee.f : By the induction hypothesig is given a subtype of its previous type,
modulo ownership parameter substitution. Thus @emet of the original fields will
exist, with the same types as before (modulo switisth), and so the whole expression

will have the same type (again modulo ownershigmpater substitution).

Casee.f=e 1, e ,: The induction hypothesis allows us to assumedha;, ande, are
given subtypes of their previous types, modulo asime parameter substitution. By the
argument given above in caség , the typing of the assignment will go through. tiNo

that the type of the entire expression is the sasrthe type of,, we are done.

Case(T ¢)e : By the induction hypothesis, is well typed. The constraint on equality of
alias annotations remains satisfied because th&tigulon of actual alias annotations for

formals is consistent throughout the expression.

Caseconnect W) : The connect expression will be given the sarpe Bs before, except

that values will be substituted for any variableghie type. Thus, the tricky part of the
case is ensuring that an appropriate connect paitedeclared in the component that
owns the connected components. To see that ttriseisnote that all of the variables in a
connect expression must lmvned, according to the rule T@NNECT. Since the

substituted values must be subtypes modulo thetisuttim, the substituted values must

be owned by the receivér Since the receiver’s type must be a compong of the
form Z(¢) = A K, by the other checks in rule TGENECT we know that the appropriate

connect pattern is declared égonnectéA K) = connect&(¢)). Furthermore, the actual

component types in the connection must match thnsthe connect pattern, again

because this is ensured by the check in ruleoRMECT. This concludes the case.

Casee.m : The assumptions in the lemma and the inductygpothnesis are sufficient
to ensure that the arguments are well typed aridthieamethod expression is given the
same type as before the substitution. The constran the type of the receiver are also

unaffected by the substitution; for examplejeaningowned,§) = owned =

meaningd,6) by design whemis substituted foowned.

Case * se is impossible if we only consider expressions ttet appear in method

bodies. O

Now, the proof of Type Preservation:

Proof of Type Preservation Theorem: By induction on the derivation of
S,6 Fe-e,S with a case analysis on the outermost reductismused (one regular or

error reduction rule may apply, in addition to amynber of congruence rules).

Case R-CHw: We extend the store type to gi#¢he typeunique C<é , preserving the
type of the resulting expression. The store remaiell typed becauseis fresh and the

values in the fields of are initialized tonull . Also, theneighborconstraints in the T-

STORE rule are satisfied due to the precondition of TAREW rule and the assumption

that the original store was well typed.

63

64

Case R-KMw: Similar to case R-CBwv. The main difference is that we also add

appropriatedomain constructs to the store type for each instantidtedain.

Case R-RAD, R-UNIQUEREAD: Follows from store typing and the rule E&. For rule
R-UNIQUEREAD, we observe that the unique value is not duplitatace the field being
read is overwritten withnull . Thus, the uniqueness condition in TAGHINE is

preserved.

Case R-WITE: Follows from store typing and the rule TRWE, similar to R-RAD. If
the annotatiorB on the right hand side wasique , and the field on the left hand side
has an owner, we may have to update the owneeaight hand side in the store type to
refer to an object instead of tmique . However, since thenique annotation implies
v was previously unique in this case (due to theugmess clause in rule TAdHINE),
the store will still be well typed and will havesabtype of its previous typing. If the
field is annotatedinique , we know from the typing rules that the right haside is
annotatedunique and is the only non-lent occurrence of that lagain the system, so

the unigueness condition in raleMACHINE is maintained.

Case R-@sT, R-NULLCAST and R-@NNECTCAST: These reductions only apply if the

resulting expression is a subtype of the cast typehe cases hold.

Case R4livk: By simultaneous induction over the operationndf/peand mbody we
observe that the actual method has the type attdbloy mtype modulo substitutions of
ownership parametershis , and owned. By applying the rule TNvK, the term-
substitution lemma, and the rule for well-typed oels, we see that the substituted

method bodye,’s type is a subtype of the type returnedhiitype

If any of the actual arguments or the receiver wasunique , and the corresponding

formal argument is annotated with an owner, we ale to update the store type so that
the argument v has the relevant owner. Howevacesi was previously unique in this
case, the store will still be well typed and widide a subtype of its previous typing. The
store operationupdateG ensures that any domains that should be equatedtau
connections in the method body will have the sanmivalence class representative in

the store, thus maintaining the condition on donegjuivalence in rule T-MCHINE.

65

We must also ensure that maique arguments are duplicated in the method body, in
order to preserve the uniqueness condition in TUMACHINE. Here we rely on the rule
T-METH, which guarantees that no formal parameter appeatise body of a method

more than once with annotationique .

The case is completed by observing that the corgerstruct allows us to type the

method body in the context of a new receiver céagbinstance.

Case R-@TINVK: Similar to R-NvK, but we extend the induction antypeandmbody

to cover invocations on connect expressions. Eneer and receiver may have different
locations representing a shared domain, and sqplg the domain equivalence check in
rule T-MACHINE to verify that the locations representing the stiademain have the

same equivalence class representative.

Case R-ONTEXT: This case relies on the invariant that the cantesm can only exist
when variables have been substituted with locatigitisin the context expression. This
invariant is easy to show, because we do not pehmitontext form in source code, and
the invocation rules that generate the context fdanthe appropriate substitution of
values for variables. In this case, the type ef\hlue in the context expression cannot

depend on the receiver class or instance, so seetuads.

Type preservation for the cast error and null deeafce error rules follows since these

rules reduce to therror expression, and it follows trivially for the comgnce rules by

the induction hypothesis. O

Next, | prove progress, the property that a walkety program is either a value, or an expressian tha

reduces to another expression via one of the rigtuailes.

Theorem [Progress]: If = F (CTs,e ;)T , then eithee is an irreducible value, or else

S, Fe-¢€,S.

Proof: The proof is by induction on the type derivationsT,, 6 te: T for e, with a

case analysis on the last typing rule used.

Cases T-C¥R, T-XVAR, T-Loc, T-NuLL, andT-CoNNECT. In all of these base cases,

expressiore is a value, so the property holds.

66

Case T-Nw: The typing rule ensures that the right numbeowhership parameters is

specified, so one of R-Gi\W and R-KNew applies.

Case T-RaD: If the receiver is not a value, then REAR applies by the induction
hypothesis. If the receiver mull , E-READNULL applies, resulting in a null pointer
error. Otherwise, one of REHRD and R-WIQUEREAD applies, depending on the whether
the read is annotatathique , because the typing rule already checked theesdst of

the relevant field.

Case T-WITE: If the receiver or the right hand side is notaue, then either RC-
RECVWRITE or RC-ARGWRITE applies by the induction hypothesis. If the reeeiis
null, E-WRITENULL applies, resulting in a null pointer error. Othise, R-WRITE

applies because the typing rule already checkedxistence of the relevant field.

Case T-@sT: If the cast expression is not a value, then RGICapplies by the
induction hypothesis. Otherwise, all possible same covered by the cast reduction and

cast error rules.

Case T-NvK: If the receiver or one of the arguments is nofalue, then either RC-
RECVINVK or RC-ARGINVK applies by the induction hypothesis. If the reeeiis null,
E-INVKNULL applies, resulting in a null pointer error. Ifethieceiver is a location,
simultaneous induction on the operationnatypeand mbodyshows that the check of
mtypein the typing rule guarantees thmbodywill return a method body, so rule Ryk

applies.

Finally, if the receiver is a connect expressioa,apply a similar induction, but to ensure
that a provided method exists matching the requiresithat was called, we must observe
that rule T-@NNECT ensures a matching connect pattern in the art¢hrscand rule T-
PATTERN ensures that a provided method exists for evequired method in the

connected ports. By this we know that rule RrBIvKk applies, completing the case.

Case T-ONTEXT: If the right hand side expression is not a vathen RC-ONTEXT

applies by the induction hypothesis. Otherwis€&GGNTEXT applies. |

Together, progress and type preservation imply smendness—a well typed program will not halt unless
it computes an irreducible value, or one of twogilde run-time errors occur: a null dereference failed

cast.

67

Uniqueness and Ownership. The control and data communication integrity te@ws each depend on
unigueness and ownership properties. Thus, fomuamtation integrity to be meaningful, we must easu

thatunique objects really are unique, and that the ownengigtion is consistent.

Informally the Uniqueness theorem states that lonatannotatedinique really are unique (except for
lent references in the currently executing expressidpre formally, if a machine configuration is well
formed, any location annotateshique in the store type occurs at most once eitherfield in the store

or with aunique annotation in the current program expression. étimer occurrences of the location in

the current expression must be annotéet .

Theorem [Uniqueness]: If T F(CTS,e)T then
(2(¢) = unique E<Z>)a£ occurs at most once in angg O other than in the forfl"* .
Proof: This condition is checked in rule TAGHINE. O

The type rules already enforce consistency of osriprannotations within the store and the currently
executing program expression. For example, theTglore ensures that the values stored in an object’s
fields have types that are compatible with thostd§. Similarly, the rule-Loc checks to ensure that the

annotation on the location is compatible with tygetof that location in the store type.

Although the type rules enforce consistency in di@é#ar configuration of the abstract machine ytide®
not ensure that ownership annotations remain demsigver time. The Ownership Soundness theorem

states that once a location is given an owner,adiatr doesn’t change when reduction rules ardexpl

Theorem [Ownership Soundness]: If = F (CTSe 9T , =(=¢ E<& , and

S,0 ke e,S ',thenz()=r E<e .

Proof: This is a corollary of the type preservation theombove. |

68

3.3 Summary

This chapter formalized the core of ArchJava ashRd; using a small-step term rewriting semantics.
While simple enough to reason formally about, tbhtge is expressive enough to describe realistic
architecture examples and common Java implementdtimms. | formally stated a theorem of
communication integrity matching the informal défom of communication integrity from chapter 2,dan
proved that the ArchFJ type system and runtimeesystnforce it. | proved the standard type sourglnes
property, and stated uniqueness and ownership giepehat are corollaries of soundness. Proving

properties of the formal model increases confidéndbe correctness of the full ArchJava system.

In the next chapter, | take a more practical lodkAachJava, using case studies to evaluate its

expressiveness, its usability, and the benefitisitipgovides to software engineering tasks.

69

Chapter 4

Evaluation

Previous chapters have introduced the ArchJavaubagey and have applied a formal model to prove that
the core of ArchJava’s type system enforces comeation integrity. There are many reasons to believ
that the technical properties of ArchJava will prouseful, such as the acknowledged importance of
developing a good design and adhering to it wheldibg large systems. However, these propertieseco

at a cost, as ArchJava’s type system places canmtsti@n the implementation in order to supportosfnt
typechecking. It is important to evaluate thistcgs that researchers and developers can makeniado
decisions about applying the techniques embodiedrzhJava. Furthermore, as with any new tool,
developers will have to learn how to use ArchJdtectvely, to realize its potential benefits, atwdwork

around possible limitations.

In order to evaluate the costs and benefits of 2ach, and to determine how it can be used most
effectively, | performed an experiment and two csiselies. In all three cases, | began with exgsfiava
code developed by a third party, and (for the chséies) an architecture also specified by the l[dpee. |
then attempted to express the system’s aliasinterpat and/or architecture using the constructs of
ArchJava. This methodology is an effective wayest the expressiveness of ArchJava, because tiee co
and architecture to be expressed is chosen exiernshich lessens the danger of choosing the
experimental goals to match what ArchJava can esprét also gives one measure of the cost of Ancdn]

the additional effort required to retrofit an ekigt Java program with ArchJava alias and architectu
specifications. Finally, the concrete experien€esmecifying program architectures in ArchJava dael

some initial insight into how the language can bedueffectively.

The ideal way to explore the benefits of ArchJavauld be through a case study tracking a projedt tha
uses ArchJava from the design stage, through imgiéation, and extending to a few significant progra
evolution tasks as well. This evaluation strateguld confirm the hypothesized benefits of ArchJava
maintaining architectural conformance as a progemoives, and show the costs of the type system as
program changes are made. The evaluation in ltaipter falls short of this ideal, although onetaf tase

studies includes a few simple evolution tasks. Elmaw, this is an important area for future work.

Yet another evaluation strategy would be to conducbntrolled experiment evaluating ArchJava agains
other alternatives. This strategy would providerenoonfidence in the observed benefits and costs of
ArchJava. However, the nature of ArchJava makissetkperiment difficult to design. The hypothesize
benefits of architectural conformance show up prinas a very large project is evolved over tiraad it

is difficult (and potentially expensive) to perforoontrolled experiments involving large projectsdan

70

significant time scales. Furthermore, the infoibragleaned from case studies can be much mordetkta
even if there is less certainty that the conclusiohthe study will generalize to other situatiorBecause
of the cost of experiments, and because exploratasg studies provide more early detail on a system

have left an experimental evaluation to future waskwvell.

The case studies described in this chapter toalemavarying points in the development of ArchJakar
example, the Aphyds case study was done beforArtttelava compiler supported dynamic architecture or
alias annotations—and the study might have beerere#dsdynamic architectures had been supported.
Later, | returned to Aphyds and added alias animoist All of the case studies were done before |
developed the general concept of ownership domaihi&h allow more precise descriptions of aliasing
with only a few additional declarations. While skesnapshots do not represent a full evaluatiotimeof
final language presented in this document, theetsied considerable light on the properties of 2agh

and have been useful in directing the developmetitenlanguage.

The outline of this chapter is as follows. Fitstdetermine if ArchJava’s alias annotations angressive
enough to describe real Java code, | applied theraua.util.Hashtable , one of the more
commonly used and complex classes in the Javactiols library (Section 4.1). Next, | evaluatee th
practicality and engineering benefits of ArchJawatigh two exploratory case studies. The moreothgn
case study applied ArchJava to Aphyds, a pedadogiaaiit-layout application (Section 4.2). A secb
case study with Taprats, an application for desigslamic tiling patterns, tested the dynamic aedture

support in ArchJava (Section 4.3). | summarizegveuation in Section 4.4.

4.1 Alias Annotation Expressiveness

Goal. The goal of the study was to address the follovexgerimental questions:
* Can the annotation system effectively expresslibsiag invariants of collection class code?
* How much effort is required to annotate existinge®

« Can annotations be done locally, without annotagih¢ransitively reachable code?

Methodology. | evaluated the AliasJava subset of ArchJava byotting Hashtable from the
java.util collection class library (from the JDK 1.2.1Hashtable is an interesting test case for a
number of reasons. It is part of an industriatisgth library with many features and warts. Thesslmust
distinguish different ownership domains for the &keyalues, and possibly the entries in iHashtable

Hashtable is also one of the more complex pieces of thealjgrso it is a relatively challenging test

71

case. The Flexible Alias Protection paper useiinglgied version ofHashtable as a running example

in their paper, so this allows a partial comparigorelated work [NVP98].

The original source code ¢dva.util. Hashtable was 934 lines of code, including comments. |
added alias annotations by hand to Hashtable code, attempting to express the aliasing semaatics
the code with the simplest and most general anootpossible. The goals of simplicity and gerigral

are sometimes in conflict, and | discuss the trédéo more detail below.

One challenge in this case study was thashtable depends on a number of other classes in the Java
standard library. Thus, in order to typechétdshtable , the compiler must assume annotations on these
other library classes. In this study, | tested@al annotation technique intended to allow théfication

of the alias constraints within th¢ashtable code without annotating the entire Java standbrdry. |
annotated and typecheckBidshtable in its entirety, but added only minimal, unchecleuthotations to

the parts of the standard library usedHgshtable . The annotations added ktashtable are then

sound if the annotations we added to the standanaty are conservative.

Results. | was successful at annotatihtpshtable with alias types after making one change to the
source code (discussed below). In addition to fyodj the code foHashtable , partial annotations
were added to 17 other classes, includigya.lang.Object , ObjectinputStream and
ObjectOutputStream from the I/O library, several interfaces and adodtclasses ijava.util , and
seven exception classes. In most cases | onlychadnotate one or two methods from each extetaasc

suggesting that it is practical to annotate onllycal portion of a large system.

The study took about 2 hours and 20 minutes of paraging time, not counting occasional interruptions
to fix problems with the ArchJava compiler. Thssa relatively small investment compared to thestim
spent developing this library, suggesting thatdheotation system is practical for developing n®dec
However, it would still be time-consuming to adéhalannotations to a very large system; a betiatiso
is to infer the annotations automatically, or adda@ations incrementally to just the most critipatts of

the system.

In return for this time investment, the benefits tbk study include documentation of the aliasing
constraints ofHashtable (for example, it doesn’t mix keys and values), ammhfidence that the

implementation correctly preserves these constaintWhile these constraints are obvious to anyone
familiar with a hash table abstraction, this type dmcumentation would enable developers to use

unfamiliar data structures more effectively.

72

Several excerpts from the source code highlightoes learned from the study and suggest potential
benefits of AliasJava. For example, | decidedite ¢lashtable three ownership parameters: one each

for keys, values, and entries:

public class Hashtable<key, value, entry>
extends Dictionary<key, value>
implements Map <key, value, entry>,
Cloneable,
java.io.Serializable { ...

The choice of three ownership parameters is a balaetween flexibility on the one hand and simplici
and comprehensibility on the other. For examplepuld have reduced the number of parameters by
merging theentry andkey parameters. On the other hand, | could have addddional parameters
also. For exampldjashtable has methods for returning the sets of keys, vaked entries. The same
set object is returned from these methods each tiveg are called, and so the type system needs to
describe what ownership domain contains the skethose to annotate theySet method’s return type
askey Set<key> , but instead, | could have added extra ownershiprmpeters télashtable to get a
type ofkeyset Set<key> . However, adding three extra ownership paramdtetse hash table to
represent the key, value, and entry sets would rfekelass harder to understand and use. Defalles

for these extra parameters (elkgyset=key) would alleviate this problem somewhat, but theapzeters

still add what seems to be unnecessary complexityis example illustrates that the best alias aatiant

for a piece of code is not necessarily the mosegen

The private innerEnumerator class below is part of the original, unannotatediec defining an

Iterator over the keys, values, and entries oftfashtable

private class Enumerator implements lIterator {
int type; // KEYS or VALUES or ENTRIES
public Object nextElement() {
Entrye=..;
return type == KEYS ? e.key :
(type == VALUES ? e.value : e);

}

The same code is used for keys, values, and erfiesalue returned hyextElement is determined by
the value of théype flag. Because | wanted to use separate ownepargmeters for keys, values, and
entries, | could not give this code a static typatavas. Instead, | converted this code to alwaysrn an
entry so that | could give it the alias typatry . | then defined two wrapper classes that implémen
Iterator and extract and return the key and value from Hash table entry returned by

Enumerator.nextElement

The set oHashtable keys is implemented with a simffeeySet class that illustrates how inner classes

are handled in ArchJava:

73

private class KeySet extends AbstractSet<key> {
public unique Iterator<key> iterator() lent {
return new KeyEnumerator(true);

/I other methods...

}
In this code, clas&eyset can reference thkey parameter of the enclosingashtable class even

thoughKeySet has no ownership parameters of its own.

The classCollections contains a set of static methods that are usedanagy of the classes in

java.util

public class Collections {
public static unique Set<elements>
synchronizedSet<elements>(
unique Set<elements> s) {
return new SynchronizedSet(s);

}

The synchronizedSet method is used by theashtable to synchronize access to its key, value, and
entry sets. This method shows the need for megiamdmeterization in the AliasJava annotation system
synchronizedSet needs to be parameterized by the owner of theeglmin the collection so that it

can be used to synchronize sets with any elemeatzder.

The comment for the method above states, “In a@lguarantee serial access, it is critical #ihaccess to
the backing set is accomplished through the retuset.” In other words, there should be no linggeri
aliases to the set passed to this method, becagsssathrough these aliases would not be synclawniz
The original library did not enforce this consttaihowever, | used alias annotations to enforce thi

constraint by annotating the set argument witlque .

Problematic Classes. As described above, | annotated a number of othesses in addition to
Hashtable ; these annotations were not checked by the compilé Hashtable was checked against
the asserted annotations. In general, the anonsatve applied to classes other tldashtable were
what we would expect to have used if the compibed heen checking those annotations as well. T lo
exceptions were certain methods @ljectinputStream and ObjectOutputStream . The alias
annotations expressed the conceptual semantics heket serialization-related methods (e.g.,
writeObject accepts dent argument andeadObject returns aunique object). This conceptual
semantics is incorrect, because the actual impl&tien of serialization methods stores objectsriraby,
so that if an object is written twice to a stredhg reconstructed object will be read twice. Aitgb it
would be nice to express the precise semanticera@dlization in AliasJava, the type system is nowerful
enough to model this. However, annotating thdsady methods with unchecked alias types allowtous

successfully typecheck clients of these classes.

74

Summary. My experience annotatingva.util.Hashtable shows that the alias annotations in
ArchJava are able to express some of the aliagingtaints of a small but complex body of existiaya
code. To the best of my knowledge, no previoug typstem supporting ownership-based encapsulation
has been evaluated in practice on Java library .co8bhowing that ArchJava’s alias annotations are
practical and support reasoning in ordinary Jawdeds an important first step towards ensuring that

full ArchJava language is practical and beneficiahe next two sections take another step towdrids t

goal by evaluating the architectural features afliava through case studies on real applications.

4.2 Case Study: Aphyds

In order to evaluate the practicality and engimagbenefits of ArchJava, | used an exploratory chisdy

to answer the following experimental questions:
e Can ArchJava express the architecture of a reglrano of significant complexity?

« How difficult is it to reengineer a Java programarder to express its architecture explicitly in

ArchJava?

» Does expressing a program'’s architecture in ArchJelp or hinder software evolution?

4.2.1 Methodology

My approach to answering these questions was twslate a Java program into ArchJava, using the
conceptual architecture provided by the prograne'¢etbper as a guide. In addition to a direct answe
the first two questions for the chosen program mredyrammer, | hoped to gain some insight into Hielt
guestion. Other goals included learning about ¢dbaceptual architecture of Java programs, gaining
practical experience using ArchJava, and refinimgh8ava’s language design. In the process ofdke c

study, | formed hypotheses for future researcHirmdt in bold below.

| looked for Java programs that would be at le@s000 lines of code—large enough that a developer
would have difficulty keeping it all in his or héwead, and thus might benefit from an explicit safiv
architecture. To reduce any bias toward architesteasily expressible in ArchJava, | chose a pragr
and architecture conceived and developed by a ffarty. My choice for the initial case study whs t

Aphyds program described in the next subsection.

| was the participant in the case study—at the timeyraduate student with five year’'s experience of
systems programming in Java. Although | was theeldper of the ArchJava compiler, | was unfamiliar
with Aphyds and had little experience writing uggterfaces in Java. Thus, the study reflects ancom

reality of a programmer asked to evolve an unfamgiystem.

75

| reengineered Aphyds to express the conceptuliitacture described by the developer. After brogsi
the code to determine which classes correspondetheocomponents in the developer's conceptual
architecture, | converted these classes into Arghd&@mponent classes. The resulting architectae w
finer grained than the developer’s conceptual &chire, so | grouped the component classes igteehi

level components.

In order to gain insight into ArchJava’'s support fsoftware evolution tasks, | performed three
experiments. First, | analyzed the inter-comporemhmunication patterns in Aphyds, describing and
categorizing each different message. Next, | tefad the architecture to simplify and regularirese

inter-component communication patterns. Finallyerhoved a defect from both the original sourceecod

and the ArchJava version of Aphyds.

The next two subsections describe the reenginegrocess and the software evolution experimentse T
initial study was done on an earlier version of Afava, without alias annotations, so | also reporhow
the experience affected the ArchJava language mesigl on a later expansion of the study to inc@teo

alias annotations as well.

4.2.2 Reengineering Aphyds

Aphyds, for_Academic_Phsical Design_§stem, is a pedagogical circuit layout applicatiaritten by an
electrical engineering professor for one of hisseés. Students are given the program with sekesal
algorithms omitted, and are asked to code the ifthgos as assignments. The developer is an expeden
programmer with a Ph.D. in computer science, bdt i@ Java background prior to writing Aphyds. The

application code is 12,101 lines long, not countlmgJava and Symantec libraries used.

Figure 24 shows the developer's drawing of the ephaal architecture of Aphyds on the left, whichigs
drawn on the right for clarity. According to thew@loper, this abstraction allows him to evolve gistem

even though the code base is too large to holisihdad at once.

Validating Aphyds’ Architecture. | expected that this architecture would be gdheaacurate, although

it might leave out some details. The developercooed, saying that all of the links in the arctitee are
present, but may be subtle to find. Furthermadne, division between Ul and functional classes is an
important conceptual device for him, but he told that this division would not necessarily be obgiou

from looking at the code.

| decided to test this hypothesis by using the ék@h Model technique [MNSO1] to compare the
connections in the developer’'s conceptual diagratn actual communication patterns between classes i

the source code. To each of the developer's cdunabpomponents, | assigned one or more

76

; ; .)
Cirenit Viewe, Bgar feloiibes

User Interface
Channel Routé
Viewer
Place & Route
Floorplan Viewer
Vewer

Circuit § tabase & Compuyifation Code
/Koo \ circuit
Q(I/\h‘fr\‘“/ / "‘) ‘
\4}3 \ node¢— net e
1 .
([c/cv ,Pl.L e ()/(cle

Floorplanner '

Figure 24. The architecture of Aphyds. On the left is the deeloper’s original drawing, which has been redraw
on the right for clarity. The architecture follows the Model-View design pattern, with the user interface abou
the line in the middle of the diagram andthe circuit database and computational code belowThe user interface
consists of theCircuitViewe r window and several subsidiary windows. Below théine are a circuit databas:
of Node and Net objects and a set of computational modules that aon the drcuit database. The unlabele
arrows represent data flow, while the arrows label@ call represent control flow.

implementation classes. |ignored library classesvell as data structures shared by the wholecagiph.
| compared the call graph computed by a simple timtihe arrows in the developer’s diagram, revey Hire

direction of his dataflow arrows to reflect contfiolw in the opposite direction.

Overall, the architecture was a good overview aghgmnication in Aphyds. However, the study revealed
several minor missing communication paths in thehisecture. For example, although most calls i th
application go from the user interface into the elpdie found two callbacks going the opposite dicec

| also discovered that the communication paths éetwtheCircuitViewer and the other viewer

objects were actually bi-directional.

Moreover, this architecture is also incomplete e@me important respects. It does not describe the
multiplicity or temporal lifetimes of component$t does not show the internal details of componesits

example, the CircuitViewer component is made up@feral panes and sub-windows that might be of
interest to a developer evolving the program. 8dveomplex and messy multi-object communication

protocols, dealing with diverse issues, are rempteskewith single lines in the architecture.

Although the developer’s conceptual architectures wedormal and flawed in certain respects, thisis

realistic example of common practice today. Mamgvedopers do not define a formal and precise

77

architecture, but instead communicate the struaititheir applications through informal diagran@ne of
the motivations for ArchJava is to provide an easy for developers to gain the benefits of a formal
architecture, by embedding it in the code that theye. My experience with the conceptual architee
of Aphyds is summarized by my first hypothesis, aihtorroborates findings in the Reflexion Model kor
[MNSO01].

Hypothesis 1: Developers have a conceptual model their architecture that is

mostly accurate, but this model may be a simplifidgon of reality, and it is often not

explicit in the code.
Reengineering Process. decided to design a static architecture thabfedl the developer’s drawing as
closely as possible. Therefore, | proposeddphyds component to encapsulate the whole application.
The Aphyds component would contain the Ul components, and ldvoconnect them to an
AphydsModel component, which would contain a subcomponentefarh unit in the lower half of the
developer’s diagram. | decided that tiede andNet objects in the circuit database would remain ghare
between components; it would have been extremehatunal to restrict them to within th@ircuit
component.

Hypothesis 2: Programming languages that prohibitsharing data between

components are too inflexible to express the naturaarchitecture for many

programs.
| proceeded to reengineer Aphyds to take advantdgthe architectural features of ArchJava. My
technique was to choose one class at a time frenatthitectural diagram, and turn it into a compdne
class. | started with th€ircuit class, as this forms the central part of the sechiral diagram. |
expected that this process would primarily congiétconverting instance variables into ports or
subcomponents, invoking methods on ports insteadnstance variables, and connecting the ports

appropriately in the architecture.

The structure of the Aphyds implementation mads thsk more difficult. | initially believed thahe
architectural drawing represented a set of objad¢tese membership didn't change over the course of
program execution. This was in fact true of therusterface, but the circuit database and comioumait
components were re-created each time they werefreada file or executed. There were a number of
methods that set instance variables in the userfate to point to these components; however, nediny

these methods also had side effects such as riefgetble screen.

| decided to convert the system into a static &chire with components that persisted for therenti
execution of the program. My rationale was tha #rchitecture would be simpler to reason aboan th
dynamically changing architecture. Therefore, dnsformed Aphyds to re-initialize old circuit data

structures instead of creating new data structeaes time the circuit was loaded. | also separatedhe

78

refresh logic from the instance-variable settingssages, so that the architectural connections dmikkt
up at startup time, but the display would still Wwoproperly throughout program execution. This
reengineering process introduced a number of sutttes, partly because | did not recognize the dual
nature of these messages until partway throughttiy.
Hypothesis 3: Describing an existing program’s arcitecture with ArchJava may
involve significant restructuring if the desired architecture does not match the
implementation well.
Reengineering Cost. Due to the complexity of separating out @igcuit component and my initial
unfamiliarity with the application, this first regimeering step took a significant amount of time—atfy

programmer hours, including time to fix severalntentionally injected defects.

One of the reasons this task may have been diffisuhat it was done in a single large step, inval
significant application restructuring. An importamefactoring principle is to test a program repdat
while making incremental changes, rather than ngpkitarge change all at once [FBB+99]. If | hagtfi
transformed the code into an equivalent Java progréth a static structure, and only then converted
Circuit into a component class, | might have been abtietect and repair injected defects earlier and at
a smaller cost.

Hypothesis 4: Refactoring an application to exposés architecture is done most

efficiently in small increments.
| found support for this hypothesis when transfoignthe remaining classes into components. These
smaller tasks went quickly, taking between 30 abdrénutes each. | spent a total of 30 hours warkin
Aphyds—15 hours converting the model into compone®¥% hours converting the user interface into
components, and 6% hours refactoring the resuéiichitecture (as described below). This workstout
approximately 2% hours of work per KLOC. The catreode is 12,652 lines long—only 551 lines longer
than the original application.

Hypothesis 5: Applications can be translated intéArchJava with a modest amount

of effort, and without excessive code bloat.
Further study is needed to validate this hypothesitarger programs, and to determine how the atnaun
time spent in translation varies with the size laf fipplication and the extent of architectural gtefiang

required.

Final Architecture. Figure 25 shows the ArchJava code that expressesrithitecture of Aphyds.
Although the case study was done before alias ations were added to ArchJava, | have added them to
the example for clarity. Compared to the devel@p&onceptual architecture, the final ArchJava
architecture describes almost identical commurdcagiatterns within the circuit database and betviken

user interface and the database. The multi-waymuamication between windows that was missing from

public component class Aphyds {
/I user interface components
final owned FloorplanViewer floorplan = ...;
final owned ChannelRouteViewer channelRoute = ...;
final owned PlaceRouteViewer placeRoute = ...;
final owned CircuitViewer viewer = ...;

/I window event communication
private port window { ... };
connect window,channelRoute.window, viewer.window, placeRou

/I command protocol
connect viewer.command, placeRoute.command, channelRoute.co

/I model components
final AphydsModel model = ...;

/I protocols for communication with the model
connect viewer.circuit, placeRoute.circuit, model.circuit;
connect viewer.partition, model.partition;
connect floorplan.floorplan, model.floorplan;
connect placeRoute.place, viewer.place, model.place;
connect placeRoute.router, viewer.place, model.router;
connect channelRoute.channel, model.channels;

/I the program’s starting point
public static void main(String argsf[]) {
new Aphyds().run();

public void run() { viewer.setVisible(true);}

}

public component class AphydsModel {
final owned Circuit circuitData = ...;
final owned Partitioner partitioner = ...;
final owned Floorplanner floorplanner = ...;
final owned Placer placer = ...;
final owned GlobalRouter globalRouter = ...;
final owned ChannelRouter channelRouter = ...;

public port place{... }
public port partition { ... }
public port floorplan { ... }
public port circuit { ... }
public port router { ... }
public port channels { ... }

connect circuit, partitioner.circuit, floorplanner.circuit

79

te.window, floorplan.window;

mmand, floorplan.command,;

, placer.circuit,

globalRouter.circuit, circuitData.main, ¢ hannelRouter.circuit;

connect place, globalRouter.place, placer.place;
connect partition, partitioner.partition;

connect floorplan, floorplanner.floorplan;
connect router, globalRouter.router;

connect channels, channelRouter.channels;

}

Figure 25. ArchJava code for the Aphyds and Aphyddodel components. There are subcompone
declarations for each element in the user interfaceas well as a model component that contains t
computational code. Connect declarations show commication patterns between components.

the original architecture but was present in thegmm has been consolidated into thiedow port of

Aphyds .

80

Aphyds

window

CircuitViewer

A

PlaceRouteViewe ChannelRouteViewe|

/

Figure 26. A visualization of Aphyds’ architecture, automaticdly derived from the ArchJava
source code. Boxes represent subcomponents, andoavs represent intercomponent contro
flow. The oval dendes the window port, used for window management meages like scree
refresh. The circuit database and computational ate in the developer’s diagram have bet
isolated in theAphydsModel component.

=

FloorplanDialog

AphydsModel

Figure 26 shows a visualization of the current Aghyarchitecture, generated automatically from the
ArchJava code. The developer of Aphyds examine@atfier version of this diagram, and said that it
captures his conceptual architecture well, inclgdire separation between the user interface andritugt

database.

The ArchJava architecture has a number of advasitegmpared to the original, conceptual architecture
ArchJava architectures are guaranteed to be complisting all method call communication between
components. The ArchJava architecture is guardritestay up-to-date as the code evolves with dhgng
requirements, and a visualization can be generatgédmatically. Finally, it is easy to zoom in on a
ArchJava architecture to look at the interior snoe of a component, determine what methods aeadmh

port, or examine how the methods are implemented.

Alternative Architectural Choices. In the study, | tried to implement the developetsnceptual
architecture as directly as possible in ArchJadawever, an architect could have expressed angwral
alternative Aphyds architectures using ArchJavar éxample, | could have factored the architechye
functionality, combining each user interface windaith the logic that computes the information the
window displays. Alternatively, | could have foled the original source code more closely, creading)
connecting the model elements on demand as ciranits windows are opened. ArchJava is flexible

enough to express these architectures, if the aoétarchitect deems them more appropriate.

81

4.2.3 Software Evolution

In order to gain insight into using ArchJava forfteare evolution tasks, | examined three concrete
problems identified by the developer: understandingnmunication within the program, refactoring the

program to clean up its architecture, and fixintedts related to display updates.

Program Understanding. When | asked the developer if there were any problsevith the current
structure of Aphyds, he said that communicationvben the main structures was awkward, especiatly wi
respect to change propagation messages. He saithih problem makes it difficult to add new faatito
the system. This problem had a number of soutbesuser interface was partly automatically gererat
the developer was new to Java when he startedite the program, and the program grew gradually ove

time as features were added.

My experience while reengineering Aphyds corrobestathe developer's assertions. Using ad-hoc
methods to manually trace method executions waffestve, because different methods with similar
names often did different things, and each methpitally depended on the operation of several athém

the original program, the communication patternsen@bscure enough that it was hard to analyze and

critique them.

After | initially converted Aphyds to ArchJava,liecame clear that the program’s communication tstreic
remained inconsistent and unnecessarily compleameSof these problems had been introduced while
refactoring Aphyds to express the architecture levbome were left over from the original sourceecod
However, in the modified program, the port desaipg made communication patterns explicit, andhgo t
communication problems became obvious simply bkitapat the methods defined in the ports.

Hypothesis 6: Expressing software architecture iirchJava highlights refactoring

opportunities by making communication protocols exficit.
| decided to systematically analyze the commurocapatterns to find opportunities for refactoringor
each category of messages, | examined the soud tooidentify the messages’ purpose, the message

implementers, the message invokers, and the ineociigger conditions.

ArchJava’s language constructs and its guaranteeowimunication integrity eased this communication
analysis. Simply scanning the required and pralidethods in each port showed which methods are
invoked by and which are implemented by each compbnPorts also focused attention on the subset of
component’s methods that are involved in inter-congmt communication. The name of a port also gave
clue about the purpose of the port’'s methods. €ctimons showed which other component instancestmigh

implement a given component’s required methods.

82

Automated tools could have gathered some of thimectivity information from the original Java pragr.
However, these tools would require sophisticatedsahnalysis to support the level of reasoning tbou
component instances that is provided by ArchJaeal:mmunication integrity. Furthermore, ArchJava
makes this connectivity explicit at the source ctelel, and an architect can use ports and cororectd
express design intent in a way that tools cannplichte.

Hypothesis 7: Using separate ports and connectionto distinguish different

protocols and describing protocols with separate mvided and required port

interfaces may ease program understanding tasks.
Refactoring Architectural Communication. The communication analysis based on the ArchJava
architecture yielded a number of refactoring oppaties. For example, the window refresh logic had
been identified by the developer as troublesontaeroriginal application. | found that there weeveral
different refresh methods, each of which affectesubset of the windows. | refactored these inte on
refresh method that accepted a list of windowsefeesh, and modified the method call sites to séfrenly

the windows affected by the surrounding code.

| found another refactoring opportunity in the detealidation code. When a new circuit is loadetbithe
program, data computed about the old circuit mastrivalidated. Originally, this was done from many
different places in the user interface code, uglifterent message protocols. First, | refactorbd t
invalidation methods to give them consistent naamas semantics, and then | simplified the user fater

code by moving the invalidation logic from the usgerface into the model.

After this refactoring step, communication in Apkydas considerably easier to understand. Refagtori
eliminated a number of methods and even entiregosaits of communication. The communication
categories in the user interface that remained adfactoring includenenu updatewindow refreshand
open/close/show windownessages. Between the user interface and the mtuelcommunication
categories wer@ser interface callbackkcommanddata query data update andvalidity checkmessages.
This experience suggests that the explicitnessatfitactures in ArchJava may help developers tatifle

and refactor poorly written code.

Architectural Refactoring during Translation. While reengineering Aphyds to express the deexlsp
architecture, | found that ArchJava’s communicaiitiegrity rules forced us to refactor problematide.

For example, clagShannelRouteDialog enabled a menu item as follows:
getDisplayer().getViewer().ChannelRouterMenultem.se tEnabled(b);

This code traverses a series of object links befafiéing a method on the final object. It violateslesign

principle known as the Law of Demeter [LH89], whistates, “Objects should only talk to their immeelia

83

neighbors in a system.” Code like this makes ayam fragile, because this line may break if anjecb

in the sequence of links is changed.

In ArchJava, this code violates communication iritgg because it makes a method call across
architectural boundaries without using a connectipi shared ownership domain. Therefore, dutieg t
reengineering of Aphyds, | was forced to refactis tode to call a required method on a local pelnich
was connected through the architecture to the tuateenables the menu item.
Hypothesis 8: Communication integrity in ArchJava encourages local
communication and helps to reduce coupling betweetomponents.
Fixing Defects. Aphyds’ developer said that there were subtle defatthe window update code. To
investigate how ArchJava affects the defect-fixprgpcess, | identified and removed a defect that was
present both in the original Aphyds code and inAhehJava version. The defect occurred whenewer th
user changed the location of one element in a dociteuit. The program did not re-compute the irayt

data, and so the routing display was left in aomsistent state.

This was a relatively trivial defect, and the sintwas the same in both versions: | added a oathe
doGlobalRouting function from the code that moved the circuit edam | repaired the defect in the
ArchJava version first. The repair involved addamgputer port to the component that moves the circuit
element, callingdoGlobalRouting on that port, and connecting the port to the moidelthe

architecture.

Fixing the bug in the original Java version wasaggiually simpler, since | didn’t have to creatdiok up
the extra port. To my surprise, however, the agaraactually turned out to be more complex andtoo
longer, because it was difficult to figure out htavget a reference to th@lobalRouter object. The
following code shows the complex chain of objecéshad to traverse to fix this bug:
getDisplayer().placeroutedialogl.placeRouteDisplaye rl.getCircuitGlobalRouter()
.doGlobalRouting();
This defect-fixing example is extremely simple amdy not generalize to more complex defects. The
comparison above is confounded by many factordudirng the order in which the defects were repaired
the confusing user interface source code in thgirad program, and my familiarity with the two vienss
of the source code. However, it illustrates theeptial of software architecture to ease softwaigion
tasks by making structure more explicit.

Hypothesis 9: An explicit software architecture canmake it easier to identify and
evolve the components involved in a change.

84

4.2.4 ArchJava Language Changes

While reengineering the Aphyds architecture, | oi@red a significant shortcoming in the original
ArchJava language design. At first, the languagk bt include alias annotations to control object
aliasing, and so it placed restrictions on confiiml from objects into components. For examplggeots

could not store references to components, and coemalasses could not inherit from object classes.

These restrictions created a significant problenfriamework libraries such as the Swing library {#88]
used in Aphyds, because these libraries were nittenrusing component classes, yet they must often
invoke component methods. This made it imposdiblexpress any meaningful architecture for Aphyds,

since all of the application’s control flow is deiw by the user interface.

Initially, | decided to extend the language by wiltg port declarations within objects, and permgti
components to make connections between objectsttasid own subcomponents. This had the crucial
advantage of allowing me to work incrementallyngf@rming one class at a time into a componensclas
by connecting its ports to ports of the surroundoigects. In the reengineering process, | made the
database classes into component classes, andlyiniifa the user interface classes as they wedeljrag
ports for communication channels that led to thalse. However, the thorniest architectural goklin
Aphyds were in the user interface interactions, aimte | didn't make the user interface classes int

components, the architecture didn’t help with thesiblems at all.

In order for ArchJava to aid reasoning about comination within the user interface, | decided tooals
allow component classes to extend regular clagsgésnterfaces, so that legacy libraries could irevthe
inherited methods of components through referetadise appropriate superclass. Although any orglina
object with access to a component’s ownership dontan invoke the inherited methods of that
component, the new methods introduced in the comptoran only be called through declared connections
in the architecture. These are the methods thaitees the application logic that | felt was essdrit
capture and reason about with software architectdrieis solution conveyed the architecture of tkeru
interface much more effectively, and was respoasiior a disproportionate amount of the software

engineering benefits | observed.

4.2.5 Alias Annotations for Aphyds

After designing and implementing AliasJava, | conéd the case study by adding alias annotatiotiseto

Aphyds source code, with the goal of answeringdliewing experimental questions:
* Is the annotation system practical on realistidiapfion code?

» Does the annotation system help to encode applicafecific architectural constraints?

85

Methodology. In this study, | focused on the model part of AphydVly goal was to express the data
sharing relationships between the components inattohitecture. Thus, | applied AliasJava to the
AphydsModel class representing the overall model’s architegtas well as th€ircuit repository
and the five computational module classes. Thedarge classes comprise 3550 lines of code. |
typechecked the alias annotations in these clagg@iast annotations | added to parts of the integfef
the Java standard library and the rest of the Aplayapblication.

Results. The study took about three hours and 40 minutes—ttessa quarter of the time that it took me
to express the control-flow architecture of the egrart of Aphyds. The alias annotation system gobb
required editing more lines of source text thandhdier, control-flow architecture annotationsovt¢ver,

the alias annotations did not require changing exigting source code, just adding annotations. In
contrast, expressing the control-flow architecttequired significant source-code refactoring to engéte

code conform to the developer’s intended architectu

| discovered almost immediately that it was quigglibus to annotate the many method arguments
(including this) and local variable declarations that havier# annotation. | have since malmt

the default annotation for method arguments andlsoc

The annotations in the architecture show the siflsharing in this repository application. Thecait
database declares a single ownership dordata that represents the circuit elements in the damba
Since all of the other computational componentadhese circuit elements, they also declaredhisain
in the ports they use to connect to the databhasiéd not use theshared annotation except for objects of
typeString . String objects are immutable in Java, so | did not feat it was important to track their

aliasing patterns precisely, and making stristggred simplified the annotation task.

The annotations in ports used for communicatiorwbeh components also show the semantics of the
methods used for inter-component communication. thbtés that return computed data typically take
lent parameters and return results annotated eithiggue or data . In contrast, methods that set data
usually take parameters withata annotations. These annotations also showed lileabbjects shared
between components came from a small set of classkgling circuit elements and data structures tha

reflect their organization into a circuit.

4.2.6 Aphyds Case Study Summary

| was able to capture the conceptual architecttiigpbyds effectively in ArchJava with a small amowf
effort relative to the size of the program. Thaglaage made the architecture explicit, and exprgssi
communication protocols through ports helped t@amrlap communication in the program. The ArchJava
compiler helped me in the restructuring task byosmifig communication integrity: it wouldn't let me

forget any communication backdoors between compsnen

86

4.3 Case Study: Taprats

In this section, | describe a case study that ewefuArchJava’s support for dynamic architectures a
component inheritance, and provides another pedaticaluation ArchJava. In the case study, | gitaim

answer the following experimental questions:

 Is ArchJava expressive enough to describe a rechitacture whose precise structure is

determined at run time?

* How does the difficulty of reengineering a Javagpam in order to express its architecture vary

with the program’s characteristics?

* What might be the benefits of expressing a progsaarchitecture in ArchJava?

4.3.1 Methodology

My methodology in this case study was similar te firevious one. | asked the developer to draw the
conceptual architecture of Taprats, and then atiunfm express the architecture of the programgusin
ArchJava. In the process of the Taprats case studdfined the hypotheses formed in the Aphydscas

study, and made new hypotheses, outlined in bdtabe

The next four subsections describe the processe@figineering Taprats, a comparison to the earlier
Aphyds case study, an analysis of what we learteditathe ArchJava language, and a summary of the

benefits of reengineering Taprats in ArchJava.

4.3.2 Reengineering Taprats

Taprats [Kap00] is an application for designingusic star patterns. The user first chooses a s
pattern from a library, then defines the exact skagsed within the tiles, and finally renders tksign in
one of several styles. Different windows are pded for these tasks, and the user can simultaneousl

work on different variations of a single design.

The developer of Taprats is a computer scienceugtadstudent and an experienced Java programmer.
Taprats won the grand prize in the 2000 ACM/IBM &ufer Java, and can thus be considered a model
Java program with a quality design and implememnati The application is 12,540 lines of Java source

code, as measured by the Unig (word count) program, not counting the Java liesused.

87

Usel's powie & Vs . .
User's Point of View

e Cord k -
| ha (ot _lﬁ_)\vbessu@\rw »%—5\ ve«,\%u(%w%j Tiling Tiling Design Prototype Design

__,A Card Editor Preview
==

= —>
/ Map
=)
&‘* — - A
Decom aom Edrcor Decoration
i em(r?‘ ’ g Editor
Wﬁe e |

—
\\M‘uw,\\ Povne s

A

Internal Point of View

[Reonmee e
I ! ”“"‘C'-f“hq T Prototype Planar Map RenderStyle
\r\ Wy (T e | 5 | tendecSryle \ | \Vertices | RenderPanel
O i ; Edges
,} (rettse >—5F‘5~1 | e I %M&r\ovu[) Tiling g

Figure 27. The architecture of Taprats. Onhe left is the developer’s original drawing, whicthas been redrawi
on the right for clarity. At the top of the drawing is the user’s point of view, describing the foumain usel
interface windows, what they look like on the scrae and what data structures are passed from one window
the next. At the bottom are the internal data stretures, beginning with aTiling that is nested within ¢
Prototype , which first evolves into aMap and then has rendering style information added.

| asked the developer to draw the conceptual aciite of Taprats. He drew two diagrams, one
representing the user interface and one represggetithinternal data structures. The left sideigtife 27

shows the original diagrams, which are redrawn lun right side of the figure for clarity. The user
interface is a pipeline architecture of four windgveach of which passes an increasingly detailéal da
structure to the next window. The internal viewowh how data structures are contained within and

produced from each other.

Validating Taprats’ Architecture. | began the study by examining the Taprats souozke do try to
determine how it corresponds to the developer'sceptual architecture. | discovered that thain
method in theProgram class created the first user interface window, tvad each successive window

spawned the next one in the action code for theogypjate button.

Although the conceptual architecture of the useerface showed a sequence of windows, the
implementation structure was more like a nestingnvofdow instances, where each window object is
responsible for creating child window objects fbe tnext tile design stage. Thus, my experiench wit

Taprats supports a hypothesis from the previous stagly:

88

Hypothesis 1 (again): Developers have a conceptuabdel of their architecture that

is mostly accurate, but this model may be a simplifation of reality, and it is often

not explicit in the code.
Architectural Design Principles. ArchJava provides two kinds of objects with which build
applications. Component objects allow developersspecify the communication patterns within an
architecture, but the compiler’'s communication gnigy checks limit the ways in which component altge
can be used. ArchJava also provides ordinary dhjects, which allow data to be shared according to
system of alias annotations, but which cannot teel te specify or check architectural propertieesibn

principles are needed to help determine whereaacamponent objects and where to use ordinary tshjec

Using the intuition that architecture is most intpot at the largest scales in the application,dabethe
study by creating a component representing theeehtiprats application, and then refined this aechire
to increase its level of detail. | developed th#ofving guidelines to choose which application extig

should be components in the architecture, and wdnietbest left as ordinary objects:

e Scale. The larger the scale of the component, the moogrpam understanding and evolution
benefits may be gained by making its internal stmgexplicit. This is primarily because other
tools for program understanding (including browssayrce code) are the least effective at large

scales.

» Sharing. ArchJava supports a hierarchical view of softwarehitecture, and therefore does not
allow a component to be shared by two containerpmmmants. Thus, structures that are shared
between components should be left as ordinary thjenless the sharing can be easily replaced

with method calls through the container componegmb’s.

« Database objectsSingleton objects that encapsulate informationeshdry multiple components

are good component candidates, forming a repositatyitecture style.

» Data structures.Small data structures that have many instancessndhared or passed between
components are best left as ordinary objects. Jaed's component mechanisms may be too

heavyweight to use at these small application scale

« Cooperation. If a set of objects communicate with each otlmecamplex ways, making them
component classes in an architecture may aid pmogunderstanding by making the

communication patterns explicit as connectionh@drchitecture.

» Lack of communication ArchJava’'s architectural features can be usetbtmment the invariant

that a set of components do not communicate dyregth one another.

89

These principles are not orthogonal; a designert make tradeoffs based on the applicability of the
different design criteria, and the specific natofehe application. | hope to refine these degignciples

based on future experience with ArchJava.

Architectural Design. Applying the design principles above, | initiallgdused on the architecture of the
user interface, as shown in the top part of Figite My rationale was that the user interface éshighest

level of scalein the application.

As | reengineered Taprats, | used the architeati@sign guidelines to flesh out the initial architee.
Following the developer’s conceptual architectinmade each user interface window into a componeént.
then refined the architecture by making severaldaim panes into subcomponents of their containing
window, either because there was significemperationbetween the pane and the window, or because |
wanted to document the fact that the panes washaredand theydid not communicatevith other
components. Ultimately, | decided not to encodelibttom part of Figure 28 in the architecture,duse

these arelata structureshat are passed along the user interface pipeline.

Parts of the user interface architecture made sixteruse of inheritance, exercising ArchJava'’s supifor
component inheritance. For example, the user fatter employs window panes of different classes
depending on the tiling pattern chosen by the uSeprats’ design shows how inheritance can beuligef

a component-based system.

Code Restructuring. As described above, each window in the user interfereates the next one,
suggesting a series of nested windows rather thaipedine of windows. In order to make the deveiop

conceptually linear architecture more explicitecaled to make two structural changes to the agubic.

First, | made the windows siblings in the architeetinstead of being nested within each other.that
time, ArchJava components could only be createthby container component, so | had to move all the
application’s window-creation code into tlRrogram class. This change complicated the application
slightly, because each window had to call into tlomtainer component to create the next window.
However, it has benefits as well: the new desigmnwshthe conceptual architecture more directly tthemn
original design. This “factory pattern” design [G+94] also decouples the different user interface
windows, because each window no longer specifiastgxwhich window will be created next and how it
will be created. This information is hidden withihe container component, potentially allowing the

interface to be modified at a smaller cost.

90

Hypothesis 10: Using ArchJava to express softwarerchitecture explicitly can aid
information hiding by encouraging developers to redce coupling between different
components in their architecture.
In a post-study interview, the Taprats developead $hat this change made the ArchJava architecture
appear more like his conceptual architecture, Imatught that there should be some way to allow

components to be constructed by their siblingfénarchitecture.

Second, instead of passing tiling data from onedaimto the next via an argument to the latter wimdo
constructor, | created explicit connections betwdenwindows, along which the data could be pasded.
made this change in order to express the develpericeptual architecture as directly as possitrid,the
developer agreed that the new design helped tongalish this goal. However, a serious drawbackhef t
new design is that windows are not completelyafited when the constructor completes, but remaia i
partially initialized state until the tiling data passed via a separate method call. Becausasofthk

developer said that he would not have made thisrgkarchitectural change.

In response to this concern, | added connectiostoaetors to the language. With these constructos
window can request a connection to the next, pgsalhappropriate initialization parameters, and th
implementation of the connection constructor in¢bataining component can create the next windaiv wi
the appropriate parameters and connect the twetljireThis solution expresses the architectureatly,

eliminates coupling between windows, and avoidsitiagvbacks of my original solution.

Reengineering Processl performed the reengineering as a series of smfattoring steps, compiling the
program and fixing introduced defects after evéags. Thus, | never went more than an hour witlzout
correctly running program. This methodology waggasted in the Aphyds case study, after | tried to
make many changes at once and ended up introdsewveral hard-to-repair defects. | found that this

methodology was effective at limiting defects irststudy.

To understand the process of reengineering a progwamake its architecture explicit with ArchJava,
recorded the major refactoring steps | performed] eategorized them into the following refactoring

patterns:

e Change class to component cla¥éhen a class describes an object that is patteoérchitecture,
change it into a component class. This may recaaying other refactorings in order to pass

communication integrity checks.

» Move creation to container componelifhen a component creates one of its sibling corapts
in the architecture, create a port in the comporsmd its container with a single method,

requestCreate . The container component creates the siblingduestCreate , connects

91

it as appropriate in the architecture, and optignaturns a connected port to the original child
component. This refactoring is probably done nweanly with the new connection constructor
facility, mentioned briefly above, and presentedétail in other work [ASCNO3].

» Change a field link into a connectioiVhen a component has a field that refers to &ngib
component, replace the field with a port that cimstall of the methods invoked on the sibling
component. In the container component, connectdngonent’s port to a corresponding port on
its sibling, and then convert method invocationsttom field into invocations on the appropriate

port.

In addition to these major refactoring steps, Iduseveral conventional refactoring patterns [FBE+89

well as a few more minor refactoring patterns tiratspecific to ArchJava.

Reengineering Cost. | spent about 5% hours reengineering Tapratgbout 30 minutes of work per

thousand lines of code. Of this time, approximatedlf was spent in design activity—understanding th
structure of the original program, planning the \@sion to ArchJava, considering architectural
alternatives, and examining the final architectimecompleteness at the end. Because the devetdper
Taprats had already put considerable effort intkintpa clean design and implementation, a relativel

small amount of time was spent actually implementire architectural changes.

The implementation time was divided roughly equalétween modifying the source code to express the
architecture, and repairing defects that were é¢hiced in these refactoring steps. The final progcade

is 12693 lines long—only 153 lines longer than thiginal application. A total of 242 lines of codere
added or changed in the process. My experienqgeostgoa hypothesis from the previous study:

Hypothesis 5 (again): Applications can be translad into ArchJava with a modest
amount of effort, and without excessive code bloat.

Code Characteristics. One particular code characteristic that stoodasut edited Taprats was that the
Taprats code closely followed the Law of Demetentiomed in the Aphyds case study [LH89]. The Law
of Demeter can be thought of as the object-oriemtealog of communication integrity, since ArchJava
components may only communicate with the architetttneighbors” to which they are connected in the
architecture. Because Taprats followed the La®eareter, when | converted an object into a compipnen
the new component would often pass the compilensmunication integrity checks as soon as | conderte
direct method calls into calls on ports. In famtly one class in Taprats violated the law of Demet the
source code, and this class was more awkward tganentize compared to other classes in the system.

Although the developer had not heard of the Lavbefmeter by name, he said that he followed the same

92

public component class Program {

/I the tiling selector window subcomponent
private final owned TilingSelector ts = new TilingSelector();

/I connections between the windows
connect pattern TilingSelector.send, DesignEditor.receive {

send(owned TilingSelector sender, unique Tiling t) {
owned DesignEditor e = new DesignEditor(t);
connect (sender.send, e.receive);
}
}
connect pattern DesignEditor.send, PreviewPanel.receive {
send(owned DesignEditor sender, unique Prototype proto) {
owned PreviewPanel p = new PreviewPanel(proto);
connect (sender.send, p.receive);
}
connect pattern PreviewPanel.send, RenderPanel.receive {
send(owned PreviewPanel sender, uniqgue Map m, double left, double top,
double width, double theta, shared String name) {
owned RenderPanelr = new RenderPanel(m, left, top, width, theta, name);
connect (sender.send, r.receive);
}
}

// the main methods of the program
public void run() {
owned Framef= new Frame("Taprats 0.3");
f.add("Center", ts);
/I more code to finish setting up the window...
}

public static void main(String[] args) {
new Program().run();
}

}

Figure 28. ArchJava code for theTaprats component. The main application method createa Program
component and invokesun on it. The initial TileSelector window is created in the field initializer for ts ,
and the run method wraps it in aFrame. Connect patterns show communication patterns beteen windows
Each connect pattern contains a @annection constructor which creates and initializeshe next window, ther
connects it to the previous window in the sequence.

principle in his programming, and the code thatated the law of Demeter had been an oversightis Th
experience suggests:

Hypothesis 11: It is relatively easy to use ArchJav to express the software

architecture of an object-oriented program whose sarce code obeys the Law of

Demeter.
Final Architecture. Figure 28 shows the ArchJava code that expressearthitecture of Taprats. The
complete ArchJava source code for Taprats is alailat the ArchJava web site [Arc02]. Compareth&o
developer’'s conceptual architecture, the final Aeola architecture describes identical communication
patterns between the user interface windows. Aljhothe case study was done before alias annatation

were added to ArchJava, | have added them to thengbe for clarity.

93

Program

TilingSelector

DesignEditor
createRenderPanel

Figure 29. A visualization of Taprats’ architecture, automatically derived from the
ArchJava source code. Boxes represent subcompongntand arrows represent inter-
component control flow. The ovals are internal pas of the program component, whict
are used by the first three window components to eate the next window in the sequence.

\

PreviewPanel

RenderPanel

Figure 29 shows a visualization of the Tapratsitgcture automatically derived from the ArchJavarse
code using a visualization tool. | showed the tliper this diagram, and he agreed that it capthied

conceptual architecture well.

Alternative Architectural Choices. The Taprats study was directed towards implementing
developer’s conceptual architecture as directlp@ssible in ArchJava. However, an architect cdzde
expressed alternative Taprats architectures usiogJava. For example, the architect could havevield

the original source code more closely, producingeated hierarchy of components instead of a linear
sequence of components. Although this architeottmeld not show all of the user interface composent
and connections within one composite componentioild express the constraint that the user interfac
window instances form a tree with each window spagymultiple windows on the next level. The
architecture | chose does not eliminate the pdggilhat the windows form a dag, where data fromo t
source windows might be combined into a later-staielow (this does not occur in practice, of colrse
ArchJava is flexible enough to express both archites, depending on which the software architeents

more appropriate.

4.3.3 Comparison to Aphyds Case Study

| found that expressing the conceptual architectfr@aprats with ArchJava was straightforward when

compared with the earlier Aphyds case study. linl @pent approximately one fifth the effort indttase

94

study compared to the Aphyds case study, desptéattt that the programs were of similar size. esalv

application characteristics may have contributethi®difference:

Architecture Style. The pipeline architecture style of Taprats, wheata is passed from one
component to another, has simpler communicatiotepeg than the repository architecture style

of Aphyds, where components access a shared databas

Architectural Connectivity. Once spawned, Taprats’ user interface windows carapletely
independent: they access different data, and dearmamunicate in any way. In contrast, Aphyds’
user interface windows show different views of 8sme data, and therefore the user interface

architecture includes connections to pass updattdanhd window state.

Architecture Granularity. The developer of Aphyds specified a fairly fineigesl architecture,
and the control flow within the user interface emamed us to make the architecture even more
fine-grained than the developer specified. In @sit the Taprats user interface architecture was

more coarse-grained, consisting of only four wind@md their window panes.

Architectural MismatchesThe structure of the original Taprats code waseggiinilar to the final

architecture we expressed in ArchJava. In the Aphstudy, the original code created several
components dynamically each time a new file wadéda | chose to modify the code to reuse old
components instead, which may have been a poorcehmecause it created an architectural
mismatch [GAO95] between the original code struetand the final architecture. This required

me to restructure the code to support componeimitialization.

Code InterdependenceAs described above, Taprats had a well factoreélzaske that generally

followed the Law of Demeter, making the architeatureengineering easy. In contrast, the
Aphyds codebase contained many dependencies adiss structures. Its frequent violations of
the Law of Demeter required many reengineering sstegfore the compiler's communication

integrity checks were satisfied.

Experience from the two case studies suggestsidbking at these application characteristics magdsh

light on how much effort will be required to expsesn application’s architecture with ArchJava.

4.3.4 Benefits of ArchJava

The ArchJava architecture has a number of advasiteg@pared to the original, conceptual architeatdire

Taprats. ArchJava architectures are guarantedsktoomplete, listing all method call communication

between components. The ArchJava architecturedsagteed to stay up-to-date as the code evolués wi

changing requirements, and architectural visuatinatcan be generated automatically. Finallys ieasy

95

to examine the source code to look at the intestancture of an ArchJava component, determine what

methods are in each port, or examine how the methoslimplemented.

The process of reengineering Taprats to make dsitacture explicit may also have made the codeemor
maintainable and easier to change. For exampecdmpiler's communication integrity checks iddatf
several violations of the Law of Demeter, enabling to replace them with better-factored code. Bsea
ports encapsulate all control-flow communicatiomwsen components, the components are more loosely
coupled in the final version of the code, makingntheasier to evolve as requirements change. More
experience with evolving ArchJava programs is ndededetermine if these potential benefits areizedl

in practice.

In summary, | was able to capture the conceptudii@cture of Taprats effectively in ArchJava wih
small amount of effort relative to the size of fregram. This experience demonstrates that thypubage
is flexible enough to describe dynamically evolvsaftware architectures, and suggested improventents

the language design such as connection constructors

4.4 Summary

| have evaluated the expressiveness an experindgimgaalias annotations to a key class from thea Jav
collections library. | evaluated the practicalapd the engineering benefits of ArchJava with twasec
studies on small but real applications: Aphyds aagrats. The results show that ArchJava is pralctic
enough to document the intended software architeafiexisting Java code with a fraction of theogfit
takes to write the code in the first place. Fumntiere, the case studies suggest that the guaraateedacy

of ArchJava’s architectural documentation provideal benefits for building and evolving software

systems.

96

Chapter 5
Related Work

The ArchJava language builds on diverse fields edated work, including architecture description
languages, component infrastructures, module sygstéowmls for enforcing design, and ownership and
linear type systems. ArchJava integrates ideas frmany of these areas in order to provide a rich

architecture specification language and a practygs system that guarantees architectural confiocea

In the rest of the chapter, | discuss how eachheté¢ areas related to ArchJava. At the end, | will

summarize the aspects that make the ArchJava projepie.

5.1 Architecture Description Languages

Architecture Description Languages. A number of architecture description languages (8Pthave been
defined to describe, model, check, and implemeftivace architectures [MT00]. Many of these langemg
support sophisticated analysis and reasoning. ekample, Wright [AG97] allows architects to specify
temporal communication protocols and check propersuch as deadlock freedom. The Armani system
allows developers to declaratively specify the togiwal constraints of an architectural style, ahdn
check concrete architectures against that stylendd@ SADL [MQR95] formalizes architectures inrter

of theories, shows how generic refinement operaticem be proved correct, and describes a number of
flexible refinement patterns. Rapide [LV95] supgogvent-based behavioral specification and siraulat

of reactive architectures. ArchJava’s supportduhitectural dynamism is similar to that of Darwam

ADL designed to support dynamically evolving distriied architectures [MK96].

The SADL system formalizes architectures in terrhsheories, providing a framework for proving that
communication integrity is maintained when refinang abstract architecture into a concrete one [M&)R9

However, the system did not provide automated sagpoenforcing communication integrity.

While Wright and SADL are pure design languagebeiotADLs have supported implementation in a
number of ways. UniCon’s tools use an archite¢tspecification to generate connector code thaslin
components together [SDK+95]. C2 provides runtintealies in C++ and Java that implement C2
connectors [MOR+96]. Darwin provides infrastruetusupport for implementing distributed systems
specified in the Darwin ADL [MK96]. Although theode generation tools are convenient to programmers,
they do not automatically enforce communicatioregnity. Furthermore, these tools support a limited

number of built-in connector types, and developarmot easily define connectors with custom semmsnti

Architectures in Rapide can be filled in with implentations in an executable sub-language or in

languages such as C++ or Ada. The Rapide systeodis a tool that dynamically monitors the exemuti

97

of a program, checking for communication integsitglations [Mad96]. The Rapide papers also suggest
that integrity could be enforced statically if syst implementers follow style guidelines, such agene
sharing mutable data between components [LV95]. wéiler, the guideline forbidding shared data

prohibits many useful programs, and the guidelaresnot enforced automatically.

Component Languages and Infrastructures. A number of recent language proposals add explicit
support for components and connections to objdetited languages such as Java. For example,
Component] [SC00] and ACOEL [Sre02] provide priveiti for linking components together with
connections. However, these languages do not fgpashitecture explicitly, and thus do not enforce

architectural conformance.

Component-based infrastructures such as COM [Mic@8)RBA [OMG95], and Enterprise Java Beans
[Sun00] provide sophisticated services such asmgntiansactions and distribution for componenthdas
applications. While these infrastructures do mmiude mechanisms for explicitly describing softevar
architecture, the Arabica environment [RNOO] supp@?2 architectures built from off the shelf JaveaBs
components. This system shows how software anthie can be expressed in the context of component
infrastructures, but verifying communication intégrof a Java Beans implementation is left to fatur

work.

5.2 Module and Effect Systems

Module systems and module interconnection langu@géiss) support system composition from separate
modules [PN86]. Jiazzi [MFHO1] is a component isfracture for Java, and a similar system, Knit,
supports component-based programming in C [RFS+00hese tools are derived from research into
advanced module systems, exemplified by ML's furectfMTH90] and MzScheme’s Units [FF98].
Architecture description languages, including Aela) differ from module systems in that the former
make data and control flow explicit through arctiiteal connections, while the latter use importxp

connections primarily to make names and types ddfin one module visible to client modules [MTO0O].

Compared to ArchJava, advanced module systems fiichver facilities for defining, manipulating, and
controlling access to types. These facilities suppncapsulation, for example by restricting teérdtion

of a type or a function name to within a single med An important area of future work is combinihg
strengths of advanced module systems with the tartbral conformance property enforced by ArchJava.
This combination will be challenging, in part besaicomponents are first-class objects that camdatear!
and recursively linked together at run time. Faisiss, recursive module systems are currently &meac
area of research [FF98,CHP99,DCHO03].

98

Despite their strengths, existing module systemaatsupport architectural conformance. For examipl
moduleA defines a functiori and restricts its visibility to modules andB, module C can still call if
moduleB passed$ to C as an anonymous function. This violates archite¢tconformance if modules
and C are not directly linked with an import/export rédaship. Similarly, if moduleA defines a typd

that includes a reference but hides the definifrom external modules, andl exposes the reference to
external module&C, thenC can affect variables of typeby writing to the reference. The key issue ig tha
existing module systems, restricting the visibildf names does not necessarily restrict communicati
ArchJava requires all objects (generalizing funwicand references) to be labeled with an ownership
domain that controls access to those objects. stihgyping rules for unique references ensure thigtthe
architectural neighbors of an ownership domain aacess objects in the domain. Thus, in ArchJava,
communication between components must be mediayedohnections or shared ownership domains,

enforcing architectural conformance.

Effect Systems. Effect systems show what functions might be datle what state might be affected by
executing a function [LPZ02,CD02]. Effect systetyically show transitive effects in considerabégail,
compared to the local, high-level communicationreiav that an architecture specifies. The addilon
detail and transitivity that effect systems provideiseful for some engineering tasks, but comes @ist

in verbosity and scalability. For example, Arctdlasan summarize communication through a shared
callback object using a single connection and oshliprdomain, whereas an effect system would describ
all of the state that could be affected by executib the callback—possibly a substantial fractiontha
entire program. Relative to effects, ArchJava ptes a lightweight alternative for describing
communication between components that is also $essitive to program changes that affect effect

specifications.

5.3 Enforcing Design

Type Systems. Lam and Rinard have developed a type system focridgsy and enforcing design
[LRO3]. Their designs describe communication betwesubsystems (corresponding to ArchJava’s
components) that is mediated through shared objihets are labeled with tokens (corresponding to
ownership domains). Their system does not moddlit@ctural hierarchy, and the set of subsystends an
tokens is statically fixed rather than dynamicaétermined, as in ArchJava. Their system requitesde-
program analysis, compared to the local typecheckites in ArchJava, and it is unclear how thestegn
handles Java features such as inheritance. Fombiney their system does not describe data shasng a
precisely, omitting constructs like uniqueness andapsulation via ownership. However, they do rilesc

a number of useful analyses, which would complemecihJava’s more detailed architectural descrifgion

99

Analysis Tools. Design structure can also be supported with arslyBor example, the Reflexion Model
system uses a call graph construction analysisrdieroto find inconsistencies between an architettur
model and source code [MNSO01]. Similar systemfude Virtual Software Classifications [MW99] and
Gestalt [SSW96]. These analysis-based approachasare lightweight than ArchJava’s type system, bu

do not support hierarchical, dynamic architectunegrecise data flow constraints.

Aspect-Oriented Programming. Shomrat and Yehudai have proposed using aspecttedie
programming (AOP) to enforce architectural desig®(2]. For example, they show how the construtts o
the AOP language Aspect] can be used to enforecelkarchitectures, where the kernel of a system has
exclusive access to hardware resources and presdintged interface to the rest of the systemsimilar
approach [LLWO3] has been used to check the LawDemeter [LH89], a property related to
communication integrity. Although aspect-orienf@gramming gives programmers more control over
the properties enforced by the system, the proj@essribed above statically check architectures aha

less precise than those supported by ArchJava.

CASE Tools. A number of computer-aided software engineeringst@low programmers to define a
software architecture in a design language sucly&, UML-RT, ROOM, or SDL, and fill in the
architecture with code in the same language or #+ ©r Java. While these tools have powerful
capabilities, they either do not enforce commuincaintegrity or enforce it in a restricted langaadat is
only applicable to certain domains. For examgie, DL embedded system language prohibits sharing
objects between components [ITU99]. This restrictimsures communication integrity, but it also nsake
the language awkward for general-purpose progragimitMany UML tools such as Rational Rose
RealTime or I-Logix Rhapsody, in contrast, allowthms implementations to be specified in a language
like C++ or Java [RSCO00]. This supports a great d@é flexibility, but since the C++ or Java codaym
communicate arbitrarily with other system compoagtitere is no guarantee of communication integmity
the implementation code. The techniques describatiis dissertation can be applied in tools sush a

Rational Rose RealTime to provide a static guamafecommunication integrity.

Several of CASE tools, including Consystant andidRal Rose RealTime, generate connector code that
automatically links distributed components togetherhis connection code can range from stubs and
skeletons for an infrastructure like CORBA or RMI wires that connect different processors in an
embedded system. Like many of the technologiesudied above, these tools typically support a feetd

of connectors, in contrast to the flexibility ofeusdefined connectors in ArchJava.

100

5.4 Type Systems for Alias Control

Ownership. Ownership types, which describe a limited statidymamic scope within which sharing can
occur, can also be used to control aliasing. BEadyk such as Islands [Hog91] and Balloons [AIm97]
imposed strict rules on sharing objects betweenpoorants, significantly limiting expressiveness.mare
recent variation, Confined Types [BV99], allows grammers to restrict object references to within a
particular package; the system has been extendesupport inference of confined types [GPVO01].
Universes [MP99] provides a combination of owngrstnd confinement, providing additional flexibility
using read-only references that can cross unidessedaries. More recently, Clarke et al. and Baeeet

al. have used ownership types to reason abouteffdets and representation independence as well as
aliasing [CD02, BNO2].

The ownership annotations in AliasJava are mostetyorelated to Flexible Alias Protection [NVP98ida

its successors [CPN98,CNP01,Cla01]. Flexible ARastection uses ownership polymorphism to strike a
balance between guaranteeing aliasing propertidsaowing flexible programming idioms. In Flexél
Alias Protection, owned objects can only be acokdsetheir owner and its children. However, this
invariant prohibits iterators, which are not owrlda collection, yet must access its owned st@arkeet

al. address this issue by introducing a new abstraataled ownership contexts: each object has an
owning context(the context that owns it) and @presentation contexfthe context that owns its
representation) [CNPO1, Cla0O1]. The key propeftiheir system is @ontainment invariantwhich states
that if objecto; refers to objecb,, then the representation contexibefmust beinsidethe owningcontext

of 0,.

The ownership subset of AliasJava is quite simibathat of Clarke’s thesis [Cla01] in both expressiess
and the properties enforced. We wanted to enfancencapsulation property that relates object<itijre
rather than one that relates abstract ownershipertsn Therefore, we chose to phrase the encafmsulat
guarantees of AliasJava in terms of capabilitiest ttan be passed from one object to another using
ownership parameters. AliasJava's capability-basedapsulation is slightly weaker than Clarke’s
containment invariant because we place no resnstion ownership parameters, but AliasJava is
correspondingly more flexible. Existing implemeidas of Flexible Alias Protection and its successo
lack support for language features such as inmedtgBok99, Buc00], and thus there has been no

significant experimental validation of the design.

Parameterized Race Free Java (PRFJ) uses the tarfiaapect ownership and uniqueness to develop a
type system to guarantee that a program is fresat# races [BR0O1] and deadlocks [BLR02]. PRFJ was

not designed to encapsulate owned objects.

101

Boyapati et al. proposed a system that supportsreaftime updates to code in object-oriented deted
[BLS03]. Their system has a stronger notion ofeabjencapsulation than ArchJava: owned objects are
confined within the owner, its owned objects, atdinner classes. The system is more restrictiaa t
ArchJava: an object can delegate a capability tesgits owned state to its other owned objecta@itd
inner classes, but not to trusted external claasdanethods, even temporarily. Thus, iteratorsordy be
implemented as inner classes of the collection Heegite over. Also, objects cannot be uniqubaeéfithave
non-shared, non-unique ownership parameters—pratghbibany uses of unique. To my knowledge, the

system has not been evaluated in practice.

Ownership has also been used to reason about f&tsgCDO02], representation independence [BN02],
and deadlocks and race conditions [BR01,BLRO2]rkélaet al. used the concept of ownership (without
explicit annotations) to enforce some of the caarfiient rules in the JavaBeans specification [CRNO3].
Leino et al. use the related concept of data grooescribe different sections of an object’'sestat the

purposes of specifying effects [LPZ02].

Information Flow. Another area of related work is systems thatreefthe secure flow of information. A
representative system is JFlow [Mye99], which aatest each piece of data with a set of principas th
ownthe data, and for each owner, a list of princighig are allowed toead the data. The type system
verifies that no principal can read a piece of datiess all the data’s owners have given read [gsrani to
that principal. AliasJava is more lightweight th#flow, because AliasJava labels references wéihgle
owner instead of a list of owners and a list ohatzed readers for each owner. However, Aliasdmha
supports reasoning about direct information flowwsen components, not transitive flows from one

component to another.

Tools for Understanding Aliasing. An alternative to using a type system to limiasgs is to use an alias
analysis-based tool such as Lackwit [O0J97] to Vizeathe aliases within a program. For answering
questions about aliasing, AliasJava can be moreigeréhan Lackwit, which does not treat data stmast
polymorphically. Compared to Lackwit's successgexA[OCa00], AliasJava allows more parametric
polymorphism on methods, but its treatment of godtyolymorphism is less precise due to the comdsrai
of AliasJava’'s type system. One benefit of expngsalias information in a type system is that the
information is constantly available and constastigcked for consistency, and so there is no neeghta

tool to take advantage of it.

102

Uniqueness. Uniqueness types can be used to declare referehatsre unaliased [Min96, CBS98].
Passing a unique object from one method to anath@ds all aliasing problems, since the originathod
may not use the object again. Boyland’s alias ingrpaper [BoyO1] described how to implement unique
pointers without a special destructive read openatan innovation adopted by AliasJava. Alias gy
uses an effect system to enforce a stronger ungpgeinvariant than AliasJava enforces: namelyvilan

a unique field is read, all previous lent aliasestiat field are dead. Recently, Clarke and Waidst
proposed external uniqueness, allowing internahfeos to a unique object as long as only one eatern
pointer is present [CW03]. External uniquenesddtwe added orthogonally to AliasJava, but | hage n

yet done so because the making external uniqusoessl in the presence of threads is an open problem

Linearity. Linear type systems [Wad90a] guarantee uniquenedsiraaddition can be used to track
resource usage. AliasJavdént annotation, which allows temporary aliasing of aque pointer, is
similar to thelet! construct in Wadler's system [Wad90a]. Linearetyphave been applied to check
protocols defining the order in which library metlsocan be called, as in the Vault language [FDO02].
Leino et al. have also used uniqueness to speniycheck side effects in a modular way [LPZ02]. A
number of research efforts have used linear type®itfy the correctness of explicit memory managem
using the concept of a region [TT94,CWM99,FD02,GBREK A region represents a group of objects that
are deallocated together. A region type is sinidaan ownership type in that all objects must teeased
through their region. Although supporting explidiéallocation is not a goal of AliasJava, the syste
makes two contributions relative to region typ&stst, regions must be tracked linearly to enabiglieit
deallocation; AliasJava relaxes this constrainbaning objects, permitting more flexible aliasinatierns.
Second, region types do not have an encapsulatmatelrike AliasJava’s for protecting access to the

objects in a region; any object that can nameéh@n can access the objects inside it.

Monads. Pure functional languages use monads to achiesarity when modeling state [W90Db], serving

a similar purpose to ArchJava’s unique qualifi@wnership domains can be viewed as a mechanism for
reasoning about state that sits somewhere betweaads and full-blown references: more flexible than
the former yet more structured than the latterftvoe architecture’s role extends beyond reasoabayt
state, however—evolving any program, functional @teful, requires understanding what functionality
each part of the system implements, and how thersys components work together to accomplish some

task.

103

Other Type Systems. Capabilities for Sharing [BNRO1] describes a geheepability-based aliasing
model that can encode a number of other alias-gbstrstems, including ours, as a special case. The
capabilities in their system are fine-grained anel dynamically checked; in contrast, AliasJava fiesi

statically (except for casts) that objects are @ugessed through appropriate high-level capadsiliti

Systems such as Alias Types [WMO0O] and Role Analf§§LR02] specify the shape of a local object graph
in more detail than AliasJava. The Alias Typespsal uses this information to safely deallocatedb,
while Role Analysis is used to specify and chedpprties of data structures. In contrast to tlietailed
specifications of a local alias graph, the goaAbésJava is to provide a lightweight and practiealy to

constrain global aliasing within a program.

Separation logic is an alternative way to desigrsaearate parts of the heap and reason about heyw th
may refer to one another [Rey02]. Different paftshe heap in separation logic are similar to awhip
domains in AliasJava. Although separation logiovites a much more detailed way to describe aligsin
AliasJava’s constructs are more lightweight, alligvidevelopers to specify heap separation propexiibs

just a few type annotations.

5.5 Summary

ArchJava builds on a great deal of previous worgdfiware architecture, modules, infrastructureveafe,

and type systems. Three factors, taken togetbeArshJava apart from all previous systems:

* A rich specification of software architecture that hierarchical, instance-based, dynamically

evolving, and includes detailed specificationsairmector semantics and aliasing constraints;

* A type system integrating uniqueness and ownersinig,a formal proof that the core of the type

system ensures that all run-time communicatioro¥adl the architectural specifications; and

e An implementation in a mainstream programming lagguand numerous case studies on non-
trivial programs, showing that the system is pcadtiand provides significant engineering
benefits.

104

Chapter 6
Critique of the ArchJava Project

In this chapter, | critique the ArchJava projechatvworked well and what worked poorly in the Aravd

language design and experimental evaluation, ameé $essons | hope to apply in future research.

6.1 Language Design

In general, | believe the ArchJava language deadeves its goals. Modeling architecture as eahi@y

of component instances is very natural, and maistieg ADLs model architecture in this way [MTOQO].
AliasJava’s use of ownership domains for sharing th@tween components appears to be novel, it i
natural object-oriented generalization of architest shared variables, which were part of the SADL
language [MQR95].

Embedding architecture into an implementation lagguand enforcing architectural structure usingsyp
is controversial, but | have shown that the techwiemffers benefits that no previous technique has.
ArchJava is the first system that supports a richitectural model and enforces architectural confimce

in a general-purpose implementation language. tjipe system is demonstrably practical. Althougings
ArchJava clearly requires an investment of morerethan analysis-based architectural tools [MN$S@1]
also lets architects specify the architecture efstem in much more detail, and its presence irsthece
code provides developers with a constant awarenésachitectural issues. Further experience will

indicate whether this tradeoff is worthwhile.

Building on top of Java provided great benefitst also significant drawbacks. The depth of prattic
experience | got with ArchJava is almost whollyribtitable to the ability to leverage existing Java
programs. Java was also a convenient vehicle xplaming what | had done, and makes the system
potentially adoptable by practitioners. On theeothiand, using Java made a lot of things hardeugtielr.

The worst example is the dichotomy between the cmmapt world and the object world—two different
kinds of entities with different rules. Althoughiritend to continue working in mainstream languades
also look forward to examining how to build a syst¢hat uses a unified construct for architectural

modeling and object-oriented data modeling.

The practical experience with Java programs has etgbled me to iron out many of the kinks in the
language design. For example, ArchJava’'s suppmrtcbmponents inheriting from objects, objects
connecting to components, and components requesbtingections to their peers in an architectureewer

all features that developed in response to needsifebd in case studies.

105

The biggest remaining problem in the language desigthe lack of scalability in the architecture.
Although the programs in my case studies are noalrithey are small enough that their architectuaee
fairly trivial. Moving to larger, more complex dritectures is likely to require hierarchy in pogsd
connections, which is not currently supported. @mistake in the current language design is that por
interfaces are defined within components, instehdbaing defined externally. Rectifying this willeb
crucial to supporting larger systems, where poterfaces are reused in multiple places. Finalasec
studies have already shown that the language haeduate support for “glue” connections, which bind

the external port of a component to one or moréspafrits subcomponents.

6.2 Experimental Evaluation

ArchJava is a real, robust system that has beehingens of thousands of lines of code. | hawéopmed
a number of exploratory case studies on real, natrprograms, including additional studies not
presented here [ASCNO3, Ric02]. The results of adhse studies have been rich, and in some cases,

surprising.

Despite these successes, the experimental evaluatiéd\rchJava has had significant limitations, whic
must be corrected before claims of practicality aedefits can be fully substantiated. The expegen
have gathered has been on relatively small systémp to about 10,000 lines of code. However, Lilso
expect the primary benefits of architecture to aecin programs of over 100,000 lines of code.
Furthermore, | was the subject in all of the cdediss described in chapter 2, and none of the siaskes

provided much information about how ArchJava pragg@volve over time.

6.3 Lessons Learned

In addition to the detailed lessons implicit in tréicism above, | learned some higher-level lessabout

programming language and software-engineering relsefitom which | hope to benefit in the future.
Lesson 1: Focus on technical properties early on ithe design of a system.

Answering the questions, “What properties should #ystem have?” and, “Why are those properties
useful?” was crucial not only for getting the desigght, but also for communicating that desigrotbers.
For example, an earlier focus on communicationgirtte in the overall ArchJava design, as well dscus

on the encapsulation properties enforced by AlizsJaould have enabled me to progress faster.
Lesson 2: Gather experience in depth before breadth

Many language design papers are published witle ittdepth experience—and, although these systems
may have technical merit, this lack of practicahleation raises serious questions about the truefiie

and costs of the language designs. | think theypltase study is a good start, combining a realjiét

106

small) program with evaluation in some depth. Hesve | wish | had invested the time to do a
longitudinal case study on a large program, perihegscing the breadth of the ArchJava project (tmgjt
the work on connectors [ASCNO03)) in order to getrendepth of experience.

Lesson 3: Don't hesitate to tackle controversialesearch, if there’s an achievable path to success.

Risky, controversial research projects don't alwaysrk out. ArchJava was controversial in two
constituent communities: many programming languaggearchers didn't see the value of software
architecture, while many software architecture aesgers thought that embedding architecture into a
language was a dead-end approach. However, ewveghtbArchJava is still contentious in some circles,
there are signs that type-based approaches taeutthial conformance are becoming a topic of irsteire

the broader research community [LR03,CRNO3].

Controversial projects offer risks, but also theeptial of significant rewards. In the case of rava, |
found that because type systems had not been petyiapplied to architecture, there was an oppdstun
to statically enforce an important property, aretitiral conformance, for the first time. This &gy of
applying technical results from one area to an gt unsolved problem in another is one potentiate

to making a broad impact. Time will tell if Archdaachieves the latter.

107

Chapter 7

Conclusion

The ArchJava language extends Java with constringts model hierarchical, dynamically evolving
software architectures. Components communicatmugir explicit connections as well as through shared
objects that are part of architecturally declarasin@rship domains. ArchJava’'s type system uses
ownership and linearity to enforce structural comfance between architecture and implementatiorus;,Th
engineers can have confidence that the code belagesding to the architectural documentation, eaml

use this knowledge to build and evolve systems ratiestively.

| have evaluated the practicality of ArchJava wtitlo exploratory case studies on real systems ofriviad
size. These studies suggest that ArchJava isigahenough to be used on existing systems withtively

minor changes to the code, and that the languagédeas concrete benefits for software evolutiokdas

In future work, | intend to improve the set of Adelva development tools so that | can gather expeie
from outside users of ArchJava. | will performther case studies to see if the language can be
successfully applied to programs larger than 10D)a@es of code. | will also investigate extenditg
language design to enable reasoning about othkitestural properties, such as enforcing an architel
style, checking temporal ordering constraints omgonent methods, and specifying and checking demain
specific architectural properties. Finally, | wilke what | have learned with ArchJava to createrot

languages and tools that enforce architecturalorordnce in new domains.

108

References

[ACNO2a] Jonathan Aldrich, Craig Chambers, and DaMotkin. ArchJava: Connecting Software
Architecture to Implementation. Proc. Internatio@@nference on Software Engineering, Orlando,
Florida, May 2002.

[ACNO2b] Jonathan Aldrich, Craig Chambers, and BaMbtkin. Architectural Reasoning in ArchJava.
Proc. European Conference on Object-Oriented Pnugiag, Malaga, Spain, June 2002.

[ADG98] Robert Allen, Remi Douence, and David @arl Specifying and Analyzing Dynamic Software
Architectures. Proc. Fundamental Approaches toasoé Engineering, Lisbon, Portual, March 1998.

[AG97] Robert Allen and David Garlan. A Formal Basor Architectural Connection. ACM Transactions
on Software Engineering and Methodology, 6(3), 1997.

[AKCO02] Jonathan Aldrich, Valentin Kostadinov, a@taig Chambers. Alias Annotations for Program
Understanding. Proc. Object Oriented Programmipste®ns, Languages and Applications, Seattle,
Washington, November 2002.

[Arc02] ArchJava web site. http://www.archjava.org

[ALO2] Andrei Alexandrescu and Konrad Lorincz. Adava: An Evaluation. University of Washington
CSE 503 class report, available at http://www.arehjorg/, February 2002.

[AIm97] Paulo Sérgio Almeida. Balloon Types: Cotlirg Sharing of State in Data Types, Proc.
European Conference on Object-Oriented Programniingiskyla, Finland, June 1997.

[ASCNO3] Jonathan Aldrich, Vibha Sazawal, Craiga@ibers, and David Notkin. Language Support for
Connector Abstractions. Proc. European Conferemcébject-Oriented Programming, Darmstadt,
Germany, July 2003.

[BHL94] Edoardo Biagioni, Robert Harper, and Petexe. Implementing Software Architectures in
Standard ML. Proc. ICSE-17 Workshop on Researclietssin the Intersection of Software
Engineering and Programming Languages, 1994.

[BLRO2] Chandrasekhar Boyapati, Robert Lee, and tiaRinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadloagk&. ®bject-Oriented Programming Systems,
Languages and Applications, Seattle, WashingtoweRter 2002.

[BLS03] Chandrasekhar Boyapati, Barbara Liskowd dmuba Shrira. Ownership Types for Object
Encapsulation. Invited talk, Principles of Prognaimg Languages, New Orleans, Louisiana, January
2003.

[Bok99] Boris Bokowski. Implementing "Object Owséip to Order." Proc. Intercontinental Workshop
on Aliasing In Object-Oriented Systems, Lisbon,tBgal, June 1999.

[BNO2] Anindya Banerjee and David A. Naumann. Rsentation Independence, Confinement, and
Access Control. Proc. Principles of Programmingdueges, Portland, Oregon, January 2002.

[BNRO1] John Boyland, James Noble, and William ReteéCapabilities for Sharing: A Generalization of
Uniqueness and Read-Only. Proc. European Confer@m@®bject-Oriented Programming, Budapest,
Hungary, June 2001.

[BoyO1] John Boyland. Alias Burying: Unique Variakl Without Destructive Reads. Software Practice &
Experience, 6(31):533-553, May 2001.

[BRO1] Chandrasekhar Boyapati and Martin RinardP&ameterized Type System for Race-Free Java
Programs. Proc. Object-Oriented Programming Systeargyuages and Applications, Tampa, Florida,
October 2001.

[BS98] Boris Bokowski and André Spiegel. Barat—AofrEnd for Java. Freie Universitat Berlin
Technical Report B-98-09, December 1998.

109

[Buc00] Alexander Buckley. Ownership Types RestAliasing. MEng. Computing Final Year Project
Report, Imperial College of Science, Technology Efedlicine, London, United Kingdom, June 2000.

[BV99] Boris Bokowski and Jan Vitek. Confined Typd3roc. Object-Oriented Programming Systems,
Languages, and Applications, Denver, Colorado, Kdber 1999.

[CBS98] Edwin C. Chan, John T. Boyland, and WilliamScherlis. Promises: Limited Specifications for
Analysis and Manipulation. Proc. International Gaehce on Software Engineering, Kyoto, Japan,
April 1998.

[CD02] David Clarke and Sophia Drossopoulou. Owhip, Encapsulation, and the Disjointness of Type
and Effect. Proc. Object-Oriented Programming &wst Languages and Applications, Seattle,
Washington, November 2002.

[CHP99] Karl Crary, Robert Harper, and Sidd Purihdd/is a Recursive Module? Proc. Programming
Language Design and Implementation, Atlanta, GAgJ1999.

[Cla01] David Clarke. Object Ownership & Contaiembh Ph.D. Thesis, University of New South Wales,
Australia, July 2001.

[CNPO1] David G. Clarke, James Noble, and John MittdP. Simple Ownership Types for Object
Containment. Proc. European Conference on Objeetn@d Programming, Budapest, Hungary, June
2001.

[CPN98] David G. Clarke, John M. Potter, and Jarhesble. Ownership Types for Flexible Alias
Protection. Proc. Object-Oriented Programming $gsteLanguages and Applications, Vancouver,
Canada, October 1998.

[CRNO3] Dave Clarke, Michael Richmond, and Jamedbldlo Saving the World from Bad Beans:
Deployment-time Confinement Checking. Proc. Obfedented Programming Systems, Languages
and Applications, Anaheim, California, October 2003

[CW03] Dave Clarke and Tobias Wrigstad. Exterdaiqueness is Unique Enough. Proc. European
Conference on Object-Oriented Programming, Darms@ermany, July 2003.

[CWM99] Karl Crary, David Walker, and Greg MorriseTyped Memory Management in a Calculus of
Capabilities. Proc. Principles of Programming Laaggs, San Antonio, Texas, January 1999.

[DCHO03] Derek Dreyer, Karl Crary, and Robert Harp&rType System for Higher-Order Modules. Proc.
Principles of Programming Languages, New Orleansijdiana, January 2003.

[DHTO02] Eric M. Dashofy, André van der Hoek, RicaN. Taylor. An Infrastructure for the Rapid
Development of XML-Based Architecture Descriptioaniguages. Proc. International Conference on
Software Engineering, Orlando, Florida, May 2002.

[ELW98] Robert Eckstein, Marc Loy, and Dave Woodva Swing. O'Reilly & Associates, Sebastopol,
California, September 1998.

[FBB+99] Martin Fowler, Kent Beck, John Brant, Viliin Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-V\és511999.

[FD0O2] Manuel Fahndrich and Robert DeLine. Adoptand Focus: Practical Linear Types for Imperative
Programming. Proc. Programming Language Design lemglementation, Berlin, Germany, June
2002.

[FF98] M. Flatt and M. Felleisen. Units: Cool modsilfor HOT languages. Proc. Programming Language
Design and Implementation, Montreal, Canada, J@981

[GAO94] David Garlan, Robert Allen, and John Ockedm. Exploiting Style in Architectural Design
Environments. Proc. Foundations of Software EngingeNew Orleans, Louisiana, December 1994,

[GAO95] David Garlan, Robert Allen, and John Ockedomn. Architectural Mismatch or Why it's Hard to

Build Systems out of Existing Parts. Proc. Intéoral Conference on Software Engineering, Seattle,
Washington, April 1995.

110

[GHJ+94] Erich Gamma, Richard Helm, Ralph Johnsath dohn Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wedl894.

[GMJ+02] Dan Grossman, Greg Morrisett, Trevor Jutigchael Hicks, Yanling Wang, and James Cheney.
Region-Based Memory Mangagement in Cyclone. Pimgramming Language Design and
Implementation, Berlin, Germany, June 2002.

[GMW97] David Garlan, Robert T. Monroe, and Davidil®/ ACME: An Architecture Description
Interchange Language. Proc. CASCON'97, Torontaa@n November 1997.

[GPVO01] Christian Grothoff, Jens Palsberg, and Vaaek. Encapsulating Objects with Confined Types.
Proc. Object-Oriented Programming Languages, Systeand Applications, Tampa, Florida,
November 2001.

[GS93] David Garlan and Mary Shaw. An IntroducttorSoftware Architecture. In Advances in Software
Engineering and Knowledge Engineering, | (Ambriglarortora G, Eds.) World Scientific Publishing
Company, 1993.

[Hog91] John Hogg. Islands: Aliasing ProtectionGject-Oriented Languages. Proc. Object-Oriented
Programming: Systems, Languages and ApplicatiomsefRix, Arizona, October 1991.

[IPW99] Atsushi Igarashi, Benjamin Pierce, and iphWadler. Featherweight Java: A Minimal Core
Calculus for Java and GJ. Proc. Object Orientedjfaroming Systems, Languages and Applications,
Denver, Colorado, November 1999.

[ITU99] ITU-T. Recommendation Z.100, Specificati@nd Description Language (SDL). Geneva,
Switzerland, November 1999.

[Kap00] Craig S. Kaplan. Computer Generated IslaBiar Patterns. Proc. Bridges 2000: Mathematical
Connections in Art, Music and Science, Winfield nsas, July 2000.

[KLROZ2] Viktor Kuncak, Patrick Lam, and Martin Rirca Role Analysis. Proc. Principles of Programming
Languages, Portland, Oregon, January 2002.

[LB85] M. M. Lehman, and Lazlo A. Belady. Progranvdiution: Processes of Software Change.
Academic Press, London, 1985.

[LH89] Karl Lieberherr and lan Holland. Assuring @b Style for Object-Oriented Programs. |IEEE
Software, September 1989.

[LLWO3] Karl Lieberherr, David Lorenz, and PengogeWu. A Case for Statically Executable Advice:

Checking the Law of Demeter with Aspect]. Procpet-Oriented Software Development, Boston,
Massachusetts, March 2003.

[LPZ02] K. Rustan M. Leino, Arnd Poetzsch-Hefftand Yunhong Zhou. Using Ownership domains to
Specify and Check Side Effects. Proc. Programnhimgguage Design and Implementation, Berlin,
Germany, June 2002.

[LRO3] Patrick Lam and Martin Rinard. A Type Systend Analysis for the Automatic Extraction and
Enforcement of Design Information. Proc. Europ&umference on Object-Oriented Programming,
Darmstadt, Germany, July 2003.

[LV95] David C. Luckham and James Vera. An Evens@&h Architecture Definition Language. |IEEE
Trans. Software Engineering 21(9), September 1995.

[MFHO1] Sean McDirmid, Matthew Flatt and Wilson Bsieh. Jiazzi: New-Age Components for Old-
Fashioned Java. Proc. Object Oriented Program@&ysgems, Languages, and Applications, Tampa,
FL, October 2001.

[Mad96] Testing Ada 95 Programs for ConformanceR@pide Architectures. Proc. Reliable Software
Technologies - Ada Europe 96, Montreux, Switzer|ahahe 1996.

[Mic95] Microsoft Corporation. The Component Objdébdel Specification, Version 0.9. October 1995.

111

[Min96] Naftaly Minsky. Towards Alias-Free Pointefroc. of European Conference on Object Oriented
Programming, Linz, Austria, July 1996.

[MK96] Jeff Magee and Jeff Kramer. Dynamic Struetin Software Architectures. Proc. Foundations of
Software Engineering, San Francisco, CA, Octob8619

[MNSO01] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software Reflexion Models: Bridging the
Gap Between Design and Implementation. IEEE Tr&ofiware Engineering, 27(4), April 2001.

[Mon01] Robert Monroe. Capturing Software Architeet Design Expertise with ArmaniCarnegie
Mellon University technical report CMU-CS-98-163Rynuary 2001.

[MOR+96] Nenad Medvidovic, Peyman Oreizy, JasorRBbbins, and Richard N. Taylor. Using Object-
Oriented Typing to Support Architectural Designtie C2 Style. Proc. Foundations of Software
Engineering, San Francisco, CA, October 1996.

[MP99] Peter Muller and Arnd Poetzsch-Heffter. ilémses: A Type System for Controlling
Representation Exposure. In A. Poetzsch-Hefftel &anMeyer (Hrsg.): Programmiersprachen und
Grundlagen der Programmierung, 10. Kolloquium, infatik Berichte 263, 1999/2000.

[MQR95] Mark Moriconi, Xiaolei Qian, and Robert ARiemenschneider. Correct Architecture
Refinement. IEEE Trans. Software Engineering, 214®Yil 1995.

[MTOO] Nenad Medvidovic and Richard N. Taylor. AaSkification and Comparison Framework for
Software Architecture Description Languages. |IEEEanE. Software Engineering, 26(1), January
2000.

[MTH90] Robin Milner, Mads Tofte, and Robert Harpéthe Definition of Standard ML. MIT Press,
Cambridge, Massachussetts, 1990.

[MW99] Kim Mens and Roel Wuyts. Declaratively Chilig Software Architectures using Virtual
Software Classifications. Proc. Technology of @bjeriented Languages and Systems Europe,
Nancy, France, June 1999.

[Mye99] Andrew C. Myers. JFlow: Practical Mosafit Information Flow Control. Proc. Principles of
Programming Languages, San Antonio, Texas, Jariegy.

[NVP98] James Noble, Jan Vitek, and John PottexiBle alias protection. Proc. European Conferance
Object-Oriented Programming, Brussels, Belgium,8199

[OCa00] Robert O’'Callahan. Generalized AliasingaaBasis for Program Analysis Tools. Ph.D. Thesis,
published as Carnegie Mellon technical report CM8HI1-124, November 2000.

[0J97] Robert O'Callahan and Daniel Jackson. LackiviProgram Understanding Tool Based on Type
Inference. Proc. International Conference on Saoftviengineering, Boston, Massachusetts, May 1997.

[OMG95] Object Management Group. The Common Obj&#quest Broker: Architecture and
Specification (CORBA), revision 2.0. 1995.

[Par72] David L. Parnas. On the Criteria to be Usad Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053--1058, Debeml972.

[PN86] Ruben Prieto-Diaz and James Neighbors. NMothierconnection Languages. Journal of Systems
and Software 6(4), April 1986.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foations for the Study of Software Architecture.
ACM SIGSOFT Software Engineering Notes, 17:40-Ggtober 1992.

[Rey02] John C. Reynolds. Separation Logic: a &dgr Shared Mutable Data Structures. Proc. Lagic
Computer Science, Copenhagen, Denmark, July 2002.

[RFS+00] Alastair Reid, Matthew Flatt, Leigh Ste)leJay Lepreau, and Eric Eide. Knit: Component

Composition for Systems Software. Proc. Operatipstedns Design and Implementation, San Diego,
California, October 2000.

112

[Ric02] John David Richmond. Report on a Casedptdpplying ArchJava to the DynamicJava
Interpreter. Unpublished manuscript, June 2002.

[RJB98] James Rumbaugh, Ivar Jacobson, and GradglBd he Unified Modeling Language Reference
Manual. Addison-Wesley, 1998.

[RNOO] David S. Rosenblum and Rema Natarajan. Suiogo Architectural Concerns in Component-
Interoperability Standards. IEE Proceedings-Sofwiat7(6), 2000.

[RSCO00] Rational Software Corporation. Rational &BealTime. http://mwww.rational.com/, 2000.

[SCO00] Jodo C. Seco and Luis Caires. A Basic Motidlyped Components. Proc. European Conference
on Object-Oriented Programming, Cannes, France.2000

[SDO3] Matthew Smith and Sophia Drossopoulou. d@plee Reasoning with Ownership Types. Proc.
International Workshop on Aliasing, Confinementda@wnership in Object-Oriented Programming,
Darmstadt, Germany, July 2003.

[SDK+95] Mary Shaw, Rob DeLine, Daniel V. Kleinh@odore L. Ross, David M. Young, and Gregory
Zelesnik. Abstractions for Software Architecturedahools to Support Them. IEEE Trans. Software
Engineering, 21(4), April 1995.

[Sre02] Vugranam C. Sreedhar. Mixin’ Up Componen®roc. International Conference on Software
Engineering, Orlando, FL, May 2002.

[SSW96] Robert W. Schwanke, Veronika A. Strack, drftbmas Werthmann-Auzinger. Industrial
software architecture with Gestalt. Proc. Intaor&l Workshop on Software Specification and
Design, Paderborn, Germany, March 1996.

[Sun00] Sun Microsystems, Inc. Enterprise JavaanBe Specification. Available at
http://java.sun.com/ejb, April 2000.

[SY02] Mati Shomrat and Amiram Yehudai. ObviousNmt? Regulating Architectural Decisions using
Aspect-Oriented Programming. Proc. Aspect-Orientoftware Development, Enschede, The
Netherlands, April 2002.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implermenthe Call-by-Value\-Calculus Using a Stack of
Regions. Proc. Principles of Programming Languagesjand, Oregon, January 1994.

[Wad90a] Philip Wadler. Linear Types Can ChangeWorld! Programming Concepts and Methods, (M.
Broy and C. Jones, eds.) North Holland, Amsterdaonil 1990.

[Wad90b] Philip Wadler. Comprehending Monads. Ptasp and Functional Programming, Nice, France,
June 1990.

[WMOO0] David Walker and Greg Morrisett. Alias Typ&s Recursive Data Structures. Proc. International
Workshop on Types in Compilation, Montreal, Cangsptember 2000.

113

Vita
Research Interests

Programming languages, software engineering, cengpiand parallel and distributed systems.

Education

Ph.D., Computer Science, University of Washingtungust 2003.

Advisors: Craig Chambers and David Notkin

Thesis: ArchJava: Connecting Software ArchitectarBnplementation
M.S., Computer Science, University of Washingtamel1999.

B.S., Engineering and Applied Science (Computeer8m), California Institute of Technology,
June 1997.

Teaching Experience

Winter 2002. Teaching Assistant, CSE 503 (Grad&déware Engineering), University of
Washington.

Winter 2001. Teaching Assistant, CSE 501 (GradGatmpilers), University of Washington.
Summer 1999. Pre-Doctoral Lecturer, CSE 143 (CaempBrogramming II), University of

Washington.

Spring 1999. Teaching Assistant, CSE 143 (CompuiResgramming Il), University of
Washington.

Fall 1998. Teaching Assistant, CSE 505 (Graduatgramming Languages). University of
Washington.

Professional Experience

2003-present. Assistant Professor, Carnegie Mé&lamersity.
1997-2003. Graduate Student and Research Assishaivgrsity of Washington.

2000-2003. Developed ArchJava, a small extensiodava that integrates a software
architecture specification into Java source codechJava is the first general-
purpose object-oriented language that verifiesimunication integrityall run-
time communication due to control flow and sharathds explicitly declared in
the architecture. Case studies suggest that Arahdan be easily applied to
existing Java programs, and that it may provideebenwhen developing and
evolving code.

1998-2000. Developed, implemented, and evaluatidicsanalyses to remove
unnecessary synchronization from Java programs aflalyses remove nearly
all unnecessary synchronization on most benchmarksd improved
performance by 37-50% in synchronization-intensigplications.

1997-1998. Implemented thread support in the mmtsystem of the Vortex optimizing
compiler.
Summer 1997. Research Assistant, California Litstiof Technology.

Implemented a distributed object system for Jaw firovides location transparency,
persistence, agent mobility, and fault-tolerant camication.

114

Summer 1996. Intern, Sequent Computer Systems, Inc

Developed web-based technologies for a CorporatgitdDi Library information
management system.

Summer 1995. Intern, Sequent Computer Systems, Inc

Implemented a simulator for a massively paralléle@-on-demand server. Developed a
novel communication optimization that increaseduated effective video bandwidth by
50%.

Summer 1994. Intern, Sequent Computer Systems, Inc

As part of a team, converted an in-house decisippart technology into a product that
was later spun off into a successful company, Dedoint Applications.

Summer 1993. Intern, Sequent Computer Systems, Inc

Benchmarked two object-oriented databases in C+d Java running on a parallel
Sequent server to evaluate their scalability.

Summer 1992. Intern, Adaptive Technology Applicas, Inc.

Used neural-network technology to recognize th@dgampus in MRI scans of patient’s
brains as a possible diagnostic tool for Alzheimelisease.

Selected Honors

1997-2000 National Defense Science and Engine&maguate Fellowship
1997-2000 Achievement Rewards for College Scienksilowship

1997 National Science Foundation Fellowship Honlerdtention
1995-1997 Caltech Merit Scholarship

1993 National Merit Scholarship

1996 Winner, Caltech-Occidental Symphony Concedmfgtition (violin)
Honor societies: Sigma Xi (scientific research)y Beta Pi (engineering)

Refereed Journal and Conference Publications

Jonathan Aldrich, Vibha Sazawal, Craig Chambers, Bavid Notkin. Language Support for
Connector Abstractions. In Proceedings of theropean Conference on Object-Oriented
Programming (ECOOP '03)July 2003.

Jonathan Aldrich, Valentin Kostadinov, and Craiga@ibers. Alias Annotations for Program
Understanding. In Proceedings @bject-Oriented Programming Systems, Languages, and
Applications (OOPSLA '02November 2002.

Jonathan Aldrich, Craig Chambers, and David Notkirchitectural Reasoning in ArchJava. In
Proceedings of thEuropean Conference on Object-Oriented Programn{Ea@OOP '02) June
2002.

Jonathan Aldrich, Craig Chambers, and David NotkrchJava: Connecting Software
Architecture to Implementation. In Proceedings loé tnternational Conference on Software
Engineering (ICSE '02)May 2002.

Jonathan Aldrich, Emin Gun Sirer, Craig Chamberad &Susan Eggers. Comprehensive
Synchronization Elimination for Java. To appeaBdaience of Computer Programming

115

Jonathan Aldrich, Craig Chambers, Emin Gun Sirex] &usan Eggers. Static Analyses for
Eliminating Unnecessary Synchronization from JavagRams. In Proceedings of thgixth
International Static Analysis Symposium (SAS,’'$@ptember 1999.

Workshop Papers and Technical Reports

Jonathan Aldrich, Vibha Sazawal, Craig Chambers] Bravid Notkin. Architecture-Centric
Programming for Adaptive Systems. In ProceedingshefWorkshop on Self-Healing Systems
(WOSS '02)November 2002.

Vibha Sazawal and Jonathan Aldrich. Architectusstic Programming for Context-Aware
Configuration. In Proceedings of tHeOPSLA '02 Workshop on Engineering Context-Aware
Object-Oriented Systems and Environments (ECOO3):Rbvember 2002.

Jonathan Aldrich. Challenge Problems for Separaifoioncerns. In Proceedings of @BOPSLA
2000 Workshop on Advanced Separation of Con¢c€atober 2000.

Jonathan Aldrich. Evaluating Module Systems forofScutting ConcernsUniversity of
Washington Ph.D. Generals Examination RepSeptember 2000.

Jonathan Aldrich, James Dooley, Scott Mandelsohd,/edam Rifkin. Providing Easier Access to
Remote Objects in Client Server Systems. Thirty-first Hawaii International Conference on
System Sciences (HICSS,3Ignuary 1998.

Service

Program Committee: ECOOP '03 Workshop on Ownersbimfinement, and Aliasing
Reviewer: OOPSLA '02, POPL '03, The Internet Enopeldia
University of Washington Department of Computerefice & Engineering:
2002 Co-organized graduating students supporipgrou
2002 Graduate Admissions Committee
2001-2002 Faculty Recruitment Liaison
1998-2000 Prospective Graduate Student Recruitargriittee
1998-2000 Volunteer Tutor
Green Lake Church: 1999-2002 church board, 1998-20@sic committee
Caltech Christian Fellowship: 1995-1996 Social Bliog; 1996-1997 President

