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Software architecture describes the high-level structure of a software system, and can be 

used for design, analysis, and software evolution tasks.  However, existing tools decouple 

architecture from implementation, allowing inconsistencies to accumulate as a software 

system evolves.  Because of the potential for inconsistency, engineers evolving a program 

cannot fully trust the architecture to accurately describe the properties or structure of the 

implementation. 

 

This dissertation explores a new approach: integrating architectural descriptions into an 

implementation language, and using a type system to ensure that the architectural 

structure is consistent with the code.  The approach is embodied in the ArchJava 

language, which extends Java with features that document the software architecture and 

data sharing within a system.  ArchJava’s type system enforces communication integrity, 

the property that implementation components communicate only along connections 

declared in the architecture.  ArchJava is flexible enough to describe architectures that 

may change at run time, and it supports many of the same coding styles and idioms that 

programmers use in Java.  Several case studies applying ArchJava to existing programs 

of significant size provide preliminary evidence that ArchJava is practical and can aid 

software evolution tasks. 
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Chapter 1 

Introduction 

Building and evolving large software systems is the biggest challenge facing software engineers today 

[Par72, LB85].  The sheer size and complexity of application and system software—millions of lines of 

code in many cases—means that no single engineer is knowledgeable enough to confidently change every 

part of it.  Thus, each engineer must focus on one or more components of the system.  In order to 

effectively evolve a component, however, an engineer must often understand how that component interacts 

with other parts of the system.  For example, when modifying the invariants of a data structure, an engineer 

must discover what code within and outside the component relies on those invariants, and make appropriate 

modifications to that code.  Understanding how components interact is especially difficult in many modern 

systems, which communicate indirectly through shared data structures, dynamic dispatch, and events.  To 

evolve these programs effectively, an engineer often needs an abstraction of the possible run-time types and 

aliases of each object involved in the change.  Such abstractions are difficult to gain, and if they are 

incorrect, engineers are likely to inject defects as they evolve the software system. 

System scale poses challenges not only to correctness, but also to a broad range of other software 

development issues.  For example, careful engineering techniques can largely eliminate security holes from 

a small software system.  However, it is extremely challenging to eliminate these errors from a large 

system, because it is difficult to analyze how control and data may flow between secure and untrusted parts 

of the system.  Similarly, it can be difficult to isolate the cause of a performance problem in a large 

program because of the complex ways in which system components interact.  Although there is no panacea 

for solving these problems, a common underlying issue is the need to understand and control how different 

parts of a software system communicate. 

1.1 Software Architecture 

For years, software architects have used informal, high-level design models as conceptual tools for 

managing the complexity of large software systems.  Whether drawn informally on a white board, or 

included in more formal design documentation, these models describe the high-level interactions between 

different components in a software system.  The intent of these models is to communicate to an entire 

engineering team part of the global knowledge needed to develop and evolve each component of the 

system. 

In the last decade, the discipline of software architecture has provided a formal semantic framework and 

tools for reasoning about these high-level design models [PW92, GS93].  Software architecture is the high-
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level organization of a software system as a collection of components, connections between the 

components, and constraints on how the components interact.  Describing architecture in a formal 

architecture description language (ADL) [MT00] can aid in the specification and analysis of high-level 

designs.  For example, an architectural model can be analyzed to prove the absence of deadlock [AG97], or 

to determine whether secure information could flow to an untrusted component.  Software architecture can 

also facilitate the implementation and evolution of large software systems.  For instance, a system’s 

architecture can show which components a module may interact with, help identify the components 

involved in a change, and describe system invariants that should be respected during software evolution. 

Existing ADLs, however, are loosely coupled to implementation languages, causing problems in the 

analysis, implementation, understanding, and evolution of software systems.  Some ADLs come with tools 

that generate code to connect independently developed components [SDK+95,LV95].  However, there is no 

guarantee that the components themselves obey the architectural constraints of the system.  Instead, these 

ADLs depend on component developers to follow style guidelines that prohibit common programming 

idioms such as data sharing.  Other ADLs are purely for modeling and analysis, requiring programmers to 

implement the system without any automated support [AG97,MQR95].  Thus, it may be difficult to trace 

architectural features to the implementation.  None of these systems guarantees consistency between 

architecture and implementation, so while the architecture may be analyzed for certain properties, there is 

no way to know if the properties hold in the implementation. 

Even if a system is initially built to conform to its intended architecture, as the system evolves to address 

new requirements, its implementation may become inconsistent with the original architecture over time.  

This inconsistency causes problems for engineers working with the system, making it difficult to 

understand parts of the system in isolation, and causing program errors when engineers rely on their 

inaccurate architectural models.  In summary, inconsistency between architecture and implementation 

pervades existing systems, causing problems both in human reasoning and automated analysis of programs. 

1.2 Communication Integrity 

In order to enable architectural reasoning about an implementation, the implementation must conform to its 

architecture.  A system conforms to its architecture if the architecture is a correct abstraction of the run-

time behavior of the system.  The communication integrity property defines how architectural structure 

constrains run-time communication in the implementation [MQR95,LV95]: 

Definition [Communication integrity]:  Each component in the implementation may 

only communicate directly with the components to which it is connected in the 

architecture. 



 3

Enforcing communication integrity is challenging due to programming language mechanisms that obscure 

communication pathways, including references, objects, and first-class functions.  Previous systems have 

made serious compromises in order to enforce communication integrity.  For example, analysis-based 

systems have been limited to fairly simple architectural models in order to make the analysis scalable 

[MNS01,LR03]. 

Systems can enforce communication integrity by restricting the implementation language to prohibit 

pointers and other problematic features.  For example, SDL is a domain-specific language for real-time 

telecommunications applications, providing a structured language without pointers or dynamic dispatch 

[ITU99].  However, shared data is an important and widely recognized form of inter-component 

communication, and forbidding it entirely is unrealistic in the context of general-purpose languages. 

Luckham and Vera suggest that developers follow style guidelines (such as avoiding shared data) in order 

to preserve communication integrity [LV95].  Not only do these guidelines place significant restrictions on 

implementers, there is no guarantee that every member of a team will follow the guidelines, as the compiler 

does not enforce them. 

In summary, no previous technique exists for automatically verifying full conformance between a rich 

architectural specification and an implementation in a general-purpose programming language. 

1.3 Consequences of Conformance Violations 

The lack of automated conformance checking seriously compromises the benefits of architecture during 

implementation, testing, and software evolution.  Communication integrity states that an architecture is 

complete.  For example, the architecture should show all of the components that could possibly 

communicate with a given component.  An engineer who is enhancing that component can effectively use 

this knowledge to make sure that the enhanced component interacts properly with all the existing 

components in the system.  However, an engineer who cannot trust the architecture to be complete must fall 

back on more labor-intensive techniques for finding the other interacting components, or else risk 

introducing defects into the code. 

Communication integrity is also crucial for preserving essential analysis properties.  For example, in a 

security review, an architecture could be used to enumerate all of the possible information flows between 

secure and untrusted parts of the system.  These information flows could then be analyzed in more detail in 

the source code.  However, if communication integrity is not enforced, the architecture may not show all 

information flows that are present in the real system, and so the architectural analysis cannot be trusted to 

be correct.  Without communication integrity, the source code of the entire system must be painstakingly 

analyzed, and the architecture provides little benefit at the implementation level. 
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In order to facilitate certain analyses or provide important implementation properties, an architect may 

select an architecture style for an application [GS93].  For example, the pipeline architectural style enables 

analysis of application throughput based on the performance of individual components, and the restrictions 

it entails on data flow can make reasoning about computation within a component easier.  However, these 

benefits are lost if the implementation violates the constraints of the pipeline architectural style.  Existing 

research efforts have shown how an architecture can be checked against style constraints [GAO94]; but 

these checks guarantee nothing about the properties of the implementation unless the implementation obeys 

communication integrity. 

As the discussion above shows, communication integrity is the fundamental conformance property relating 

architecture to implementation, upon which other conformance properties rely.  Communication integrity 

verifies which components communicate, providing the foundation for other architectural properties that 

show how these components communicate.  For example, in a system with communication integrity, one 

can add a type system describing what kinds of data are exchanged, or a temporal protocol showing the 

order of messages between components, or pre- and post-conditions that place constraints on the data 

passed into and out of each operation.  However, without communication integrity, it is difficult to specify 

or verify any of these architectural properties, because the specification will be incomplete if some 

communication paths are left out, and the verification will be unsound if some data and control flows are 

ignored.  Thus, communication integrity is not merely one of many properties relating architecture to 

implementation; it is a core property essential for verifying conformance to many other architectural 

properties. 

1.4 Design Goals 

This dissertation presents the first technique for enforcing conformance to architectural structure in a 

general-purpose programming language.  In order to make this statement more precise, it is necessary to 

define the goals of my system, ArchJava.  This section describes several choices in the design space of 

enforcing conformance, and explains the choices made. 

Flat vs. Hierarchical Architectures.  Flat design notations, such as UML class diagrams [RJB98], are 

useful for understanding small-scale relationships between classes and objects in a system.  However, they 

do not scale well to systems made up of hundreds of classes, because show only relationships between 

classes, not higher-level system design.  ArchJava supports hierarchical architectures, so that a developer 

can describe the relationships between subsystems at the highest level, and then break these subsystems 

into parts recursively. 
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Class vs. Instance Architectures.  Some tools show architectural relationships between fixed units of 

source code, such as classes [MNS01,MW99,SSW96,LR03].  Although class-based architectures can be 

helpful, understanding run-time relationships between objects is often crucial to understanding and 

evolving a program.  In recognition of this, a number of recently developed architecture description 

languages model dynamic relationships between component instances [LV95,MK96,MOR+96,ADG98].  

ArchJava models instance relationships between components so as to more precisely capture the dynamic 

structure of a program. 

Visibility vs. Communication.  A major line of work in programming languages has been developing 

expressive module systems that hide information within a component by restricting its visibility 

[MTH90,FF98].  Module systems such as that of ML have been proposed as architecture description 

languages [BHL94].  However, existing module systems only restrict the visibility of data, which is not 

sufficient to control all communication between components.  For example, the definition of a function in 

component A may not be visible in component B, but if A passes the function to component B as a closure, 

then B can still invoke it.  Thus, current module systems do not enforce communication integrity.  The 

ArchJava system can be thought of as an extended module system that ensures that all inter-component 

communication is declared at the architectural level. 

Dynamic vs. Static Checking.  Systems such as Rapide provide a run-time monitor that can check 

conformance between an executing program and an architectural specification [LV95].  In contrast, the 

goal of ArchJava is to check architectural conformance statically (except for casts), so that when a program 

compiles correctly the developer has a guarantee that the program will conform to its architecture at run 

time. 

Forbid vs. Allow Sharing.  A number of architectural description languages discourage or forbid sharing 

data between components [LV95,MOR+96].  This implementation style may be appropriate for some 

applications, but many programs benefit from communication through shared data.  ArchJava’s design goal 

is to permit existing implementation techniques, including communication through shared data, but to 

require developers to declare whatever communication is present in their program. 

Interface vs. Structure vs. Behavior.  There is a spectrum of architectural specification and verification 

from interface checking through structural checking to behavioral checking.  Existing module systems and 

type systems essentially check interface conformance between a module and its implementation.  ArchJava 

carries this further to check that the connection structure at the architectural level is a conservative 

approximation of the communication structure in the run-time system.  Other architecture description 

languages model some aspects of behavior as well, such as the temporal sequence of events in a 

component’s interface [AG97].  However, previous ADLs have been unable to statically enforce either 

structural or behavioral properties in the implementation of a system. 
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Non-Technical Goals.  ArchJava has non-technical goals besides the conformance goals listed above.  

ArchJava should be practical enough that I can evaluate it on existing programs.  It should be expressive 

enough to support common programming idioms and techniques.  Finally, it should provide value for 

software engineering tasks. 

The Scope of ArchJava.  There are a number of goals of previous architecture description languages that 

ArchJava does not attempt to address.  ArchJava uses language-based techniques to address architectural 

conformance, so it does not explicitly support language interoperability.  However, the techniques used by 

ArchJava could be applied to other languages, and architecture interchange languages such as xADL and 

Acme could be used to define architectures that include components written in ArchJava and components 

in other languages [GMW97,DHT02].  ArchJava currently models only architectural structure, leaving out 

important architectural issues like behavior modeling and architectural style that are addressed by other 

systems [GAO94,LV95,AG97].  It is my hope that the semantic connection that ArchJava enforces between 

architecture and implementation will eventually aid in specifying and verifying these properties in the 

implementation as well as the architecture. 

Summary.  Some previous systems statically enforce architectural conformance in a weaker setting—one 

that eliminates shared data, or models architecture in a limited way.  However, ArchJava’s goal of statically 

enforcing full conformance between an instanced-based architecture in a general-purpose programming 

language has been an important open problem that is solved in this dissertation. 

1.5 Enforcing Conformance Using Types 

This dissertation presents a new approach to enforcing architectural conformance: declaring the 

architectural structure of a system within a general-purpose programming language and using a type system 

to verify architectural conformance.  This strategy creates a close link between architecture and 

implementation, sidestepping some of the problems of enforcing integrity between an implementation and a 

separate architecture description.  I have chosen to extend the Java language, forcing us to confront the 

challenges posed by modern language constructs, and providing the opportunity to evaluate ArchJava on 

existing programs.  In ArchJava, components are distinguished objects (not classes), allowing us to reason 

about architectural relationships between component instances. 

In order to support static conformance checking, I developed a type system that ensures communication 

integrity.  The type system is static in the same sense as that of Java: run-time checks are done only at casts 

and array writes.  A type system can support more precise checking than an analysis-based technique, in 

part because the types express the programmer’s intent, which is otherwise difficult to infer.  Compared to 

global analysis-based techniques [LR03], ArchJava’s type system uses only local checks, and is sound even 
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if not all code is available at compile time.  Because the typechecker verifies simple, local rules, 

typechecking errors are understandable to the user. 

In order to specify an architectural hierarchy, ArchJava builds on ideas from ownership type systems 

[NVP98].  Together with uniqueness types [Min96], ownership types also enable reasoning about how data 

is shared between components.  Controlling sharing, in turn, allows ArchJava to constrain communication 

between components more strongly than the visibility constraints imposed by typical module systems. 

Because ArchJava enforces architectural conformance, the benefits of architecture can be achieved not just 

at the architecture phase of a project, but throughout the software lifecycle.  ArchJava’s typechecking rules 

guarantee that the implementation will stay consistent with the architecture as the system evolves, so that 

engineers can be confident that they understand how components in the system interact when performing 

software evolution tasks.  Architectural conformance in ArchJava provides a solid structural foundation for 

reasoning about the implementation of a system, and may provide benefits to automated analyses as well. 

1.6 Contributions 

The contributions of this dissertation are as follows: 

• Architecture within Implementation.   ArchJava is the first system to integrate a rich 

architectural description into a mainstream programming language.  ArchJava extends Java with 

architecture description constructs, so that developers can specify an architecture during design 

and then fill in the architecture with Java implementation code.  ArchJava includes components, 

ports, explicit connections, and other standard features of architecture description languages.  

Components are objects, supporting instance-based architectural reasoning, and ownership 

declarations are used to specify hierarchical relationships between components. 

• Lightweight Alias Control.   In order to control communication through shared data, I developed 

AliasJava, a lightweight and practical type system for controlling aliasing in object-oriented 

programs.  AliasJava extends generalizes ownership type systems using ownership domains, 

which allow programmers to categorize objects into logical groups and then specify the permitted 

aliasing among those groups.  AliasJava is both more precise and more flexible than previous 

ownership-based systems.  For example, it is the first ownership system powerful enough to 

constrain aliasing between sibling objects that have the same owner.  By default, AliasJava 

enforces the same owners-as-dominators property as other ownership type systems, but unlike 

other systems, it gives developers the flexibility to relax this property where necessary to 

implement common programming idioms such as iterators or events.  AliasJava is also the first 

system to combine ownership-based encapsulation with uniqueness, a combination that is essential 

to expressing important architectural constraints as well as many practical idioms. 
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• Enforcing Architectural Conformance.  ArchJava is the first system to enforce full structural 

conformance between a rich architectural description and general-purpose implementation code.  

Components may declare ownership domains in ports, allowing objects in these domains to be 

shared with connected components.  ArchJava’s type system builds on that of AliasJava, ensuring 

that components can only communicate via the interfaces declared in connections, or via objects in 

shared ownership domains that are declared in connected ports. 

• Formal Validation.   In order to validate the correctness of this approach, I present a core 

language ArchFJ incorporating the core constructs of ArchJava.  Although ArchFJ is simpler than 

ArchJava, it is still quite expressive, modeling components, connections, ports, ownership, 

uniqueness, objects, mutable fields, and method calls.  I formalize ArchFJ using a set of type 

judgments and rewriting rules, which collectively define the static and dynamic semantics of the 

language.  I prove properties of type soundness and communication integrity for ArchFJ, 

increasing confidence that the full language enforces conformance as well. 

• Empirical Validation.   I have implemented a compiler that compiles ArchJava source down to 

ordinary Java bytecode, allowing programs to be run on any Java virtual machine.  Using case 

studies on 4,000 lines of library and application code, I demonstrate that the alias-control system is 

practical enough to apply to existing code with few changes—the first empirical validation of any 

ownership-based alias control system.  Two case studies on 10,000 line programs demonstrate the 

practicality and benefits of ArchJava’s architecture constructs.  This experience suggests that 

ArchJava typing rules encourage loose coupling between components, and may make evolution 

tasks easier by showing how components interact. 

1.7 Thesis Statement and Outline 

The thesis of this dissertation can be stated as follows: 

A lightweight and practical type system can be used to enforce architectural conformance 

in general-purpose implementation languages, supporting more effective program 

reasoning and software evolution. 

The next chapter introduces ArchJava as an extension to Java, explaining the language through a series of 

examples and showing how the type system enforces communication integrity.  Chapter 3 formalizes the 

core of the language using type judgments and rewriting rules, and gives a formal proof that the type 

system enforces architectural conformance.  Chapter 4 evaluates the practicality and the utility of ArchJava 

through several case studies.  Chapter 5 compares ArchJava to related work, and Chapter 6 critiques the 

ArchJava project: what was effective about the language, and what lessons have been learned for future 

projects.  The last chapter concludes with a discussion of future work. 
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Chapter 2 

The ArchJava Language 

This chapter presents the ArchJava language and explains informally how the type system enforces 

communication integrity.  The first section of the chapter provides a brief tour of ArchJava through an 

example architecture, providing a broad overview of the language before other sections dive into details. 

Section 2.2 begins by presenting AliasJava, a stand-alone subset of ArchJava that allows developers to 

specify and verify aliasing relationships in an object-oriented system.  Controlling aliasing is at the core of 

enforcing communication integrity, because unrestricted object references permit non-local communication 

between components.  AliasJava uses type annotations to specify references that are unique or unaliased, or 

references that are confined to within a particular ownership domain.  These constructs allow programmers 

to specify how objects are shared between architectural components. 

Section 2.3 builds on AliasJava by presenting language features for specifying architectural structure.  

Developers use component classes in place of regular classes to indicate that the objects created from these 

classes are part of the architecture of the system.  Components communicate through ports, which are 

endpoints for communication that declare detailed interfaces.  Connections link the ports of components 

together, allowing the components to communicate.  Components, ports, and connections are all standard 

constructs of architectural description languages; ArchJava is unique in integrating them into a mainstream 

programming language, so that a type system can be applied to verify communication integrity. 

Section 2.4 defines communication integrity more precisely and shows how the architecture constructs 

combine with the aliasing annotations to enforce integrity.  ArchJava has been implemented, and the 

techniques used are discussed briefly in Section 2.5.  Finally, section 2.6 discusses the differences between 

the current versions of ArchJava and AliasJava and previously published descriptions of the languages 

[ACN02a,ACN02b,AKC02]. 

2.1 A Brief Tour of ArchJava 

ArchJava models architectures using components that communicate through connected ports and objects in 

shared ownership domains.  For example, the rectangle at the top of Figure 1 shows the architecture of a 

hypothetical word processor.  At the highest level, the word processor is made up of two component 

objects, shown as nested rectangles: the user interface and the document.  Just as objects are instantiated 

from classes in Java, component objects are instantiated from component classes in ArchJava.  ArchJava’s 

component classes can have all the features of ordinary Java classes, but in addition can contain 

architectural modeling features.  These architectural modeling features allow developers to specify the 

communication between components more precisely than is possible with ordinary classes.  The code 
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below Figure 1 shows three component classes: the WordProcessor 1 is a template for the entire 

application, while the Interface  and Document  component classes are templates for the user interface 

and document components. 

In the diagram in Figure 1, the user interface and document component objects are nested within the word 

processor, indicating they are parts of the word processor.  In order to declare this nesting relationship 

within the source code, the word processor declares an ownership domain owned that holds the objects 

nested within it.  In the diagram, ownership domains are represented with rounded, dashed rectangles.  In 

the source code, ownership domains are declared with the keyword domain .  The document and user 

                                                           

1 In the text and examples, program code is shown in a constant-width  font, and language keywords are in bold . 

Document  Interface  

WordProcessor 

owned  

owned  owned  

data  

doc  doc  

 
 

public component class  WordProcessor { 
  domain  owned; 
  private owned Document doc; 
  private owned Interface ui; 
  connect doc.doc, ui.doc;  
  // additional source code... 
} 
 
public component class  Interface { 
  port doc { 
    domain data; 
    requires unique  Position search( 
                         lent  String q); 
    requires void insert( lent Position loc, 
                         data  Text text); 
  } 
  // additional source code... 
} 
 
Figure 1.  The WordProcessor  component class describes an architecture made up of an Interface  and a 
Document  component that are part of its owned ownership domain.  The two subcomponents of the word 
processor communicate through connected doc  ports.  The doc  port of the Interface  component class 
declares two methods that it requires the Document  to implement, while the corresponding port in Document
declares that it implements these methods.  Both ports declare the ownership domain data , representing 
document information shared between the two objects.  All fields, parameters, and results of reference type are 
annotated with aliasing information—either the ownership domain that owns the object in the field, or lent
(indicating a temporary alias to an object), or unique  (representing the sole reference to an object). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
public component class  Document { 
  port doc { 
    domain data; 
    provides unique  Position search( 
                         lent  String q); 
    provides void insert( lent Position loc, 
                         data Text text); 
  } 
 
  domain owned ; 
  owned DocumentIndex<data> index; 
 
  // additional source code... 
} 
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interface also declare ownership domains (also named owned) to store their nested components and 

objects. 

In order to indicate that the document and user interface component objects are in the owned domain of 

the word processor, the type of the doc  and ui  fields are annotated with the owned domain.  This 

annotation indicates that the objects to which these fields refer are part of that domain.  Section 2.2 

describes ownership domains in more detail, and explains how they can be used to restrict aliasing. 

ArchJava uses ports to declare the interfaces used for communication with external components.  Port 

interfaces are more precise than ordinary Java interfaces in three ways.  First, ports declare not just the 

methods that a component provides (for example, the search  and insert  methods in the doc  port of 

Document ) but also the methods that component requires other components to implement (for example, 

the Interface  component requires an implementation of those same methods).   

Second, ports can declare ownership domains that contain objects that are shared between the component 

and the outside world.  For example, the document and user interface each declare the data  ownership 

domain in their doc  ports, representing document data that is shared between the components.  The 

arguments and result types of methods declared in ports can be annotated with these ownership domains.  

For example, the Text  argument of the insert  method must be part of the data  ownership domain.  

Figure 1 shows other aliasing annotations as well.  The search  method returns a Position  that is 

unique , indicating that there can be no aliases to the position object.  The insert  method accepts a 

Position  parameter that is lent , meaning that it may be used for the duration of the method call but 

persistent aliases to it may not be created.  These annotations are discussed in more detail in the next 

section. 

Finally, a component can have multiple ports, distinguishing the protocols used to communicate with 

multiple external components.  A Java class can partly achieve this effect by implementing multiple 

interfaces, but there is no way to tell which clients use which interfaces.  ArchJava makes connectivity 

information explicit by declaring connections between components.  For example, the word processor 

declares a connection linking the doc  ports of its subcomponents.  This connection binds the required 

methods in the user interface to the corresponding provided methods in the document, so that these 

components can communicate. 

The architecture constructs of ArchJava allow developers to model hierarchical architectures, and precisely 

specify the control flow and data sharing between them.  Section 2.3 describes these architectural 

constructs in more detail, and explains how they can be used to enforce communication integrity. 
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2.2 AliasJava 

The AliasJava type annotation system is designed to support reasoning about aliasing in large object-

oriented software systems.  AliasJava allows developers to express the lack of aliasing through uniqueness, 

and controlled aliasing through ownership.  AliasJava expresses aliasing constraints using annotations on 

reference types.  Since values of primitive type cannot be aliased, these types are not annotated.  The full 

ArchJava language, discussed in Section 2.3, builds on this foundation by adding an architectural 

framework. 

Each object in the system is either unique, or else part of an ownership domain that is declared by another 

object.  A unique object has only one persistent reference to it, although temporary lent aliases may be 

created.  Objects within a single ownership domain can refer to one another, but references can only cross 

domain boundaries if the programmer specifies a link between the two domains when they are created. 

Each object declares a set of named ownership domains.  These domains are nested within the domain that 

owns the object, so that ownership defines a forest of trees where each parent owns its children and the 

roots of the tree are unique.  Unique objects may be assigned to an ownership domain, attaching one 

ownership tree as a subtree of another.  The subsections below explain how these relationships are declared 

as type annotations within the program source and how they are enforced by the type system. 

In this section, I present the annotations as a type system for Java programs that provides global guarantees 

about aliasing.  However, adding alias annotations to a large legacy program may require significant effort.  

The annotations can also be applied to verify local properties within a subsystem, treating the annotations at 

the edge of the subsystem as unchecked assertions.  I use this methodology in my case studies in Section 4.  

A promising alternative is inferring alias annotations for a closed subset of the program automatically, and 

other work presents early results in this direction [AKC02]. 

Subsection 2.2.1 describes the alias annotations through a series of examples.  A more precise description 

of the core annotation system is provided by the formal semantics in section 3.  Subsections 2.2.2 and 2.2.3 

describe the properties guaranteed by AliasJava’s annotation system, and how the annotations integrate into 

the full Java language.  Finally, subsection 2.2.4 shows more examples of the annotation system in order to 

illustrate its expressiveness. 
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2.2.1 Annotations for Data Sharing 

Unique.  When an object is first created, it is unique—that is, there is only one reference to the object.  The 

type annotation unique  describes a reference that does not have persistent aliases.  Figure 2 illustrates 

uniqueness through a linked list class where all of the elements and all of the links are unique . 

In general, after a unique  variable or field is read, the source location must be dead (that is, unused by 

subsequent code)—otherwise the read reference would be an alias of the supposedly unique source.  A 

standard intraprocedural live variable analysis is used to verify this criterion for unique  local variables.  

When a unique  field is read by a method, that method must set the field to another value before executing 

any statement that could result in reading the original value of the field a second time, such as a method call 

or exception-throwing expression.  For example, in Figure 2, the getItem  method sets the item  field to 

null  so that no aliases to the unique  value exist when the value is returned. 

In AliasJava, unique  can be considered a universal source: unique  values can be assigned to a location 

with any other data sharing annotation.  The converse is not true, as the other data sharing annotations do 

not guarantee that a value is unique. 

 

Ownership Domains.  An ownership domain is a group of related objects that are conceptually part of the 

object that declared the domain.  Each object is part of a single ownership domain.  An object’s owner is 

the object that declared its ownership domain, and its ownership domain is its owning domain. 

Ownership domains are illustrated using a simple address lookup application, such as one might find on a 

PDA.  The diagram at the top of Figure 3 illustrates the ownership domains in the application at run time.  

class LinkedList { 
  private unique Object item; 
  private unique LinkedList next; 
 
  public LinkedList( unique  Object o, 
       unique LinkedList n) { 
    item = o; next = n; 
  } 
  public unique Object getItem() { 
    unique Object temp = item; 
    item = null ; 
    return temp; 
  } 
  public unique LinkedList getNext() { 
    unique LinkedList tempNext = next; 
    next = null ; 
    return tempNext; 
  } 
} 
 

Figure 2.   A linked list class with unique  links and items 

 
unique LinkedList list = 
     new LinkedList( new Object(), null ); 
list= new LinkedList( new Object(), list); 
unique Object o = list.getItem(); 
list = list.getNext(); 
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Solid circles represent objects, and dashed circles represent ownership domains.  The 

AddressApplication  object declares three ownership domains: the name domain holds names that 

the user may want to look up, the address  domain holds address objects, and the owned domain holds 

the application’s addrBook  object.  The addrBook  object is a table mapping names to addresses, and 

declares a single ownership domain owned, which holds its internal data structures. 

The domains in AddressApplication  are declared in the second line of Figure 3 using the domain  

keyword.  In order to indicate that an object is part of a domain, the type of the object is annotated with the 

domain name.  For example, in Figure 3, the addrBook  is an object of type Table  that is part of the 

owned domain.  When an object is instantiated, it is given fresh ownership domains that are distinct from 

the ownership domains of all other objects.  For example, the owned domain inside one 

AddressApplication  object is distinct from the owned domain inside other 

AddressApplication  objects, and is also distinct from the owned domain of Table  objects such as 

addrBook .  In AliasJava, the owned domain is a default domain that is built into each object, and need 

not be explicitly declared, although Figure 3 does so for clarity. 

 

address  
addressBook  

AddressApplication 

owned  

name  

owned  

 
public class  AddressApplication { 
  domain  name, address, owned; 
  link owned ->name, owned->address; 
 
  private owned Table<name,address> addrBook; 
 
  private address Addr lookup(name String n) { 
    return addrBook.get(n); 
  } 
 
  // application UI, etc., not shown... 
} 
 
 
 
 
 
Figure 3.  The AddressApplication  class declares three ownership domains: name, address , and owned.  
The owned domain is linked to the name and address  domains, allowing the owned addressBook  object to 
refer to names and addresses.  The addressBook ’s formal domain parameters key  and value  are bound to 
the name and address  domains, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
public class  Table<key,value> 
         extends Map<key,value> 
         assume owner ->key, owner ->value { 
  domain owned ; 
  link owned ->key, owned->value; 
 
  private owned Set<key> keys; 
  private owned List<value> values; 
 
  public value Object get(key Object k) { 
    for ( int  i = 0; i < keys.size(); ++i) 
      if  (keys.get(i).equals(k)) 
        return values.get(i); 
    return null ; 
  } 
} 
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Domain Parameterization.  The Table  object needs a way to refer to the ownership domains that hold 

the table’s keys and values.  These domains cannot be declared inside the Table , because the keys and 

values are typically owned by the table’s client.  Instead, the Table  is given formal domain parameters for 

the key  and value  domains, and the implementation of the table uses these names to refer to the domains 

of key and value objects.  Clients of the table must supply domains as actual parameters when they refer to 

a Table .  For example, the declaration of addressBook  instantiates key  with name and value  with 

address . 

 

Link Declarations.  Sometimes objects in one ownership domain need to refer to objects in another 

ownership domain.  For example, the addrBook  in the owned domain needs to refer to name and address 

objects in the name and address  domains.  A link declaration allows references from one domain to 

another.  Each class must declare all allowed links between a domain it declares and any other domains in 

scope.  The diagram in Figure 3 shows link declarations as arrows.  For example, the arrows from the 

owned domain of AddressApplication  to the name and address  domains allow references in the 

direction of the arrow (but not the reverse direction).  The third line of code in Figure 3 shows how these 

links are declared in source code using the ->  operator.  As a shorthand, bi-directional links can be 

declared with the -  operator. 

If a class relies on a link between two formal domain parameters, it must state this explicitly using an 

assume  clause in the class declaration.  For example, Table  objects need to store references to their keys 

and values, and so the owner of the table must be linked to the key  and value  domains.  Thus, the table’s 

class declaration states the assumption that the table’s owning domain (denoted with the owner  keyword) 

is linked to key  and value . 

 

Defaults.  Explicitly specifying linking assumptions and link declarations can be inconvenient, so the 

AliasJava language includes defaults that cover the most common declarations.  Since the owned domain 

is declared implicitly inside every object, objects that don’t need to distinguish different groups of objects 

don’t have to declare any domains at all.  The default annotation for object fields is owned, so if this 

domain is appropriate, no annotation is necessary. 

Since an object typically needs to refer to objects owned by its formal domain parameters, all classes 

assume that the owner  domain is linked to every domain parameter.  To make the owned domain 

convenient, AliasJava also assumes that the owned domain is linked to every domain parameter of the 

class, as well as to every domain declared within the class. 
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With these defaults, none of the assume  and link  declarations in Figure 3 are necessary, and none of the 

owned domains need be declared. 

 

Method Parameterization.  Sometimes it makes more sense to parameterize a single method rather than 

the whole class.  For example, the Table  class might include the method below, which returns an iterator 

over the keys in the table.  The caller of getKeys  specifies the iter  domain, which will own the iterator.  

As with class parameters, the method must declare the linking assumptions it makes between the method’s 

domain parameter and other domains in scope.  The method can also declare links between the domain 

parameter and domains declared in the class.  For example, since the iterator must refer both to the keys 

and the internal set that stores the keys, the getKeys  method assumes that the iter  domain is linked to 

the key  and owner  domains.  It then declares a link between the iter  domain and the internal owned 

domain, allowing the iterator to access the set of keys. 

public iter Iterator<key> getKeys<iter>() 
                 assume iter->key, iter-> owner { 
  link iter-> owned; 
  return new TableIter<key, owned>(keys); 
} 

 

Shared.  Figure 4 illustrates the Singleton design pattern, used to create a single instance of an object that 

is used throughout an application [GHJ+94].  Singleton objects are sometimes shared throughout a 

program, and thus cannot be confined by an owning object.  References to such objects are annotated 

shared , representing the fact that these objects may be shared globally.  Formally, shared  is modeled as 

an ownership domain that is an implicit parameter of all objects.  Unfortunately, little reasoning can be 

done about shared  references, except that they may not alias non-shared references.  However, shared 

references are essential for interoperating with existing run-time libraries, legacy code, and static fields, all 

of which may refer to aliases that are not confined to the scope of any object instance. 

class Singleton { 
  private static shared Singleton val 
                      = new Singleton(); 
 
  public static shared Singleton get() { 
    return val; 
  } 
  public void doSomething() { 
    // application specific code 
  } 
} 
 
shared Singleton s = Singleton.get(); 
s.doSomething(); 
 

Figure 4.   A shared  Singleton object 

boolean  contains( lent LinkedList head, 
                 int  i) { 
  for ( lent  LinkedList list = head; 
       list != null ; list = list.next) { 
    lent Integer item = (Integer) list.item; 
    if (item.intValue() == i) 
      return true ; 
  } 
  return false ; 
} 
 
 
 
 
 
Figure 5.   A method that uses a lent  reference to 
traverse a linked list looking for an integer 
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Lent.  Figure 5 shows a method that could be part of the LinkedList  class from Figure 2.  This method 

checks if an integer is stored in a linked list that is made up of unique  LinkedList  and Integer  

objects.  This would be difficult to express with the annotations presented so far, because contains  

would have to destroy the linked list while traversing it in order to avoid creating aliases to the links and 

elements in the list.  Instead, the method uses the lent  annotation to create temporary aliases to the unique 

objects in the list.  These aliases must be destroyed when the contains  method returns, so that the 

uniqueness of the linked list is preserved across calls to contains . 

As shown in this example, a unique  object can be passed to any method as a lent  parameter.  The called 

method can pass on the object as a lent  parameter to other methods, but cannot return it or store it in any 

field.  Thus, the uniqueness of the lent  object is restored when the method returns.  The lent  type can 

also be used to temporarily pass an owned object to an external method for the duration of a method call, 

without any risk that the outside component might keep a reference to that object.  Therefore, lent  can be 

considered a universal sink: values with any alias type annotation may be assigned to a lent  location.  The 

converse is prohibited: lent  values may only be assigned to other lent  locations.  Lent can be thought of 

a restricted capability that can be used to access an object, but cannot be used to store the object in a field.  

Lent is the default annotation for method arguments and local variables, and may be omitted. 

 

Other annotations.  In designing the annotation system, I chose to focus on precisely specifying the 

aliasing relationships between objects in the system.  Using this criterion, I decided not to include a few 

annotations that are used in some of the related work.  Although package-based confinement [BV99] 

provides a middle ground between the global shared  domain and domains that are local to an object, I 

chose not to include it because object ownership is a stronger property and I wanted to keep the system 

simple.  Read-only annotations [NVP98,MP99,BNR01,BR01] can also express useful invariants about a 

system, but they are orthogonal to aliasing and so were not included in the design.  These annotations could 

probably be added to the system in a natural way. 
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Summary.  Figure 6 shows the constraints that the type annotations place on value flow.  An arrow 

indicates that data can flow between variables with two annotations in the direction shown.  The figure 

shows clearly that unique  is a universal source (any variable can be assigned a unique  value), and that 

lent  is a universal sink (lent  variables can be assigned a value with any type annotation).  The other 

type annotations (the built-in domains owned and shared , as well as declared domains �, �,  etc.) must 

be kept separate from each other. 

2.2.2 Properties 

AliasJava ensures uniqueness and ownership invariants that restrict the aliasing patterns that can occur 

during program execution.  Section 3 proves these invariants for a subset of the full language.  The 

uniqueness property states that variables and fields with the unique  annotation hold unique references 

(ignoring temporary lent  aliases).  In the presence of concurrency, enforcing the uniqueness property 

requires synchronization on unique field reads, as discussed in section 2.2.3. 

Uniqueness.  At a particular point in dynamic program execution, if a variable or field 

that refers to an object o is annotated unique , then no other field in the program refers 

to o, and all other local variables that refer to o are annotated lent . 

ArchJava enforces two key properties that restrict aliasing between ownership domains.  The first property 

is link soundness: 

Link Soundness.  If D1 and D2 are ownership domains, and an object that is owned by D1 

refers to an object that is owned by D2, then there must be an explicit declaration linking 

D1 to D2.  Furthermore, if D1 and D2 are ownership domains that are visible in the same 

scope, and an object that is transitively owned by D1 refers to an object that is transitively 

owned by D2, then there must be an explicit declaration linking D1 to D2.   

Link soundness ensures that inter-domain references are only present between linked domains.  Link 

soundness is enforced by making sure references between objects are legal given the linking assumptions 

and declarations in scope, and checking that the linking assumptions of a class are fulfilled whenever that 

unique  
 
 
 

 owned        �,
�
…        shared  

 
 
 

lent  
 

Figure 6.   Value flow between alias annotations 
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class is instantiated. For example, in Figure 3 it is legal to instantiate Table  with actual parameters name 

and address  and an owning domain owned, because the owned domain is linked to name and 

address , fulfilling the assumption stated in the class header of Table .  Chapter 3 gives the formal 

typechecking rules that enforce link soundness. 

As the second part of the definition shows, link soundness constrains not just references from a domain D1 

to another domain D2, but all references from the ownership tree rooted at D1 to the ownership tree rooted at 

D2. In order to enforce this hierarchical relationship, a class that links one of its ownership domains to one 

of its ownership parameters must assume a corresponding relationship between its owner domain and that 

ownership parameter.  For example, in Figure 3 the link between owned and key  in Table  is only legal 

because the table assumes a link between its owner and the key  domain. 

Ownership domains provide a stronger kind of encapsulation than Java’s private  and protected  

modifiers, which restrict only the visibility of a field, not the accessibility of the object inside the field.  For 

example, Figure 7 illustrates a defect in an early version of the Java Standard Library that was caused by a 

private  object escaping to clients.  In this bug, the security system function Class.getSigners()  

returned a pointer to the internal array used to store the principals that had signed a class, rather than a 

copy.  Clients could then modify the array, making the class appear to have been signed by a trusted 

principal, and thus potentially allowing malicious applets to pose as trusted code.  In Figure 4, the array has 

a type indicating an owned array of shared  signer objects (the array notation is discussed further in 

subsection 2.2.3).  With this declaration, the compiler would have caught this bug at compile time, because 

public methods cannot return objects owned by internal ownership domains.  The bug is fixed by returning 

a copy of the signers  array from getSigners , rather than the actual array. 

The encapsulation property enforced by AliasJava is called capability-based encapsulation [AKC02]: 

Capability-based Encapsulation.  Object O1 cannot refer to object O2 unless a name (or 

capability) for O2’s ownership domain is in scope in object O1. 

public class Class { 
  private shared Object signers owned []; 
 
  // compiler error: cannot return owned state to clients  
  public owned Object[] getSigners() { 
    return signers; 
  } 
} 
 
Figure 7.   In an early version of the JDK, the getSigners  method of Class
returned the internal array holding the signers of a class, allowing clients to modify 
the list of signers.  If the array had been declared owned using AliasJava, the type 
system would have caught this security hole. 
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An ownership domain name acts as a capability for accessing objects that are part of the domain.  If an 

object can’t name a domain, it can’t refer to objects in that domain.  Initially, each object has the unique 

capability to access the objects in the ownership domains that it declares.  The object can share a capability 

by passing the corresponding domain as an actual ownership parameter of another object.  If an ownership 

domain is never passed as an ownership parameter, then only the owner can refer to objects in that domain.  

Conversely, an object that has no formal domain parameters can only refer to the objects that it owns. 

To ensure that capability-based encapsulation is meaningful, ownership annotations must be consistent over 

time: 

Ownership Soundness.  At a particular point in dynamic program execution, if a 

variable or field referring to object o has an ownership annotation denoting ownership 

domain d, then all other variables or fields that refer to o at any subsequent point in 

dynamic program execution, are either annotated lent  or have an ownership annotation 

denoting the same domain d. 

Link soundness and capability-based encapsulation together place stronger constraints on aliasing than 

either could alone.  Even if there is a link from one domain to another, objects in the first domain must have 

a capability for the second domain in order to refer to objects in that domain.  Link soundness ensures that a 

domain cannot be shared arbitrarily, but can only be passed as a domain parameter to objects whose owner 

is linked to the domain. 

 

Program Reasoning.  Through uniqueness and ownership domains, AliasJava supports static, source-level 

human and automated reasoning about aliasing in object-oriented systems.  This dissertation applies 

AliasJava’s alias-control system to verify the communication integrity property, ensuring that the 

implementation of a system is consistent with its architectural design. 

Other researchers have applied ownership-based systems to a variety of other problems, including 

eliminating data races [BR01] and deadlocks [BLR02], supporting code updates [BLS02], checking effects 

[CD02], proving representation independence [BN02], and verifying program invariants [SD03].  Most of 

these systems rely on the owners as dominators encapsulation property in order to address these problems: 

Owners as Dominators.  If object o refers to another object o’ , then o is inside (i.e., 

transitively owned by) the owner of o’ . 

The owners as dominators property ensures that there are no pointers from the outside of an object to the 

inside—only the other direction.  The owners as dominators property prohibits many useful idioms, 

including iterators and event callbacks, but it is nevertheless useful for proving certain properties.  
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AliasJava occupies a unique point in the design space: with the appropriate link specifications, it can be 

used to enforce owners as dominators, but with other link specifications, it is flexible enough to support 

idioms like iterators and event callbacks.  For example, to support owners as dominators, a class should 

specify a link from owned domain to each of its ownership parameters, but never a link from an ownership 

parameter to the owned domain (or any other internal domain).  In fact, this set of links is the default in the 

AliasJava system; a program with no explicit linking specifications enforces owners-as-dominators.  

Linking assumptions between ownership parameters in AliasJava are analogs to the assumptions in other 

systems stating that one parameter is within another.  Thus, AliasJava can be used to enforce the same 

properties as other ownership-based systems in the default case, while still providing additional flexibility 

if it is needed. 

2.2.3 Java Integration 

The Java language has several features that present challenges for an alias control system.  I discuss how 

AliasJava handles of a number of these features below. 

 

Subtyping.  Java’s declared subtyping relation is extended with alias annotations.  When a class is defined, 

it must provide values for the ownership parameters of the classes and interfaces it extends and 

implements; these values can be any of the ownership parameters of the subclass, or shared .  For 

example, a class declaration might look like: class  C< �, �, �> extends  B< �, �> implements  

I< �>.  When a method or field is overridden, the overriding member must declare its parameter types and 

return type with annotations that exactly match the overridden member, under the ownership parameter 

mapping induced by the inheritance declarations.  In general, it would be sound to override a method with 

covariant parameter types and a contravariant result type, but AliasJava requires an exact match to be 

consistent with Java’s existing semantics for overriding methods. 

 

This.  Since the current object this  is an implicit argument to all instance methods, its type annotation 

must be specified.  This is done with an annotation that comes immediately after the argument list.  This 

type may be one of shared , unique , lent , or an ownership parameter.  Use of this  within the 

method must be consistent with its annotation, and at method calls, the receiver is treated as another 

parameter that must follow the rules for the this  alias annotation.  Because the vast majority of methods 

have a lent  annotation for this , lent  is the default in the system and need not be explicitly specified. 
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Constructors.  Like methods, constructors must specify an alias annotation for this .  Semantically, a new 

statement is treated as an allocation of a unique  object followed by a method call to the constructor for 

initialization.  For example, the expression new Foo()  is modeled as the sequence of statements 

unique Foo temp = allocate Foo; temp.Foo() .  If the constructor’s this  annotation is 

lent , the allocated object will remain unique . If the constructor’s this  annotation is shared , the 

allocated object will be shared , and if the constructor’s this  annotation is unique , the result of the 

new expression must be dead.  Thus, the alias annotation of a newly allocated and constructed object will 

be unique  in the common case where the constructor’s this  annotation is lent . 

 

Inner Classes.  Non-static inner classes implicitly import the parameters of their surrounding class.  The 

inner class can have its own additional parameters, if necessary.  Thus, the fully qualified type of an inner 

class is of the form package.EnclosingClass< �…>.InnerClass< �…>.  An inner class can refer 

to the domains declared in the enclosing class (including owned) using a name of the form 

EnclosingClassName.domainname .  The domains of the inner class can be referenced without 

qualification.  Anonymous classes defined within a function may not access unique  or lent  local 

variables from the function’s scope, because such accesses could create internal persistent references stored 

in the inner class object, which may violate the type system’s invariants. 

These special rules do not apply to static  classes defined within another class.  Such classes do not have 

an implicit pointer to an object of the enclosing class, and so they follow the same rules as ordinary classes, 

with no special access to their enclosing class. 

 

Static Fields.  Static fields are not associated with any particular object instance, and so they cannot be 

declared with a domain as the type annotation (also recall that no field may have a lent  annotation).  

Static fields can be unique  if they are read and written in a way consistent with the unique  annotation. 

 

Concurrency.  Concurrency is orthogonal to this work, except for possible data races when reading a 

unique field.  In the presence of concurrency, access to unique fields must be synchronized to prevent two 

threads from reading a unique variable simultaneously, creating two aliases of a supposedly unique value.  

In order to guarantee uniqueness in the presence of concurrency, the compiler will eventually include a 

concurrent mode that performs additional checks.  These checks ensure that a unique  value can flow 

from an object field into another non-lent  location only within a block of code synchronized on the object 



 23

whose field is being dereferenced (or the field’s declaring class, in the case of static fields).  The field that 

was read must also be set to another value before the end of the synchronization block. 

 

Casts.  Because a class may extend a class that has fewer parameters, ownership parameters may be hidden 

when an object is treated as its supertype.  For example, a List  object with a single parameter data  may 

be upcast to type Object , which has no ownership parameters.  Later, the programmer may want to 

downcast a variable o of type Object  to type List  with the expression (List<data>)o .  In order to 

preserve soundness, the run-time system must check both that object o is of type List , and also that the 

List ’s ownership parameter is data . 

In the implementation, a tag object is allocated for each declared domain.  Each parameterized object stores 

the tag objects representing the actual domains for each of its ownership parameters.  Run-time domain tags 

are also passed to methods that have ownership parameters.  This run-time information is assigned at 

object-creation time.  Note that AliasJava does not need to store the domain of each object in the system; 

the system incurs space overhead only for objects that are parameterized. 

When an object is cast to a parameterized type, the run-time owner for each of its parameters is checked 

against the corresponding owner specified in the cast, and an AliasCastException  is thrown if the 

check does not succeed.  In this way, AliasJava supports upcasts and downcasts in a way that does not 

violate the semantics of the type annotations. 

 

Arrays.  An array must be given an alias type for each array dimension.  The alias type of the objects 

inside the array is given next to the type of the objects, while the modifier for each dimension of the array 

is next to the corresponding brackets.  For example, the variable declaration � Stack< �> owned  []  

unique  [] array  refers to a unique  array of owned arrays of � stacks that hold objects of alias type 

�.  This syntax is consistent with the syntax for const  arrays in C++.  An array dereference of the form 

array[0]  would yield a value of type � Stack< �> owned  [] . 

Following Java, AliasJava supports covariant subtyping for arrays.  In order to preserve type soundness, it 

must do a run-time alias check whenever an object is stored into an array, to ensure that the dynamic 

ownership parameters of the object are compatible with the dynamic ownership parameters of the array.  

This check uses the same run-time alias annotation information that is used to support sound casts, as 

discussed above.  AliasJava keeps track of the relationship between arrays and their ownership parameters 

using a global hash table, since this information cannot be stored in the array itself.  The keys in the hash 
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table are weak references, so that the arrays (and their ownership information) can be reclaimed by the 

garbage collector when they are otherwise unreachable. 

 

The Java Standard Library.  AliasJava is implemented on top of the standard Java Virtual Machine 

(JVM), and applications can use the Java standard library that is provided with the VM.  Unfortunately, this 

means that Java’s reflection interfaces provide a way to get around the alias type system.  This could be 

remedied by replacing the existing reflection library with one that dynamically checks for violations of the 

alias type system. 

Another issue is that since I did not modify the standard library, the runtime system does not record run-

time ownership parameter information for parameterized classes and methods created and called by the 

standard library code.  Thus, the parameter information for some methods and objects will be missing at 

some run-time casts.  In the implementation, these casts always succeed, but a number of other choices are 

possible in principle.  In the future, I hope to apply an improved version of alias annotation inference 

[AKC02] to the standard library, and provide the annotated library along with the ArchJava distribution. 

2.2.4 Examples 

In this subsection, I present three examples that demonstrate the expressiveness and benefits of the 

annotation system. 

interface  Iterator<element> { 
  element Object next(); 
} 
 
public class  List<element> { 
  private owned Link<element, owned> front; 
  void  add(element Object e) { ... } 
  public i Iterator<element> iterator<i>() 
            assume  i->element, i-> owner 
            link i-> owned { 
    return new ListIter<element, owned> 
                                  (front); 
  } 
} 
 
class  ListIter<element, link> 
      implements  Iterator<element> 
      assume link->element { 
  private link Link<element, link> cur; 
  public element Object next() { 
    element Object e = cur.o; 
    cur = cur.next; 
    return e; 
  } 
} 
 

Figure 8.   A List  class and an iterator over the list 
 

public cl ass Lexer { 
  owned InputStream stream; 
  Lexer( unique InputStream s) { 
    stream = s; 
  } 
  unique Token getToken() { ... } 
} 
 
void  lexerClient() { 
  unique  InputStream stream = 
                  new FileInputStream(file); 
  unique Lexer l = new Lexer(stream); 
  l.getToken(); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.   A Lexer  class that uses an InputStream
as part of its representation.  The InputStream  is 
passed to the constructor as a unique  reference. 
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Iterators.  Iterators are a challenge to many ownership-based alias control systems.  For example, none of 

the early ownership type systems supported iterators [NVP98,CPN98,CNP01], and more recent systems 

support them only as inner classes [Cla01,BLS03] or as objects that cannot escape the stack [CD02].  

Figure 8 shows how a List  class can be defined to return an Iterator  object that can access its internal 

representation (the links in the list) without exposing that representation to clients.  When the List  class 

creates a ListIter , it instantiates the second ownership parameter of ListIter  with owned, thereby 

delegating a capability to access the list’s representation.  The ListIter  is then returned as an object of 

type Iterator , which hides access to the links in the list.  Clients of the Iterator  cannot access these 

links through the Iterator  interface, nor can they cast the Iterator  to ListIter , because the 

List  has not given them a capability to access its representation.  Furthermore, the programmer is 

protected from accidentally returning a ListIter , because the ListIter ’s argument owned is an 

internal domain of List  and therefore may not appear as part of any type in the public interface of List . 

 

Uniqueness and Ownership.  The combination of the unique  annotation with ownership annotations is 

crucial to the expressiveness of the annotation system; it allows us to express important idioms that neither 

class of annotation system could alone.  For example, the Lexer  class in Figure 9 accepts an input stream 

that becomes part of its representation.  The implementation of the Lexer  relies on the state of the 

InputStream , and therefore the specification of Lexer  should require that external clients do not 

modify the state of the stream after passing it to the lexer. 

In AliasJava, the InputStream  argument to Lexer ’s constructor is unique , forcing the client to give 

up its other non-lent  references to the stream.  The InputStream  is then captured into the lexer as an 

owned reference, which is encapsulated within the lexer object. 

 

2.2.5 Summary 

AliasJava’s annotations allow programmers to express and enforce important aliasing properties such as 

uniqueness, encapsulation, temporary sharing, and persistent sharing.  The next section describes how 

programmers can express the architectural structure of a system, and shows how these aliasing annotations 

can be used within that framework to describe important classes of architectural communication. 
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2.3 Architecture Constructs 

The ownership domains of AliasJava are sufficient to define hierarchical architectures, and to state a 

communication integrity theorem that all communication between ownership domains follows linking 

specifications.  Thus, ownership domains provide the basis for the key technical result of this dissertation.  

However, although this model of architecture specifies communication structure, it provides little insight 

into the way that objects in different domains communicate. 

In order to specify architectural communication more precisely, software architecture researchers have 

developed component, port, and connection abstractions.  Architectural elements are modeled by 

components, distinguished objects that communicate in a more structured way.  Ports represent the 

endpoints of communication between components; they show method calls that are sent and received by a 

component, and declare ownership domains that are shared between those components.  Explicit 

connections link ports together, showing which components communicate and using what protocols. 

ArchJava adds new language constructs for components, ports, and connections in order to allow 

developers to specify architecture in a precise way.  The rest of this section describes the language design, 

describing by example how to use these constructs to express software architectures.  Throughout the 

discussion, I show how the constructs work together to enforce communication integrity. Reports on the 

ArchJava web site [Arc02] provide more information, including the complete language semantics. 

2.3.1 Components and Ports 

A component is a special kind of object that communicates with other components in a structured way.  

Components are instances of component classes, such as the Parser  component class in Figure 10. 

A port represents a logical communication channel between a component and one or more components to 

which it is connected.  Ports declare two sets of methods, specified using the provides  and requires  

keywords.  A provided method is implemented by the component and is available to be called by other 

components connected to this port.  Conversely, each required method is provided by some other 

component connected to this port.  A component can invoke one of its ports’ required methods by sending a 

message to the port.  For example, the parse  method calls nextToken  on the parser’s in  port. 
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Because ArchJava is built on top of the AliasJava annotation system, the parser code is annotated to 

describe aliasing constraints on the data structures it manipulates.  Unlike regular classes in ArchJava, 

component classes do not have ownership parameters.  Instead, they specify data sharing more explicitly by 

declaring ownership domains in their ports, which represent groups of objects shared with other 

components.  For example, in Figure 10, both the in  and the out  ports of Parser  declare the domain 

symbol , representing tokens and symbol table information in the compiler that is shared with other 

components.  Domain declarations of the same name in the same component class, such as the declarations 

of symbol  in the in  and out  ports, refer to the same domain. 

ArchJava’s ports specify both the services implemented by a component and the services a component 

needs to do its job.  Required interfaces make dependencies explicit, reducing coupling between 

components and promoting understanding of components in isolation.  Ports also make it easier to reason 

about a component’s communication patterns. 

public component class Parser { 
  public port  in { 
    domain symbol; 
    provides void  setInfo(symbol Token t, symbol SymInfo s); 
    requires  symbol Token nextToken() throws  ScanException; 
  } 
  public port  out { 
    domain symbol; 
    provides symbol SymInfo getInfo( lent  Token t); 
    requires void compile( unique AST<symbol> ast); 
  } 
 
  public void parse() { 
    symbol Token tok = in.nextToken(); 
    unique AST<symbol> ast = parseFile(tok); 
    out.compile(ast); 
  } 
 
  unique AST<symbol> parseFile(symbol Token lookahead) { ...  } 
  void  setInfo(symbol Token t, symbol SymInfo s) { ... } 
  symbol SymInfo getInfo( lent  Token t) { ... } 
  ... 
} 
 
Figure 10.  A parser component in ArchJava.  The Parser  component class uses two 
ports to communicate with other components in a compiler.  The parser’s in  port 
declares a required method that requests a token from the lexical analyzer, and a 
provided method that enters tokens into the symbol table.  The out  port requires a 
method that compiles an AST to object code, and provides a method that looks up tokens 
in the symbol table.                                                                                                                        
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public component class  Compiler { 
  private final owned Scanner scanner = ...; 
  private final owned Parser parser = ...; 
  private final owned CodeGen codegen = ...; 
 
  connect  scanner.out, parser.in; 
  connect  parser.out, codegen.in; 
 
  public static void main( shared String args shared  []) { 
    new Compiler().compile(args); 
  } 
 
  public void  compile( shared String args  shared  []) { 
    // for each file in args do: 
    ...parser.parse();... 
  } 
} 
 
Figure 11.  A graphical compiler architecture and its ArchJava representation.  The 
Compiler  component class contains three subcomponents—a Scanner , a Parser , and 
a CodeGen.  This compiler architecture follows the well-known pipeline compiler design 
[GS93].  The scanner , parser , and codegen  components are connected in a linear 
sequence, with the out  port of one component connected to the in  port of the next 
component. 

2.3.2 Component Composition 

In ArchJava, hierarchical software architecture is expressed with composite components, which are made 

up of a number of subcomponents connected together.  A subcomponent2 is a component instance owned 

by another component.  Singleton subcomponents can be declared as final  fields of component type. 

Figure 11 shows how a compiler’s architecture can be expressed in ArchJava.  The example shows that the 

parser communicates with the scanner using one protocol, and with the code generator using another.  The 

architecture also implies that the scanner does not communicate directly with the code generator.  A 

primary goal of ArchJava is to ease software evolution tasks by supporting this kind of reasoning about 

program structure. 

 

Connections.  The symmetric connect  primitive connects two or more port instances together, binding 

each required method to a provided method with the same name and signature.   The arguments to 

connect  may be a component’s own ports, or those of subcomponents in final  fields.  Connection 

                                                           

2 Note: the term subcomponent instance indicates (dynamic) composition, whereas the term component subclass would 
indicate (static) inheritance. 
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consistency checks are performed to ensure that each required method is bound to a unique provided 

method. 

A connection also equates shared ownership domains of the same name that appear in connected ports.  For 

example, if the scanner declares domain  symbol  in its out  port, that shared ownership domain will be 

equivalent to the symbol  domain in the in  port of the parser.  Thus, any data annotated as owned by the 

symbol  domain may be shared between the scanner and parser—and in fact, between these components 

and the code generator as well, since symbol  also appears in the parser’s out  port. 

Provided methods can be implemented by forwarding invocations to subcomponents or to the required 

methods of another port.  The detailed semantics of method forwarding are given in the language reference 

manual on the ArchJava web site [Arc02]. 

ArchJava uses Java’s default synchronous, call-and-return semantics for method calls across ports.  

However, some applications may need alternative connection semantics such as asynchronous, event-based 

communication.  Other work describes an extension to ArchJava that allows developers to define and use 

connectors with application-specific semantics [ASCN03]. 

 

Inheritance.  Component classes can inherit from other component classes, or from class Object .  The 

compiler’s also allows component classes to inherit from ordinary classes (with a warning), at the cost of 

weakening communication integrity guarantees for inherited methods, so that developers can use non-

component-based legacy frameworks like the Java GUI libraries.  Component subclasses inherit methods, 

ports, and connections from their superclasses.  Component subclasses may also override method 

definitions and specify new ports and new provided methods in old ports.  However, component subclasses 

may not specify new required methods because this could break subtype substitutability. 

 

Design Support.  ArchJava supports architectural design with incomplete  components and ports 

annotated with the keyword, which allow an architect to specify and typecheck an unimplemented 

architecture specification.  That architecture specification can then filled in with code, facilitating a 

seamless transition between design and implementation. 

 

Communication Integrity.  The compiler architecture in Figure 11 shows that while the parser 

communicates with the scanner and code generator, the scanner and code generator do not directly 

communicate with each other.  Instead, their communication must be mediated through the parser, or 

through objects in the symbol  ownership domain that they both share.  If the diagram in Figure 11 
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represented an abstract architecture to be implemented in Java code, it might be difficult to verify the 

correctness of this reasoning in the implementation.  For example, if the scanner obtained a reference to the 

code generator, it could invoke any of the code generator’s methods, violating the intuition communicated 

by the architecture.  In contrast, programmers can have confidence that an ArchJava architecture accurately 

represents communication between components, because the language semantics enforce communication 

integrity. 

Communication integrity in ArchJava means that components in an architecture can only call each other’s 

methods along declared connections between ports.  Furthermore, components can only communicate 

through persistently shared data if the components each declare shared ownership domains that are merged 

via architectural connections.  Each component in the architecture can use its ports to communicate with 

the components to which it is connected.  However, a component may not directly invoke the methods of 

components other than its subcomponents or unique  components, because this communication may not 

be declared in the architecture, and thus may violate communication integrity.  Nor may a component 

access data owned by other components, or data that is part of a non-local shared ownership domain.  I 

discuss communication integrity more thoroughly in section 2.4. 

2.3.3 Dynamic Architectures 

The constructs described above express architecture as a static hierarchy of interacting component 

instances, which is sufficient for a large class of systems.  However, some system architectures require 

creating and connecting together a dynamically determined number of components. 

 

Dynamic Component Creation.  Components can be dynamically instantiated using the same new syntax 

used to create ordinary objects.  For example, Figure 11 shows the compiler’s main  method, which creates 

a unique  Compiler  component and calls its compile  method. 

 

Connect Expressions.  Dynamically created components can be connected together at run time using a 

connect expression.  For instance, Figure 12 shows a web server architecture where a Router  component 

receives incoming HTTP requests and passes them through connections to Worker  components that serve 

the request.  The requestWorker  method of the web server dynamically creates a Worker  component 

and then connects its serve  port to the workers  port on the Router . 
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public component class WebServer { 
  private final owned Router r = new Router(); 
  connect r.request, create; 
  connect pattern  Router.workers, Worker.serve; 
 
  public void run() { r.listen(); } 
  private port create { 
    provides r.workers requestWorker() { 
      final owned Worker newWorker = new Worker(); 
      r.workers connection = connect (r.workers, newWorker.serve); 
      return connection; 
    } 
  } 
} 
  
public component class Router { 
  public port interface workers { 
    group stream; 
    requires void httpRequest(stream InputStream in, 
                              stream OutputStream o ut); 
  } 
  public port request { 
    requires this .workers requestWorker(); 
  } 
  public void listen() { 
    unique ServerSocket<stream> server = new ServerSocket(80); 
    while ( true ) { 
      unique Socket<stream> sock = server.accept(); 
      this .workers conn = request.requestWorker(); 
      conn.httpRequest(sock.getInputStream(), sock. getOutputStream()); 
    } 
  } 
} 
 
public component class Worker extends Thread { 
  public port serve { 
    group stream; 
    provides void httpRequest(stream InputStream in, 
                              stream OutputStream o ut) { 
      this .in = in; this .out = out; start(); 
    } 
  } 
  public void run() { 
    // gets requested file and sends it on the output s tream 
  } 
} 
 

Figure 12.  A web server architecture.  The Router  subcomponent accepts incoming 
HTTP requests and passes them on to a set of Worker  components that respond.  When a 
request comes in, the Router  requests a new worker connection on its request  port.  
The WebServer  then creates a new worker and connects it to the Route r.  The Router
assigns requests to Workers  through its workers  port. 



 32

Communication integrity requires each component to explicitly document the kinds of architectural 

interactions that are permitted between its subcomponents.  A connection pattern is used to describe a set 

of connections that can be instantiated at run time using connect expressions.  Each connect pattern 

declares a list of (component type, port type) pairs, allowing connections between the ports of 

subcomponents of the specified type.  For example, connect pattern  Router.workers, 

Worker.serve  describes a set of connections between the Router  subcomponent and dynamically 

created Worker  subcomponents. 

Each connect expression must match a connection pattern declared in the enclosing component.  A connect 

expression matches a connection pattern if the connected ports are identical and each connected component 

is an instance of the type specified in the pattern (or a subtype).  The connect expression in the web server 

example matches the corresponding connection pattern because the r  and newWorker  components in the 

connect expression conform to the types Router  and Worker  that are declared in the connection pattern. 

 

Port Interfaces. Often a single component participates in several connections using the same conceptual 

protocol.  For example, the Router  component in the web server communicates with several Worker  

components, each through a different connection.  A port interface is instantiated into a concrete port 

whenever a connection is declared between the port interface and a port or port interface of a remote 

component.  The created port object is the endpoint for communication through the corresponding 

connection. 

Each port interface defines a type that includes all of the required methods in that port.  A port interface 

type combines a port’s required interface with an instance expression that indicates which component 

instance the port belongs to.  For example, in the Router  component, the type this .workers  refers to 

an instance of the workers  port of the current Router  component.  Similarly, in the WebServer , the 

type r.workers  refers to an instance of the workers  port of the r  subcomponent. 

Port interface types are a simple form of dependent type, since the type depends on the value of the 

instance expression.  In order for the type system to track the instance expression soundly, it must be a 

final  variable or field—a standard restriction in dependent type systems.  Thus, if r  was not a final  

field, we could not declare the type of connection  to be r.workers . 

Port interface types can be used in method signatures such as requestWorker  and in local variable 

declarations such as conn  in the listen  method.  In ArchJava, the required methods of a port can only 

be called by the component instance the port belongs to.  Therefore, required methods can only be invoked 
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on expressions of port interface type when the instance expression is this , as shown by the call to 

httpRequest  within Router.listen . 

Concrete port declarations, such as the ports of the parser in Figure 10, are syntactic sugar for declaring a 

port interface p and a final variable of port interface type this .p . 

Ports are instantiated from port interfaces whenever a connection is made.  A connect expression returns a 

connection object that represents the connection.  This connection object implements the port interface 

types of all the connected ports.  Thus, in Figure 12, the connect expression implements the interfaces 

newWorker.serve  and r.workers , and so it is legal to assign the connection object to the 

connection  variable, which has type r.workers . 

 

Removing Components and Connections.  Just as Java does not provide a way to explicitly delete 

objects, ArchJava does not provide a way to explicitly delete components or connections.  Instead, 

components are garbage collected when they are no longer reachable through direct references, running 

threads, or architectural connections.  Similarly, a connection cannot be disconnected; however, the 

resources used by the connection will be reclaimed when the connection object is no longer reachable.  For 

example, in Figure 12, a Worker  component will be garbage collected when the reference to the original 

worker (newWorker ) and the references to its connections (connection  and conn ) go out of scope, 

and the thread within Worker  finishes execution. 

2.3.4 Architectural Style Examples 

This subsection shows how ArchJava can express important invariants of two common architectural styles 

discussed by Garlan and Shaw [GS93]. 
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Pipe and Filter Architectures.  Figure 13 demonstrates a pipe and filter architecture style, in which the 

architectural components are filters that accept a stream of data along an input pipe and produce a new 

stream of data along an output pipe.  The PipeAndFilter  component class shown is a simple instance 

of the architectural style with a source, a sink, and a single filter between them.  The Filter  component 

accepts data on its input port, processes the data, and sends the new data out its output port. 

An important invariant of this architectural style is that the filters do not share state; they communicate only 

through the pipes connecting them.  The alias annotations in the system express and enforce this invariant.  

Because the Source , Filter , and Sink  components share no domains, they cannot directly share any 

data.3  The unique  annotations in the ports express the invariant that when a data structure is passed from 

one filter to another, the first filter gives up all references to the data. 

This example also shows the practical importance of combining uniqueness and ownership in the 

annotation system.  The data passed between components might be a complex data structure that includes 

multiple internal objects with nontrivial internal aliasing.  A type system with only uniqueness could 

express passing a unique reference to a data structure between components, but could not express the 

constraint that aliasing is allowed within the data structure but not beyond it.  Similarly, a system with only 

object ownership could express the limited scope of aliasing within the data structure, but could not express 

the architectural invariant that the first component does not retain any references to the data structure. 

 

                                                           

3 I am ignoring shared  annotations, but widespread use of these is poor practice and could be flagged by the 
compiler. 

public component  class  PipeAndFilter { 
  private  final  owned Source source = ...; 
  private  final  owned Filter filter = ...; 
  private  final  owned Sink sink = ...; 
  connect  source.out, filter.in; 
  connect  filter.out, sink.in; 
} 
 
public component  class  Filter { 
 public port  in { 
   void  accept( unique  Data d) { 
     // process data and send out 
     out.accept(process(d)); 
   } 
 } 
 public port  out { 
   requires  void  accept( unique  Data d); 
 } 
 private unique Data process( unique Data d) {...} 
} 
 

Figure 13.   A pipe and filter architecture implemented in ArchJava. 
 



 35

Blackboard Architectures.  Figure 14 shows a blackboard architectural style, where computational 

components surround a central data store.  The components in the blackboard architecture communicate 

exclusively by modifying shared state in the data store.  Component actions are triggered by changes to the 

data store made by other components. 

In the Blackboard  component class, the connections show the control flow between the computational 

components and the data store.  These control-flow connections specify that components c1  and c2  do not 

call each other’s methods directly, but instead communicate only through method calls to the store—and 

this specification is verified by ArchJava’s type system [ACN02b].  The alias annotations, in turn, describe 

the data sharing relationships between the components.  A glance at the port of the Database  component 

shows that the store , c1 , and c2  components all share the same ownership domain data . 

The interface of the database shows in more detail how data structures are shared between different parts of 

the architecture.  In its info  port, the data store defines a requires  method that it calls to notify clients 

whenever data has changed.  This method passes a change message to the computational components; this 

message is lent , indicating that the clients may not store persistent references to it. 

The database also implements two methods allowing clients to get data and to update the store.  Here, the 

specification of what data is requested is a lent  parameter of getData , but the returned data is annotated 

public component  class  Blackboard { 
  private  final  owned Database store = ...; 
  private  final  owned Client1 c1 = ...; 
  private  final  owned Client2 c2 = ...; 
  connect  c1.info, store.info; 
  connect  c2.info, store.info; 
} 
 
public component  class  Database { 
  public port interface  info { 
    domain data; 
 
    requires void  notify( lent  Message change); 
 
    provides data Data getData( lent  Spec spec); 
    provides void  update(data Data d); 
  } 
} 
 
public component  class  Client1 { 
  public port info { 
    domain data; 
 
    provides void  notify( lent  Message change); 
 
    requires data Data getData( lent  Spec spec); 
    requires void  update(data Data d); 
  } 
} 
 

Figure 14.   A blackboard architecture expressed in ArchJava. 
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with the ownership domain data , indicating that it is shared persistently between different components in 

the architecture. 

 

Event-based Architectures.  Figure 15 shows how an event-based architecture can be defined in ArchJava 

following the subject-observer pattern and using a callback object for communication [GHJ+94].  The 

architecture links the notify  port of Subject  to the observe  port of Observer .  When the observer 

starts up, it creates an object of type MyCallback , passing it a reference to the observer’s state.  This 

reference is passed to the subject and is stored in an internal field.  When an event of interest occurs within 

the subject, it invokes notify  on the callback, which then updates the state of the observer.  The 

connected ports declare the shared ownership domain callback , which is used for the callback object.  In 

public componen t  class  EventArchitecture { 
  private  final  owned Subject sub = ...; 
  private  final  owned Observer ob = ...; 
  connect  sub.notify, ob.observe; 
} 
 
public component  class  Observer { 
  private owned State state; 
  link callback-> owned; 
 
  public port  observe { 
    domain callback; 
    requires void register(callback Callback cb); 
  } 
 
  public void run() { 
    data.register( new MyCallback< owned>(state));  
  } 
} 
 
public interface Callback { 
  public void notify(); 
} 
 
public class MyCallback<st> implements Callback { 
  private st State state; 
  public void notify() { state.update(); } 
} 
 
public component  class  Subject { 
  private callback Callback cb; 
 
  public port  notify { 
    domain callback; 
    provides void register(callback Callback cb) { 
      this .cb = cb; 
    } 
  } 
 
  public void run() { ... cb.notify(); ... } 
} 
 

Figure 15.   Two components that communicate via a callback object. 
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order to allow the callback object to access the internal state of the observer, the Observer  class declares 

a link from the callback  domain to the owned domain of the observer. 

2.3.5 Summary 

ArchJava allows developers to specify the software architecture of a system as a hierarchy of component 

instances.  Connections describe which components within the architecture communicate, and the methods 

and ownership domains declared in ports show the details of the communication through method calls and 

shared data.  The next section explains in more detail how ArchJava’s type system enforces communication 

integrity, ensuring that the code implementing a system conforms to the architectural specifications. 

2.4 Communication Integrity 

Communication integrity is the key property enforced by ArchJava, ensuring that communication in the 

implementation obeys the architectural specification.  Intuitively, communication integrity means that 

components can only communicate with their neighbors in the architecture.  In this section, I define 

communication integrity more precisely, justify the definition, and explain how it is enforced. 

2.4.1 Inter-component Communication 

Before defining communication integrity, we must define inter-component communication.  To do so, we 

need the concept of an object’s architectural domain, which can be found by ascending the ownership tree 

until an ownership domain declared in a component is reached.  If an object is unique , we assign it a 

distinguished architectural domain unique . 

Definition [Inter-component communication]:  Two components communicate whenever: 

1. Direct call: Component instance A or an object in one of its ownership domains directly accesses 

(invokes a method or reads or writes a field of) component instance B, or 

2. Connection call: Component instance A invokes a method of component instance B through a 

connection, or 

3. Shared data: An object with architectural domain A accesses a non-component object B, and A 

and B are in different architectural domains. 

Java also allows indirect communication via the runtime system (through native methods) and static fields.  

Formally, the runtime system (including all native methods) and static fields are modeled as part of the 

ownership domain shared  that is implicitly declared in every component.  Thus, communication through 

native methods and static methods and fields is treated as shared data communication. 



 38

2.4.2 Integrity Definition 

Communication integrity in ArchJava is defined as follows: 

Definition [Communication Integrity]:   All run-time inter-component communication falls into one of 

the following categories of communication, each of which is documented explicitly or implicitly in the 

architecture: 

1. Unique communication: Object A invokes a method on a component instance B that is annotated 

unique , or 

2. Parent-child communication:  Object A invokes a method on a component instance B which is 

owned by A, or 

3. Connection communication:  Component instance A invokes a method on component instance B 

through a connection that matches a connect pattern in the component instance that directly owns 

both A and B, or 

4. Lent communication:  Component instance or object A invokes a method on a non-component 

object B that has been temporarily lent to A, with either a lent  annotation or a domain parameter 

of a method, or 

5. Shared data communication:  Object A accesses some object B in a different architectural 

domain, and the architectural domains of A and B are linked. 

 

Discussion.  Many definitions of communication integrity are possible.  I believe that the definition above 

is a good choice because it allows many different kinds of architectural communication to be expressed, 

and because it permits only local communication between components. 

The first category is communicating with a unique  component that will be later passed on to another part 

of the architecture.   One typical use of this is when initializing a component in a component factory.  

Communicating with a unique  component can be thought of as a special case of parent-child 

communication (category three), as unique  refers to a reference that is owned right now but may be 

transferred in the future.  Such communication is also inherently local, since there can be no aliases to a 

unique  component. 

Parent-child communication could in principle be subsumed under connection communication.  However, 

case studies with ArchJava have shown parent-child communication to be so common in practice that 

without direct support for it, writing programs would be considerably more awkward.  Parents initialize 

their children by calling their constructors, and they commonly invoke service methods on their children.  
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This kind of communication is also local, since each component has only one owner, which is the only 

component permitted to invoke methods directly on it. 

Connection communication is the core form of communication supported by ArchJava.  It is a natural 

conceptual idiom, as shown by the innumerable architectural drawings created by system designers 

everywhere.  Furthermore, since connections are only permitted between a parent and its children or 

between sibling component instances, it is also local. 

The fourth category allows a component or object to temporarily lend one of its ownership domains to 

another component, so that component can perform some action.  Conceptually, lending a reference to a 

domain to another component is like giving up ownership of that domain for the duration of the method 

call, letting the other component access the objects in the domain, and then getting exclusive ownership 

back when the method returns.  Thus, the ability to lend domain references through method parameters 

allows temporarily ownership transfers.  Treating lent domain parameters as a transfer of ownership is 

more problematic if components are multithreaded, but in this case an ownership-based locking protocol 

can be used to ensure exclusive access to an ownership domain [BLR02]. 

The fifth category, shared data communication, encompasses all forms of communication through shared 

data—another form of communication that is essential to many systems.  In typical programming 

languages, communication through shared data may be arbitrarily non-local, causing significant problems 

when understanding and evolving software systems.  In ArchJava, shared data communication is local at 

the architectural level, because each component can only communicate with objects in its domains, and the 

objects in a domain can only communicate with objects in domains to which it is linked in the architecture. 

This definition of communication integrity is not perfect; some aspects of the system (such as the global 

domain shared ) give up locality in order to support standard Java idioms like static fields.  However, I 

believe that the definition is a good compromise given the goal of supporting existing Java programs with 

few changes.  Furthermore, I argue that any definition of communication integrity that is intended to be 

general-purpose will have to support the categories of communication described here in some way. 

2.4.3 Enforcement 

Enforcing communication integrity is essentially ensuring that all instances of inter-component 

communication fall into one of the architecturally documented categories.  Consider the cases of inter-

component communication: 
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1. Direct call case.  The ArchJava language ensures that if the receiver of a method call is a 

component, then either the receiver is this , or the receiver is unique  or part of the owned 

domain.  In the case of this , the communication is within a component.  In the cases of unique  

and owned, the communication is unique communication and parent-child communication, 

respectively. 

2. Connection call case.  The type system must ensure that the component that owns both the sender 

and the receiver declared a connection between them.  Whenever a connection is made, the 

compiler verifies that the components in the connection are owned by the current component, and 

that the current component declares a connect pattern that matches the components being 

connected. 

3. Shared data case.  Consider the annotation on the object B being accessed.  If the annotation is 

unique , there is no inter-component communication occurring—instead, the calling component 

is modifying one of its own unique data structures.  If the annotation is a locally declared private 

domain (such as owned), there is again no inter-component communication, because the receiver 

of the access is part of the same component as the sender.  If the annotation is lent  or the domain 

parameter or a method, the communication is lent communication. 

The remaining case is when the accessed object is annotated with an ownership domain that is either 

declared in a port of the current component or is a domain parameter of the current object.  We wish to 

show that this case is shared data communication.  This will be true if and only if architectural domain 

of the accessing object is linked to architectural domain of the accessed object.  But this is guaranteed 

by the link soundness property, so we are done. 

2.4.4 A Relaxed System 

The system as presented so far is expressive enough to cover a wide range of programming idioms.   

However, initial experiences with earlier versions of the system showed that some relaxation may be 

needed in practice, for at least two reasons [ACN02a]: 

 

Reuse of legacy Java code.  Libraries written in Java were not designed with ArchJava-style components 

in mind, which can create problems when reusing these libraries in an ArchJava program.  For example, 

Java’s Swing graphical user interface [ELW98] includes a number of classes that applications extend to 

build their interface logic.  In the system I initially developed component classes could not extend ordinary 

Java classes, so a developer would not be able to model a Swing-based GUI as part of the architecture. 
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I chose to allow component classes to extend Java classes and interfaces for the purposes of reusing legacy 

Java frameworks such as Swing.  When reusing legacy Java classes, developers may want to annotate them 

with ownership parameters.  Therefore, the component classes that inherit from the parameterized library 

classes may also have ownership parameters, even though components do not have ownership parameters 

in the original ArchJava language. 

Communication integrity is relaxed to treat a component’s inherited interface as an additional port that is 

implicitly connected to any object with the capability to access the component.  Thus, if one component is 

owned by another, only objects with a capability to access the parent’s owned state can use the inherited 

interface.  Similarly, the ownership parameters of a component allow data sharing with any object that has 

the right capability, which is more flexible but less structured than sharing objects via ownership domains 

in ports.  Thus, this solution relaxes communication integrity in a controlled way, allowing more flexible 

access to a component through its inherited interface, but preserving the guarantees for communication via 

the component’s ports and ownership domains.  The ArchJava compiler produces a warning message, 

letting developers know that integrity guarantees are relaxed when components inherit from classes. 

 

Evolution to component code.  ArchJava intentionally builds on Java, in part so that developers can 

express and verify the architecture of existing Java programs using ArchJava.  A transition from pure Java 

to ArchJava is likely to be more effective if programmers can convert one class at a time into a component 

class [ACN02a].  This is difficult in the system described above, because once one class is converted into a 

component class, all objects that it communicates with will also have to become component classes so their 

ports can be linked up to the component in the architecture. 

The solution to this problem is to allow ports to be defined in classes as well as components, and to allow 

connections to link object ports to component ports.  That way, when converting a single class into a 

component class, the component class’s ports can be linked to ports in neighboring classes, without fully 

converting these classes into component classes.  Later, the neighboring classes can also be converted into 

component classes one at a time. 

Connections inside a component C can link any object owned by C or one of C’s domains to C or any other 

component or object that C owns.  These connections (or connect patterns) look identical to connections 

between components; the only difference is that an ordinary object (or class) is specified instead of a 

component instance (or component class). 

Connections between a component and an object conceptually allow more communication than connections 

between components, because an object can be shared more freely than a component.  However, they 

represent a principled relaxation of ordinary, inter-component connections, because although the objects 
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may be shared according to their alias annotation, communication between the object and the connected 

component is still declared by the architectural connection. 

This solution also supports the idiom where a callback object needs to access the surrounding component.  

For example, the callback code in Figure 15 could have been written to call a method on the surrounding 

Observer  component rather than updating the State  object directly.  The developer simply connects 

the callback object to the observer component in the observer’s architecture.  In Java, such callbacks are 

often implemented as inner classes.  Since inner classes have access to the outer class object, ArchJava 

allows the inner classes of a component to call that component’s methods, as if there were an implicit 

connection between them in the architecture. 

With the changes described, I believe that ArchJava is flexible enough to express many Java programs 

without major implementation changes.  The case studies in chapter 4 evaluate this claim. 

2.4.5 Summary 

Communication integrity means that all communication between components must be declared at the 

architectural level—either through required and provided methods in connected ports, or through the 

declaration of an ownership domain in connected ports.  The ArchJava compiler enforces communication 

integrity via local rules governing how references with different alias annotations can be used.  Because 

integrity is enforced through the type system, programmers can develop applications much as they are used 

to, but gain the assurance that architectural properties are maintained during implementation and evolution. 

2.5 ArchJava Implementation 

A prototype compiler for ArchJava is publicly available for download at the ArchJava web site [Arc02].  

The compiler is implemented on top of the Barat infrastructure [BS98].  The compiler accepts a list of 

ArchJava files (.archj), compiles each one down to Java source code, and invokes javac  on the resulting 

.java files.  The compilation technique is modular, so that when a source file is updated, only that file and 

the files that depend on its interface need to be recompiled.  ArchJava’s typechecking rules are modular and 

local, so that programmers can easily identify the cause of a typechecking error. 

As of this writing, some of the features of ArchJava are not yet implemented.  These include ownership 

domains (other than the default domain owned), design support, and some static and dynamic checks.  

However, the main alias-control constructs of AliasJava (aside from named domains) and the architectural 

modeling constructs of ArchJava are all implemented. 

The ArchJava compiler translates each component class to an ordinary class with the same name in Java, 

leaving the fields and method bodies substantially unchanged.  Each port interface in the ArchJava source 

code is compiled into a Java interface containing the required methods of the port interface.  An ordinary 



 43

port generates the same thing as a port interface as well as an associated field that holds the port instance.  

All variables of port interface type are compiled to variables of the interface generated for that port 

interface. 

Each connection is compiled into a “connection class” that implements all of the interfaces of the 

connected ports.  The connect expression instantiates this class, passing the connected components to the 

constructor.  The constructor assigns the connected components to internal fields.  Whenever a required 

method is invoked on that connection, the connection object invokes the corresponding provided method on 

the appropriate component. 

Although in ArchJava the source code is the canonical representation of the architecture, visual 

representations are also important for conveying architectural structure.  Parts of this dissertation use hand-

drawn diagrams to communicate architecture; however, I have also constructed a simple visualization tool 

that generates architectural diagrams automatically from ArchJava source code.  I have also begun to 

develop an IDE for ArchJava using a plug-in for the Eclipse development environment.  In the future, I 

intend to expand this IDE to support graphical browsing and editing of ArchJava architectures, refactoring 

of Java code to express its architecture, and integration with architectural analysis tools.  I also plan to 

provide other tools such as an archjavadoc  program that would automatically construct graphical and 

textual web-based documentation for ArchJava architectures. 

 

Performance.  The main cost of the implementation technique, when using standard connections, is that 

calls through connections are routed through connection objects, adding a layer of indirection to the system.  

The current compiler is a prototype and does not perform any optimizations; however, future 

implementations could use well-known techniques like specialization to eliminate this indirection in many 

cases.  Casts that involve ownership parameters also involve a small additional overhead, as does the alias 

type-passing technique.  The most significant overhead is incurred by applications that use custom 

connectors.  Since the compiler implements custom connectors by reifying each method call, calling a 

method across a custom connector is a relatively expensive operation, even if the connector is simple. 

Thus far, the only applications of significant size to which I have applied ArchJava are interactive, and thus 

it is difficult to benchmark their performance.  An independent evaluation of ArchJava on a 

microbenchmark that exhibited a very fine-grained architecture measured an overhead of about 10% 

relative to Java code with a similar decomposition [AL02].  I expect that most realistic applications would 

use architectural features at a more coarse grain, and so I anticipate that the time overhead will typically be 

less than this in practice.  I currently have no measurement of the space overhead of ArchJava, but 

assuming that components and parameterized classes (such as collection classes) tend to be large, I expect 
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the that space overhead of storing information about ownership parameters and ownership domains will be 

small in comparison. 

2.6 Recent Changes 

The ArchJava and AliasJava languages have evolved significantly from their initial presentations 

[ACN02a,ACN02b,AKC02].  The changes are summarized below. 

 

AliasJava.  The major change to AliasJava is the generalization of ownership types to ownership domains. 

This extension allows developers to more precisely specify aliasing relationships between groups of 

objects, and also guarantees that inter-component communication through shared data is mediated by 

ownership domains declared in the architecture. 

 

ArchJava.  The most significant change to ArchJava has been the integration of AliasJava’s alias control 

constructs.  In the earlier version of ArchJava, the parent of a component was the component that created it.  

This turned out to be awkward in practice [ACN02b], and so now the owner of a component is its parent.  

As a result of this change, the system better supports idioms like component factories [GHJ+94], since 

unique  components can be created anywhere in the system, then passed to the appropriate place in the 

architecture where they become owned by their parent component. 

2.7 Summary 

The ArchJava language extends Java with constructs that model software architecture as a hierarchy of 

component instances.  Components communicate through explicit connections as well as through shared 

objects that are part of architecturally declared ownership domains.  Component communication is 

mediated through connectors that can have user-defined semantics, even linking components on different 

machines.  ArchJava’s type system uses ownership and linearity to enforce structural conformance between 

architecture and implementation.  Thus, engineers can have confidence that the code behaves according to 

the architectural documentation, and can use this knowledge to build and evolve systems more effectively. 

The next chapter formalizes a core subset of the ArchJava language and proves that the type system 

enforces architectural conformance. 
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Chapter 3 

Formalization 

The previous chapter introduced the ArchJava language, and gave an informal argument that its type 

system enforces integrity.  However, Java is a complex language, even without the ArchJava additions.  

Since Java provides many ways to communicate between components, there is a risk that in designing the 

ArchJava type system, I may have omitted some communication path that could be used to violate 

integrity.  Thus, we would like some assurance that the informal correctness arguments for ArchJava are 

valid. 

One way to gain increased confidence in the type system is to use formal techniques to model the ArchJava 

language, and then prove properties about the formal model.  A standard technique, exemplified by 

Featherweight Java [IPW99], is to formalize a core language that captures the key typing issues while 

ignoring complicating language details.  Featherweight Java (FJ) formalizes the core of Java, including 

classes, inheritance, immutable fields, and methods.  The rules specifying the static and dynamic semantics 

of the language are small enough to fit on one page, making it feasible to prove formal properties about the 

system.  Since FJ does not include many features of Java, including field writes, interfaces, inner classes, 

etc., there is no guarantee that the properties proved of the formal model extend to the full Java language.  

However, to the extent that the formal system models the most important parts of Java, the proofs increase 

confidence in the full system. 

In this chapter, I formalize the ArchJava as ArchFJ, a core language modeled after Featherweight Java.  

Because I want to formalize the core constructs of both Java and ArchJava, ArchFJ is considerably more 

complex than FJ.  However, it remains small enough to permit a precise, formal semantics and to permit 

formal reasoning. 

In addition to the Java features modeled by FJ, ArchFJ models core architecture constructs including 

component classes, port interfaces, connect patterns and connect expressions.  It also models the core alias 

control constructs of AliasJava, including unique , lent , ownership, and class-level parameterization.  

Ownership domains are modeled in a simple way: all objects and components have a single domain 

owned, but components can declare additional domains in ports, so that the language can model shared 

data.  In order to reason effectively about uniqueness, ArchFJ models mutable fields instead of FJ’s 

immutable fields. 

ArchFJ also makes a number of simplifications relative to ArchJava.  Static connections and ports are left 

out, as they are subsumed by dynamically created connections and port interfaces.  As in Featherweight 

Java, the model omits interfaces, inner classes, and some statement and expression forms, since these 
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constructs can be written in terms of more fundamental ones.  ArchFJ does not have static fields, so it also 

omits the shared  ownership domain, which can be modeled as a domain of a top-level component or 

object.  These omissions make the formal system simple enough to permit effective reasoning, while still 

capturing the core constructs of ArchJava. 

3.1 The ArchFJ Core Language 

Syntax.  Figure 16 presents the syntax of ArchFJ.  The metavariable C ranges over class names; E ranges 

over component and class names; T ranges over types; K ranges over component class names; f  ranges 

over fields; v  ranges over values; e ranges over expressions; P ranges over port interface names; S ranges 

over stores; � and θ range over locations in the store, where θ is used to represent the value of this , and m 

ranges over method names.  Generic alias annotations are represented by A or B, where actual parameters 

1 2CL ::=  C < �,�>  C < �>  �-> �,�->  { �-> ; T f; M }class extends assumes owner links owned  

    |     K  E {  �-> �; T f; M I X }component class extends links  

I  ::=  P { �; R M }port interface domain  

R thisM  ::= T  m(T x) T  {  e; }return  

R thisR  ::= T  m(T x) T ;requires  

X  ::=  K.P;connect pattern  

 
e ::= v A     _ 
 |   new E<p>() 
 |   e.f A 

 |   e.f = e, e 
 |   (T)e_ 
 |   e.m(e) 
 |   θ � e 
 
v ::= �

 

 |   x 
 |     (x.P)connect  
 |   null  
 |   error  
         _ 
T,V ::= A E<p> 
 |   v.P 
 |     ( )v.P�  
 |   NULL 
 
A,B ::= lent  | unique  | p 
p,q ::= � | � | owned 
             _  _ 
S ::= { � � E< �>(v) | domain ( �)  } 
� ::= {x � T} 
Σ ::= { � � T | domain ( �)} 
 

Figure 16.  ArchFJ Syntax 
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are sometimes denoted as p or q and formal ownership parameters and domains are named by Greek letters 

�,�….  As a shorthand, an overbar is used to represent a sequence. 

In ArchFJ, classes are parameterized by a list of alias annotations, and extend another class that has a 

subsequence of its ownership parameters.  An assumes  clause gives the assumptions about linking 

between parameters. ArchFJ’s classes have only the built-in owned domain, which is automatically linked 

to each ownership parameter of the class.  However, classes may declare links from ownership parameters 

to the owned domain as long as corresponding links from the same parameters to the owner  domain were 

assumed.  Each class defines a set of fieldsf and methodsM; the predefined class Object  has no fields or 

methods.  Component classes can extend another component class, or Object .  Component classes also 

define a set of link declarations, port interfaces I , and connection patterns X .  A port interface is a list of 

required methodsR , provided methods M, and domain declarations. 

Because we want to reason about communication in the presence of assignment and object identity, ArchFJ 

adds mutable fields and field assignment to FJ.  Therefore, a store S maps locations � to their contents: the 

class of the object or component, its actual ownership parameters (for ordinary objects) or ownership 

domains (for components), and the values stored in its fields.  I will write S[ �]  to denote the store entry for 

� and S[ �, i]  to denote the value in the ith field of S[ �] .  Functional store updates at location � are 

abbreviated S[ �→E< �>( v )] . 

Locations are also used to represent ownership domains.  The owned domain of an object or component is 

represented by that object’s location �.  Domains declared within a component are represented by a fresh 

location, distinct from the component’s location.  When two ports are connected, the domains declared in 

the ports become equivalent.  Domain equivalence is represented by mapping each domain to its 

equivalence class representative (�→domain ( �ecr ) ), which uniquely represents the set of equivalent 

domains.  I assume a fixed class table CT mapping regular and component classes to their definitions.  A 

program, then, is a tuple (CT,S,e ) of a class table, a store, and an expression. 

Expressions include object creation expressions, field reads and writes, casts, and method calls.  Several 

method calls may be executing on the stack at once, and to reason about ownership we will need to know 

the receiver of each executing call.  Therefore, the expression form θ � e represents a method body e 

executing with a receiver θ. 

Values represent irreducible computational results, and include locations and connections.  The null  value 

is a distinguished location.  ArchFJ represents failed casts and null dereference errors with an explicit 
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error  value.  Variables are also considered values because any value (including variables) may appear as 

the instance expression in a port interface type.  The set of variables includes the distinguished variable 

this  used to refer to the receiver of a method.  Neither the error  value, nor locations, nor θ � e 

expressions may appear in the source text of the program; these forms are only generated during reduction.  

Locations and variables are tagged with their alias type, which otherwise might not be inferable statically.  

These tags are useful for proving type soundness in the formal system, but they do not affect the run-time 

semantics of the program and therefore do not exist in the implementation. 

In the compiler for the full language, an analysis ensures that each unique  variable is consumed only 

once, with all other uses treating that variable as lent .  ArchFJ models the results of this analysis by 

explicitly tagging all values with their alias annotation.  Thus, a unique  variable will be annotated lent  

at all of its uses except the consuming use, where it will be annotated unique .  Similarly, the compiler for 

the full language performs an analysis to determine that unique  fields are overwritten immediately after 

being read.  Instead of modeling this analysis formally, ArchFJ provides a destructive read operation 

(again, identified by the unique  tag on the field read) that overwrites the field with null  after every 

read. 

 

Expressiveness.  While ArchFJ has been simplified considerably from ArchJava, it is still quite expressive.  

For instance, the example architectures in Figures 13-15 can be expressed in ArchFJ with only minor 

rewriting (e.g., since ArchFJ doesn’t include connect statements, we must replace connect statements with 

pairs of connect patterns and connect expressions). 

 

Types.  Ordinary types consist of an alias annotation A and a class name parameterized with annotations p.  

Annotations may be lent , unique , owned, or a parameter p.  Actual ownership parameters in the 

source text must be ownership parameters � of the enclosing class, or the built-in owned domain.  

However, during reduction, these parameters may be replaced with locations �, indicating the object that 

corresponds to that actual ownership parameter.  Thus, locations are included in the type syntax so that we 

can give alias types to expressions in an executing program.  There is also a type representing NULL.  

Finally, the type system includes port interface types (v.P ) and a union type that matches any one of a set 

of port interface types. 
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Reduction Rules.  The evaluation relation, defined by the reduction rules given in Figure 17, is of the form 

S, θ � e →  e’,S’  read “In the context of store S and receiver θ, expression e reduces to expression 

e’  in one step, producing the new store S’ .”  I write →* for the reflexive, transitive closure of →.  Most of 

the rules are standard; the interesting features are how they manipulate architectural constructs and how 

alias annotations are tracked. 

The R-CNEW rule reduces an object creation expression to a fresh location tagged as unique .  The store is 

extended at that location to refer to a class with the specified ownership parameters, with all null  fields.  

The rule for component creation is similar, except that components may not have ownership parameters in 

the formal system.  Instead, the store keeps track of a set of fresh locations representing the domains 

declared in that component’s ports. 

 
( ) ( )S     C  C< >...   S S[ C< >( )]
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Figure 17.  ArchFJ Evaluation Rules 
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There are two rules for field reads.  The R-READ rule applies to normal (non-unique) reads of a field f i; it 

looks up the receiver in the store and identifies the ith field.  The result is the value at field position i in the 

store.  The result value is annotated with the annotation on the field read.  The R-UNIQUEREAD rule is 

similar, but applies to reads annotated as unique .  Here, the result is always a value with a unique  

annotation, but the value of the field that was read is updated to null  in the store, written as [ null /v i] .  

This reflects the “destructive read” semantics of the formal language, which models the user-level 

language’s requirement that unique  fields be updated after unique reads. 

The R-WRITE rule is straightforward, updating the ith field of the receiver object with the value written to 

field f i.  As in Java (and FJ), the R-CAST rule checks that the cast expression is a subtype of the cast type.  

Note, however, that in ArchFJ this check also verifies that the ownership parameters match, doing an extra 

run-time check that is not present in Java.  Similarly, the rule for a cast to a port interface type verifies that 

the named port interface type is one of the ones in the actual connection.  A cast of a null  value to any 

type always succeeds.  If the run-time check in the cast rule fails, however, then the cast reduces to the 

error  expression (following the cast error rules in Figure 18). 

The method invocation rule R-INVK looks up the receiver in the store, then uses the mbody helper function 

(defined in Figure 22) to determine the correct method body to invoke.  The method invocation is replaced 

with the appropriate method body.  In the body, all occurrences of the formal method parameters and this  

are replaced with the actual arguments and the receiver, respectively.  Execution of the method body 

continues in the context of the receiver location.  The rule for invocations on connections is similar, except 

that the mbody helper function also determines which of the connected components defines the invoked 

method.  For both invocation rules, the store is updated with the updateD function, which unifies domains 

in the store according to connections made in the method body. 

When a method expression reduces to a value, the R-CONTEXT rule propagates the value outside of its 

method context and into the surrounding method expression. 
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Figure 18 shows the congruence rules that allow reduction to proceed within an expression in the order of 

evaluation defined by Java.  For example, the rule RC-FIELD states that an expression e.f  reduces to 

e’.f  whenever e reduces to e’ . The congruence rule RC-CONTEXT shows the semantics of the � � e 

construct: evaluation of the expression e occurs in the context of the receiver � instead of the receiver θ. 

The error rules, also in Figure 18, define the semantics of a failed cast or null dereference.  Whenever the 

run-time checks necessary for a cast fail, the cast expression reduces to an error  value, which is how the 

system models the exception that is thrown by the full language when a cast fails.  Similarly, null 

dereference errors are modeled by reducing the expression to the error  value. 
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Figure 18.  ArchFJ Congruence and Error Rules 
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Subtyping Rules.  ArchFJ’s subtyping rules are given in Figure 19.  Subtyping of classes and components 

is based on the immediate subclass relation given by the extends  clauses in CT.  In the S-EXTENDS rule 

and elsewhere, the brackets indicate optional syntax and ellipses indicate syntax that does not affect the 

rule’s semantics.  The subtyping relation is reflexive and transitive, and it is required that there be no cycles 

in the relation (other than self-cycles due to reflexivity).  Every type (including port types) is a subtype of 

Object , NULL is a subtype of every type, and a union type is a subtype of all its member types. 

The general subtyping rule for types that have alias annotations and parameters follows the class subtyping 

relation.  A type with any annotation can be assigned to a lent  type, but if the types are given owners then 

the owners must match.  The subtyping rules for unique  verify that the system preserves the linking 

constraints in the signature of each class.  When a unique  object becomes part of some domain q, the rule 

SUBTYPE-ASSIGN ensures that q is linked to each parameter of the formerly unique  type, and that all of 

the assumed links from domain parameters to owner  are actually present.  This rule uses the type of this  
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Figure 19.  ArchFJ Subtyping and Domain Equality 
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from the surrounding type judgment; I omit the turnstile when invoking the subtype judgment because the 

type used is always clear. 

The subtyping rule SUBTYPE-UNIQUE for unique  objects ensures that if one or more parameters are 

forgotten via subsumption, then all of the forgotten actual domain parameters are still present in the 

remaining domain parameter list.  This guarantees that if the unique object is later assigned to a domain, the 

test in rule SUBTYPE-ASSIGN will ensure that the owning domain is linked to any hidden parameters of the 

object as well as to the explicit parameters. 

Types are considered equivalent up to equality of domains, defined in rule DOMAIN-EQUALITY ; we assume 

this rule is applied implicitly whenever necessary, using the store typing Σ from the surrounding judgment.  

A subtyping relation on store types is useful for showing type preservation; one store type is a subtype of 

another if the subtype has the same type as the supertype for every location in the supertype’s domain, 

except possibly that a domain is substituted for a unique  annotation. 

 

Typing Rules.  Typing judgments, shown in Figure 20, are of the form , , , :θ θΓ Σ T  e T--l  , read, “In the type 

environment � , store typing Σ, receiver class Tθ, receiver instance θ, and set of assumed links links, 

expression e has type T.”  For a judgment of the form , , , :θ θΓ Σ T  e T--l   to be well-formed, we require that 

, , , :θ θθ θΓ Σ T  T--l   and any ownership annotations � that appear in T must be bound as parameters or domains 

of Tθ. 

The T-CVAR and T-XVAR rules look up the type of a variable in � .  The T-LOC rule looks up the type of a 

location in Σ.  Both the variable and location typing rules may assign the expression a supertype of the type 

in the store type or variable map (for example if the annotation A is lent  but the store type of the location 

is unique ).  The object creation rule verifies that any formal arguments assumed to be linked within the 

instantiated class are actually linked in the current class.  The typing rule for null  assigns it the type 

NULL. 

The connection rule assigns the connection a union type of all the connected ports. If the instance 

expressions in the connection are variables, then this is a connection in the source text, and so the 

connection must match a connect pattern declaration in the enclosing component T.  If the instance 

expressions in the connection are locations, then there must be a matching connect pattern in their common 

owner (for simplicity, we omit parent-child connections from ArchFJ). 
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The rule for field reads looks up the declared type of the field using the fields function defined in Figure 22.  

Because the read of a unique  field may be annotated lent , the rule checks that the field type is a subtype 

of the type with the field read annotation substituted for the one in the field type.  If the receiver is a 

component, the receiver must be the current component this .  Rule T-WRITE, for field writes, is similar.  

The cast rule checks that the annotation in the cast expression matches the annotation of the value, because 
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Figure 20.  ArchFJ Typechecking 
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annotations cannot be changed via casts (in fact, in the full language, annotations are omitted from casts for 

this reason). 

Rule T-INVK looks up the invoked method’s type using the mtype function defined in Figure 22, and 

verifies that the actual argument types are subtypes of the method’s argument types.  If the invocation is on 

a component, the component must either be the current component this , or be annotated owned or 

unique .  If the invocation is through a port interface type, then the instance expression must be this , as 

in ArchJava.  Finally, the T-CONTEXT typing rule for an executing method checks the method’s body in the 

context of the receiver class and instance. 
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Figure 21.  Class, Method, Port, Connection, Store, and Machine Typing 
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Class and Store Typing.  Figure 21 shows the rules for well-formed class definitions and stores.  The rules 

for well-formed classes have the form “class declaration E is OK,” and “method/port/connection is OK in 

E.”  The class rule checks that none of the field types are lent , and ensures that a subclass’s linking 

assumptions are at least as strong than those of its superclass.  It also verifies that any methods in the class 

are well formed.  The component class rule ensures that a component only inherits from another component 

class, or from class Object .  It also checks for well-formed ports and connections, in addition to the well-

formed method check.  Finally, linking declarations in a component must not vary with inheritance. 

The rule for methods checks that the method body is well typed, and uses the override function (defined in 

Figure 22) to verify that methods are overridden with a method of the same type.  It verifies that unique  

arguments occur at most once in the body of the method other than with annotation lent , enforcing the 

constraint that unique  values are only consumed once.  For component classes, the port typing rule 

verifies that only subclasses of Object  may define new ports, or new required and provided methods 

within a port.  It also ensures that the method signatures in the port are a subset of the methods declared in 

the class body.  The typing rule for connect patterns verifies that for each required method there is a unique 

provided method with the right signature. 

The store typing rule ensures that the store type gives a type to each location in the store’s domain that is 

consistent with the classes and ownership parameters in the actual store.  The equivalence class 

representative for each domain must be consistent in the store and its type.  For every value in a field, the 

type of the value must be a subtype of the declared type of the field.  The last two clauses in the store 

typing rule check that for every pair of domains that are assumed to be linked, either explicitly in an 

assumes  clause or based on the implicit link between the owner of an object and that object’s parameters, 

the corresponding architectural domains are linked in the architecture.  This condition is required for 

enforcing integrity. 

Finally, the rule T-MACHINE checks that an entire machine configuration is well formed.  The first two 

clauses in the rule check that the expression and store are well typed.  The third clause verifies that pointers 

annotated unique  in the store type really occur only once in the range of the store together with parts of 

the executing expression that are annotated unique  (in addition, the value can occur any number of times 

in parts of the executing expression that are annotated lent ).  Finally, the fourth clause checks that 

connected domains are properly unified.  For each connect expression in the range of the store or the 

executing program, for each pair of unified domains, the rule ensures that the equivalence class 

representatives for the two domains are equal. 
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Auxiliary Definitions.  Most of the auxiliary definitions shown in Figure 22 are straightforward and are 

derived from FJ.  The field and connection lookup rules return the list of fields and connections in a given 

class.  The base case Object  has no fields.  Field types are translated to the surrounding typing scope by 

substituting actual parameters for the formal parameters of the receiver, and replacing occurrences of 

owned and this  in the type with the receiver expression e0. 
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Figure 22.  ArchFJ Auxiliary Definitions 
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ArchFJ follows Java’s lookup rules for method types and method bodies, with straightforward extensions 

for port types and union types.  The method body lookup rule mbody for connections chooses the 

component i providing the method.  It is guaranteed to choose a unique component because the T-P ATTERN 

rule implies that only one of the components in a connection defines each method.  It then computes the 

actual method body using the usual mbody rule.  Both mbody and mtype translate types to the surrounding 

typing scope in the same way as fields.  The expression ( )[ v A K< >]Σ = �  and the corresponding substitution 

/[ �]�  in the mtype rule for port interface types only apply if the value v  is a location (we take the store type 
�

 from the surrounding typing context).  Finally, the override rule checks that an overriding method has the 

same type signature (except for the type of this ) as the method it overrides. 
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Domain equality and helper functions: 
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Store updates: 
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Figure 23.  More Auxiliary Definitions 
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Figure 23 presents more auxiliary definitions.  The owner function looks up the owner of a location in the 

store type—it can return another location or unique .  The adomain function finds the architectural 

domain of a location as follows:  the architectural domain of a component or domain is itself, the 

architectural owner of a unique  object or component is unique , otherwise the architectural domain is 

defined to be the architectural domain of the object’s owner 

The linked function evaluates whether two domains are linked in the store type.  The linked relation is 

reflexive, so each domain is linked to itself (allowing objects in the domain to refer to other objects in the 

domain).  The unique  architectural domain is linked to all other domains, so that unique  objects can 

access objects in other architectural domains.  One domain is linked to another if they were both declared 

by a component that declares the linking relationship explicitly (or implicitly, in the case of owned).  Also, 

the owned domain of an object is implicitly linked to each of the ownership domain parameters of the 

object. 

The links function returns the set of links declared in the assume  and links  clauses of a class 

declaration.  It also takes into account the implicit assumption that owner  and owned are linked to each 

ownership parameter of the class.  The function translates formal ownership parameters into actual 

parameters, and if the alias annotation A on the type is a domain, it replaces owner  with A.  The definition 

of links for component classes is similar, except that explicitly declared links are used instead of assumed 

links.  The meaning function allows us to reason about expressions or annotations that are equivalent to 

this  or owned, even after these variables are replaced with corresponding locations. 

In the dynamic semantics, two domains are considered equivalent if they have the same equivalence class 

representative (a similar rule in Figure 19 applies in the static semantics).  The domain equality rule is 

applied implicitly as needed during reduction.  The ecr function looks up the equivalence class 

representative of a domain.  The lookup function returns the actual domain location representing a 

particular domain of a component. 

Finally, the updateD function produces a new store where the equivalence class representatives of domains 

in a set of connections have been updated to reflect new equalities.  For each pair of domains with the same 

name declared in connected ports, the unify rule is invoked.  This rule identifies the equivalence class 

representative for each domain, chooses one arbitrarily, and updates the store replacing the other 

equivalence class representative with the chosen one. 
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3.2 Properties 

The most important property enforced by ArchFJ is communication integrity.  We separate communication 

integrity into two parts, one for control flow between components, and one for communication through 

shared data. 

The control communication integrity theorem covers direct accesses (calls, field reads and field writes) 

from one component to another—cases 1, 2, and 3 of the communication integrity definition in section 

2.4.2.  The theorem states that if a program is well typed and there is an access on a component, then the 

sender is either that same component (no inter-component communication), or that component’s owner 

(case 2, parent-child communication), or the receiver component is unique  (case 1, unique 

communication).  Furthermore, if there is a method invocation through a connection, then the sender is one 

of the connected components, and there is some component that is the owner of all components in the 

connection, and that owner component declared a connect pattern to which the connection conforms (case 

3, connection communication).  A more formal statement of the theorem follows: 

Theorem [Control Communication Integrity]: If ( ) ,S,e  : TCTΣ --l  and 

θ ′ ′→S,  e  e , S--l  according to one of the rules R-INVK , R-READ, R-UNIQUEREAD, or R-WRITE, 

where the typing of the receiver is A, ,T : A Kθ θ∅ Σ �--, l , then 

( , ) ( , )owner ownerθ θ= ∨ Σ = ∨ Σ =� � � unique .  Furthermore, if such a reduction occurs 

according to the rule R-CXTINVK where the typing of the receiver is 

θ θ∅ Σ, ,T ( .P) : T�connect--, l , then �  ∈θ  and exists �o such that 

( ( ))oconnects′ ∈ ΣK .P �connect pattern , and   i∀ ∈� � , ( , )o iowner= Σ� �  and 

i i i′Σ <:( )  A  K� . 

 

Proof: The A
�  case is proved by a case analysis on A.  If A=unique , then the subtyping 

test in rule T-LOC implies that owner(� ,�)=unique .  If A=θ, then by rule T-LOC we have 

owner(�,�)=θ or owner(�,�)=unique .  Otherwise, rule T-INVK requires that �=θ. 

The ( .P).m(v)�connect  case is proved by noting that rule T-INVK checks that �  ∈θ , and 

the remaining conditions are guaranteed by rule T-CONNECT.  � 

The data communication integrity theorem covers cases 4 and 5 of the integrity definition in section 2.4.2.  

Consider a well-typed program where there is an access on a non-component object.  If the object is 
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unique  this does not represent inter-component communication, because the object is not shared.  If the 

object is lent  then we have lent communication (case 4). 

The interesting case is when the receiver is part of one architectural domain and the sender is part of some 

other architectural domain (case 5).   The data communication integrity theorem states that the architectural 

domains are linked in the architecture, a property that is verified in the store typing rule.  Thus, 

communication between domains conforms to architectural declarations.  More formally: 

Theorem [Data Communication Integrity]: If ( ) ,S,e  : TCTΣ --l  and 

θ ′ ′→S,  e  e , S--l  according to one of the rules R-INVK , R-READ, R-UNIQUEREAD, or R-WRITE, 

where the typing of the receiver is A, ,T , : A C<q>θ θ∅ Σ �--l , then either A=unique , or 

A=lent  or linked(Σ,adomain(Σ,θ),adomain(Σ,A)). 

 

Proof:  The cases where � is unique  or lent  are trivially valid. In the case where � is 

part of some domain A, by the conditions implicit in all typing rules, θ has type Tθ and A 

must be bound as a domain or ownership parameter of Tθ.  If A is owned, the property is 

trivially satisfied because owned is linked to itself.  If Tθ is a component type and A is 

one of its ownership domains, then the component’s owned domain is linked to A by 

default, as shown in the definition of linked.  If A is a parameter of a non-component 

object, the store typing rule guarantees that the architectural domain of the object is 

linked to the architectural domain of its parameter. � 

 

Type Soundness.  I prove type soundness using standard theorems of type preservation and progress.  

Type preservation states that if a program is well typed and reduces one step, without resulting in a cast 

failure or null dereference, the resulting program is also well typed and the resulting expression and store 

type is a subtype of the previous type. 

Theorem [Type Preservation]:  If ( ) ,S,e  : TCTΣ --l  and S,ee S, ′′→--lθ  then either 

: :,T T′ ′∃Σ < Σ <  such that ( ) ,S ,e  : TCT′ ′ ′ ′Σ --l , or else e’  has an error  subexpression. 

Before proving type soundness, a lemma is required stating that if a method is well typed, then when actual 

arguments of the proper types are substituted for formal parameters in the method body, the resulting 

expression is well typed in the appropriate surrounding context. 
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Lemma [Term Substitution]:   If this this 0{x:T, :T }, ,T ,  e  : T∅this null --l , 

( ) A E ′Σ = < >� � , ( )E [ ]  E<p>CT = …component class , and we have type substitution 

[ /p, / / ,v/x]′Ψ = owned, this� � �  such that ( ) ( )this <: TΣ Ψ� , v, ,T , v : T  <: (T)θ θ∅ Σ Ψ--l , 

and ( )b 0e e= Ψ , then b e, , A E< >, : T  <: (T)′∅ Σ Ψ� � --l e . 

 

Proof of Lemma:  The lemma is proved by induction on the structure of eb with a case 

analysis on the form of the expression. 

Case �: � must be one of the values v i substituted for one of the variables x i (including 

this ).  In this case, we know that , , : ( )vT , v T  <: Ti i iθ θ∅ Σ Ψ--l so the case holds. 

Case x  is impossible, because all variables in e0 have been substituted with values in eb. 

Case null :  Has the type NULL as before. 

Case error  is impossible since the original expression e0 and variables v  would not be 

well typed. 

Case  E <q>′new :  This expression will have the same type as before, with actual 

ownership parameters �  substituted for formal parameters q . 

Case e.f :  By the induction hypothesis, e is given a subtype of its previous type, 

modulo ownership parameter substitution.  Thus a superset of the original fields will 

exist, with the same types as before (modulo substitution), and so the whole expression 

will have the same type (again modulo ownership parameter substitution). 

Case e.f=e 1, e 2:  The induction hypothesis allows us to assume that e, e1, and e2 are 

given subtypes of their previous types, modulo ownership parameter substitution.  By the 

argument given above in case e.f , the typing of the assignment will go through.  Noting 

that the type of the entire expression is the same as the type of e2, we are done. 

Case (T C)e :  By the induction hypothesis, e is well typed.  The constraint on equality of 

alias annotations remains satisfied because the substitution of actual alias annotations for 

formals is consistent throughout the expression. 
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Case (v.P)connect :  The connect expression will be given the same type as before, except 

that values will be substituted for any variables in the type.  Thus, the tricky part of the 

case is ensuring that an appropriate connect pattern is declared in the component that 

owns the connected components.  To see that this is true, note that all of the variables in a 

connect expression must be owned, according to the rule T-CONNECT.  Since the 

substituted values must be subtypes modulo the substitution, the substituted values must 

be owned by the receiver �.  Since the receiver’s type must be a component type of the 

form Σ(�) = A K , by the other checks in rule T-CONNECT we know that the appropriate 

connect pattern is declared in connects(A K ) = connects(Σ(�)).  Furthermore, the actual 

component types in the connection must match those in the connect pattern, again 

because this is ensured by the check in rule T-CONNECT.  This concludes the case. 

Case e.m(e) :  The assumptions in the lemma and the induction hypothesis are sufficient 

to ensure that the arguments are well typed and that the method expression is given the 

same type as before the substitution.  The constraints on the type of the receiver are also 

unaffected by the substitution; for example, meaning(owned,θ) = owned = 

meaning(θ,θ) by design when θ is substituted for owned. 

Case A   e� �  is impossible if we only consider expressions that can appear in method 

bodies.  � 

Now, the proof of Type Preservation: 

Proof of Type Preservation Theorem:  By induction on the derivation of 

S,ee S, ′′→--lθ  with a case analysis on the outermost reduction rule used (one regular or 

error reduction rule may apply, in addition to any number of congruence rules). 

Case R-CNEW: We extend the store type to give � the type  C< >�unique , preserving the 

type of the resulting expression.  The store remains well typed because � is fresh and the 

values in the fields of � are initialized to null .  Also, the neighbor constraints in the T-

STORE rule are satisfied due to the precondition of the T-NEW rule and the assumption 

that the original store was well typed. 
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Case R-KNEW: Similar to case R-CNEW.  The main difference is that we also add 

appropriate domain  constructs to the store type for each instantiated domain. 

Case R-READ, R-UNIQUEREAD: Follows from store typing and the rule T-READ.  For rule 

R-UNIQUEREAD, we observe that the unique value is not duplicated since the field being 

read is overwritten with null .  Thus, the uniqueness condition in T-MACHINE is 

preserved. 

Case R-WRITE: Follows from store typing and the rule T-WRITE, similar to R-READ.  If 

the annotation B on the right hand side was unique , and the field on the left hand side 

has an owner, we may have to update the owner of the right hand side in the store type to 

refer to an object instead of to unique .  However, since the unique  annotation implies 

v  was previously unique in this case (due to the uniqueness clause in rule T-MACHINE), 

the store will still be well typed and will have a subtype of its previous typing.  If the 

field is annotated unique , we know from the typing rules that the right hand side is 

annotated unique  and is the only non-lent occurrence of that location in the system, so 

the uniqueness condition in rule T-MACHINE is maintained. 

Case R-CAST, R-NULLCAST and R-CONNECTCAST: These reductions only apply if the 

resulting expression is a subtype of the cast type, so the cases hold. 

Case R-INVK: By simultaneous induction over the operation of mtype and mbody, we 

observe that the actual method has the type attributed by mtype, modulo substitutions of 

ownership parameters, this , and owned.  By applying the rule T-INVK, the term-

substitution lemma, and the rule for well-typed methods, we see that the substituted 

method body eb’s type is a subtype of the type returned by mtype. 

If any of the actual arguments v  or the receiver � was unique , and the corresponding 

formal argument is annotated with an owner, we will have to update the store type so that 

the argument v has the relevant owner.  However, since v  was previously unique in this 

case, the store will still be well typed and will have a subtype of its previous typing.  The 

store operation updateG ensures that any domains that should be equated due to 

connections in the method body will have the same equivalence class representative in 

the store, thus maintaining the condition on domain equivalence in rule T-MACHINE. 
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We must also ensure that no unique  arguments are duplicated in the method body, in 

order to preserve the uniqueness condition in rule T-MACHINE.  Here we rely on the rule 

T-METH, which guarantees that no formal parameter appears in the body of a method 

more than once with annotation unique . 

The case is completed by observing that the context construct allows us to type the 

method body in the context of a new receiver class and instance. 

Case R-CXTINVK:  Similar to R-INVK, but we extend the induction on mtype and mbody 

to cover invocations on connect expressions.  The sender and receiver may have different 

locations representing a shared domain, and so we apply the domain equivalence check in 

rule T-MACHINE to verify that the locations representing the shared domain have the 

same equivalence class representative. 

Case R-CONTEXT: This case relies on the invariant that the context form can only exist 

when variables have been substituted with locations within the context expression.  This 

invariant is easy to show, because we do not permit the context form in source code, and 

the invocation rules that generate the context form do the appropriate substitution of 

values for variables.  In this case, the type of the value in the context expression cannot 

depend on the receiver class or instance, so the case holds. 

Type preservation for the cast error and null dereference error rules follows since these 

rules reduce to the error  expression, and it follows trivially for the congruence rules by 

the induction hypothesis. � 

Next, I prove progress, the property that a well-typed program is either a value, or an expression that 

reduces to another expression via one of the reduction rules. 

Theorem [Progress]:  If ( ) ,S,e  : TCTΣ --l , then either e is an irreducible value, or else 

S,ee S, ′′→--lθ . 

 

Proof:  The proof is by induction on the type derivation , ,T , e : Tθ θ∅ Σ --l  for e, with a 

case analysis on the last typing rule used. 

Cases T-CVAR, T-XVAR, T-LOC, T-NULL, and T-CONNECT: In all of these base cases, 

expression e is a value, so the property holds. 
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Case T-NEW: The typing rule ensures that the right number of ownership parameters is 

specified, so one of R-CNEW and R-KNEW applies. 

Case T-READ:  If the receiver is not a value, then RC-READ applies by the induction 

hypothesis.  If the receiver is null , E-READNULL applies, resulting in a null pointer 

error.  Otherwise, one of R-READ and R-UNIQUEREAD applies, depending on the whether 

the read is annotated unique , because the typing rule already checked the existence of 

the relevant field. 

Case T-WRITE:  If the receiver or the right hand side is not a value, then either RC-

RECVWRITE or RC-ARGWRITE applies by the induction hypothesis.  If the receiver is 

null, E-WRITENULL applies, resulting in a null pointer error.  Otherwise, R-WRITE 

applies because the typing rule already checked the existence of the relevant field. 

Case T-CAST:  If the cast expression is not a value, then RC-CAST applies by the 

induction hypothesis.  Otherwise, all possible cases are covered by the cast reduction and 

cast error rules. 

Case T-INVK:  If the receiver or one of the arguments is not a value, then either RC-

RECVINVK or RC-ARGINVK applies by the induction hypothesis.  If the receiver is null, 

E-INVKNULL applies, resulting in a null pointer error.  If the receiver is a location, 

simultaneous induction on the operation of mtype and mbody shows that the check of 

mtype in the typing rule guarantees that mbody will return a method body, so rule R-INVK 

applies. 

Finally, if the receiver is a connect expression, we apply a similar induction, but to ensure 

that a provided method exists matching the required one that was called, we must observe 

that rule T-CONNECT ensures a matching connect pattern in the architecture, and rule T-

PATTERN ensures that a provided method exists for every required method in the 

connected ports.  By this we know that rule R-CXTINVK applies, completing the case. 

Case T-CONTEXT:  If the right hand side expression is not a value, then RC-CONTEXT 

applies by the induction hypothesis.  Otherwise, R-CONTEXT applies. � 

Together, progress and type preservation imply type soundness—a well typed program will not halt unless 

it computes an irreducible value, or one of two possible run-time errors occur: a null dereference or a failed 

cast. 
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Uniqueness and Ownership.  The control and data communication integrity theorems each depend on 

uniqueness and ownership properties.  Thus, for communication integrity to be meaningful, we must ensure 

that unique  objects really are unique, and that the ownership relation is consistent. 

Informally the Uniqueness theorem states that locations annotated unique  really are unique (except for 

lent  references in the currently executing expression).  More formally, if a machine configuration is well 

formed, any location annotated unique  in the store type occurs at most once either in a field in the store 

or with a unique  annotation in the current program expression.  Any other occurrences of the location in 

the current expression must be annotated lent . 

Theorem [Uniqueness]: If ( ) ,S,e  : TCTΣ --l  then 

( ( ) ) ( )E< >       S e      occurs at most once in range other than in the formΣ = � ∪ lentunique � � � � . 

Proof:  This condition is checked in rule T-MACHINE. � 

The type rules already enforce consistency of ownership annotations within the store and the currently 

executing program expression.  For example, the rule T-STORE ensures that the values stored in an object’s 

fields have types that are compatible with those fields.  Similarly, the rule T-LOC checks to ensure that the 

annotation on the location is compatible with the type of that location in the store type. 

Although the type rules enforce consistency in a particular configuration of the abstract machine, they do 

not ensure that ownership annotations remain consistent over time.  The Ownership Soundness theorem 

states that once a location is given an owner, that owner doesn’t change when reduction rules are applied: 

Theorem [Ownership Soundness]: If ( ) ,S,e  : TCTΣ --l , ( )  E< >oΣ =� � � , and 

θ ′ ′→S,  e  e , S--l , then ( )  E< >o
′Σ =� � � . 

Proof:  This is a corollary of the type preservation theorem above. � 
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3.3 Summary 

This chapter formalized the core of ArchJava as ArchFJ, using a small-step term rewriting semantics.  

While simple enough to reason formally about, this core is expressive enough to describe realistic 

architecture examples and common Java implementation idioms.  I formally stated a theorem of 

communication integrity matching the informal definition of communication integrity from chapter 2, and 

proved that the ArchFJ type system and runtime system enforce it.  I proved the standard type soundness 

property, and stated uniqueness and ownership properties that are corollaries of soundness.  Proving 

properties of the formal model increases confidence in the correctness of the full ArchJava system. 

In the next chapter, I take a more practical look at ArchJava, using case studies to evaluate its 

expressiveness, its usability, and the benefits that it provides to software engineering tasks. 
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Chapter 4 

Evaluation 

Previous chapters have introduced the ArchJava language, and have applied a formal model to prove that 

the core of ArchJava’s type system enforces communication integrity.  There are many reasons to believe 

that the technical properties of ArchJava will prove useful, such as the acknowledged importance of 

developing a good design and adhering to it when building large systems.  However, these properties come 

at a cost, as ArchJava’s type system places constraints on the implementation in order to support efficient 

typechecking.  It is important to evaluate this cost, so that researchers and developers can make informed 

decisions about applying the techniques embodied in ArchJava.  Furthermore, as with any new tool, 

developers will have to learn how to use ArchJava effectively, to realize its potential benefits, and to work 

around possible limitations. 

In order to evaluate the costs and benefits of ArchJava, and to determine how it can be used most 

effectively, I performed an experiment and two case studies.  In all three cases, I began with existing Java 

code developed by a third party, and (for the case studies) an architecture also specified by the developer.  I 

then attempted to express the system’s aliasing patterns and/or architecture using the constructs of 

ArchJava.  This methodology is an effective way to test the expressiveness of ArchJava, because the code 

and architecture to be expressed is chosen externally, which lessens the danger of choosing the 

experimental goals to match what ArchJava can express.  It also gives one measure of the cost of ArchJava: 

the additional effort required to retrofit an existing Java program with ArchJava alias and architecture 

specifications.  Finally, the concrete experience of specifying program architectures in ArchJava yields 

some initial insight into how the language can be used effectively. 

The ideal way to explore the benefits of ArchJava would be through a case study tracking a project that 

uses ArchJava from the design stage, through implementation, and extending to a few significant program 

evolution tasks as well.  This evaluation strategy could confirm the hypothesized benefits of ArchJava in 

maintaining architectural conformance as a program evolves, and show the costs of the type system as 

program changes are made.  The evaluation in this chapter falls short of this ideal, although one of the case 

studies includes a few simple evolution tasks.  However, this is an important area for future work. 

Yet another evaluation strategy would be to conduct a controlled experiment evaluating ArchJava against 

other alternatives.  This strategy would provide more confidence in the observed benefits and costs of 

ArchJava.  However, the nature of ArchJava makes this experiment difficult to design.  The hypothesized 

benefits of architectural conformance show up primarily as a very large project is evolved over time, and it 

is difficult (and potentially expensive) to perform controlled experiments involving large projects and 
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significant time scales.  Furthermore, the information gleaned from case studies can be much more detailed, 

even if there is less certainty that the conclusions of the study will generalize to other situations.  Because 

of the cost of experiments, and because exploratory case studies provide more early detail on a system, I 

have left an experimental evaluation to future work as well. 

The case studies described in this chapter took place at varying points in the development of ArchJava.  For 

example, the Aphyds case study was done before the ArchJava compiler supported dynamic architecture or 

alias annotations—and the study might have been easier if dynamic architectures had been supported.  

Later, I returned to Aphyds and added alias annotations.  All of the case studies were done before I 

developed the general concept of ownership domains, which allow more precise descriptions of aliasing 

with only a few additional declarations.  While these snapshots do not represent a full evaluation of the 

final language presented in this document, they have shed considerable light on the properties of ArchJava 

and have been useful in directing the development of the language. 

The outline of this chapter is as follows.  First, to determine if ArchJava’s alias annotations are expressive 

enough to describe real Java code, I applied them to java.util.Hashtable , one of the more 

commonly used and complex classes in the Java collections library (Section 4.1).  Next, I evaluated the 

practicality and engineering benefits of ArchJava through two exploratory case studies.  The more thorough 

case study applied ArchJava to Aphyds, a pedagogical circuit-layout application (Section 4.2).  A second 

case study with Taprats, an application for designing Islamic tiling patterns, tested the dynamic architecture 

support in ArchJava (Section 4.3).  I summarize the evaluation in Section 4.4. 

4.1 Alias Annotation Expressiveness 

Goal.  The goal of the study was to address the following experimental questions: 

• Can the annotation system effectively express the aliasing invariants of collection class code? 

• How much effort is required to annotate existing code? 

• Can annotations be done locally, without annotating all transitively reachable code? 

 

Methodology.  I evaluated the AliasJava subset of ArchJava by annotating Hashtable  from the 

java.util  collection class library (from the JDK 1.2.1).  Hashtable  is an interesting test case for a 

number of reasons.  It is part of an industrial-strength library with many features and warts.  The class must 

distinguish different ownership domains for the keys, values, and possibly the entries in the Hashtable .  

Hashtable  is also one of the more complex pieces of the library, so it is a relatively challenging test 
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case.  The Flexible Alias Protection paper used a simplified version of Hashtable  as a running example 

in their paper, so this allows a partial comparison to related work [NVP98]. 

The original source code of java.util.Hashtable  was 934 lines of code, including comments.  I 

added alias annotations by hand to the Hashtable  code, attempting to express the aliasing semantics of 

the code with the simplest and most general annotations possible.  The goals of simplicity and generality 

are sometimes in conflict, and I discuss the tradeoffs in more detail below. 

One challenge in this case study was that Hashtable  depends on a number of other classes in the Java 

standard library.  Thus, in order to typecheck Hashtable , the compiler must assume annotations on these 

other library classes.  In this study, I tested a local annotation technique intended to allow the verification 

of the alias constraints within the Hashtable  code without annotating the entire Java standard library.  I 

annotated and typechecked Hashtable  in its entirety, but added only minimal, unchecked annotations to 

the parts of the standard library used by Hashtable .  The annotations added to Hashtable  are then 

sound if the annotations we added to the standard library are conservative. 

 

Results.  I was successful at annotating Hashtable  with alias types after making one change to the 

source code (discussed below).  In addition to modifying the code for Hashtable , partial annotations 

were added to 17 other classes, including java.lang.Object , ObjectInputStream  and 

ObjectOutputStream  from the I/O library, several interfaces and abstract classes in java.util , and 

seven exception classes.  In most cases I only had to annotate one or two methods from each external class, 

suggesting that it is practical to annotate only a local portion of a large system. 

The study took about 2 hours and 20 minutes of programming time, not counting occasional interruptions 

to fix problems with the ArchJava compiler.  This is a relatively small investment compared to the time 

spent developing this library, suggesting that the annotation system is practical for developing new code.  

However, it would still be time-consuming to add alias annotations to a very large system; a better solution 

is to infer the annotations automatically, or add annotations incrementally to just the most critical parts of 

the system. 

In return for this time investment, the benefits of the study include documentation of the aliasing 

constraints of Hashtable  (for example, it doesn’t mix keys and values), and confidence that the 

implementation correctly preserves these constraints.  While these constraints are obvious to anyone 

familiar with a hash table abstraction, this type of documentation would enable developers to use 

unfamiliar data structures more effectively. 
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Several excerpts from the source code highlight lessons learned from the study and suggest potential 

benefits of AliasJava.  For example, I decided to give Hashtable  three ownership parameters: one each 

for keys, values, and entries: 

public  class  Hashtable<key, value, entry> 
             extends  Dictionary<key, value> 
             implements  Map <key, value, entry>, 
                        Cloneable, 
                        java.io.Serializable { ... 
 

The choice of three ownership parameters is a balance between flexibility on the one hand and simplicity 

and comprehensibility on the other.  For example, I could have reduced the number of parameters by 

merging the entry  and key  parameters.  On the other hand, I could have added additional parameters 

also.  For example, Hashtable  has methods for returning the sets of keys, values, and entries.  The same 

set object is returned from these methods each time they are called, and so the type system needs to 

describe what ownership domain contains the sets.  I chose to annotate the keySet  method’s return type 

as key Set<key> , but instead, I could have added extra ownership parameters to Hashtable  to get a 

type of keyset Set<key> .  However, adding three extra ownership parameters to the hash table to 

represent the key, value, and entry sets would make the class harder to understand and use.  Default values 

for these extra parameters (e.g., keyset=key ) would alleviate this problem somewhat, but the parameters 

still add what seems to be unnecessary complexity.  This example illustrates that the best alias annotation 

for a piece of code is not necessarily the most general. 

The private inner Enumerator  class below is part of the original, unannotated code defining an 

Iterator  over the keys, values, and entries of the Hashtable : 

  private class  Enumerator implements  Iterator { 
    int  type; // KEYS or VALUES or ENTRIES 
    public  Object nextElement() { 
      Entry e = ...; 
      return  type == KEYS ? e.key : 
             (type == VALUES ? e.value : e); 
    } 
  } 
 

The same code is used for keys, values, and entries; the value returned by nextElement  is determined by 

the value of the type  flag.  Because I wanted to use separate ownership parameters for keys, values, and 

entries, I could not give this code a static type as it was.  Instead, I converted this code to always return an 

entry so that I could give it the alias type entry .  I then defined two wrapper classes that implement 

Iterator  and extract and return the key and value from the hash table entry returned by 

Enumerator.nextElement . 

The set of Hashtable  keys is implemented with a simple KeySet  class that illustrates how inner classes 

are handled in ArchJava: 
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  private class  KeySet extends  AbstractSet<key> { 
    public unique Iterator<key> iterator() lent { 
      return new KeyEnumerator( true ); 
    } 
    // other methods... 
  } 
 

In this code, class Keyset  can reference the key  parameter of the enclosing Hashtable  class even 

though KeySet  has no ownership parameters of its own. 

The class Collections  contains a set of static methods that are used by many of the classes in 

java.util : 

public class  Collections { 
  public static unique  Set<elements> 
    synchronizedSet<elements>( 
                         unique  Set<elements> s) { 
      return new  SynchronizedSet(s); 
  } 
 

The synchronizedSet  method is used by the Hashtable  to synchronize access to its key, value, and 

entry sets.  This method shows the need for method parameterization in the AliasJava annotation system: 

synchronizedSet  needs to be parameterized by the owner of the elements in the collection so that it 

can be used to synchronize sets with any element parameter. 

The comment for the method above states, “In order to guarantee serial access, it is critical that all access to 

the backing set is accomplished through the returned set.”  In other words, there should be no lingering 

aliases to the set passed to this method, because access through these aliases would not be synchronized.  

The original library did not enforce this constraint; however, I used alias annotations to enforce this 

constraint by annotating the set argument with unique . 

 

Problematic Classes.  As described above, I annotated a number of other classes in addition to 

Hashtable ; these annotations were not checked by the compiler, but Hashtable  was checked against 

the asserted annotations.  In general, the annotations we applied to classes other than Hashtable  were 

what we would expect to have used if the compiler had been checking those annotations as well.  The lone 

exceptions were certain methods of ObjectInputStream  and ObjectOutputStream .  The alias 

annotations expressed the conceptual semantics of these serialization-related methods (e.g., 

writeObject  accepts a lent  argument and readObject  returns a unique  object).  This conceptual 

semantics is incorrect, because the actual implementation of serialization methods stores objects internally, 

so that if an object is written twice to a stream, the reconstructed object will be read twice.  Although it 

would be nice to express the precise semantics of serialization in AliasJava, the type system is not powerful 

enough to model this.  However, annotating these library methods with unchecked alias types allows us to 

successfully typecheck clients of these classes. 
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Summary.  My experience annotating java.util.Hashtable  shows that the alias annotations in 

ArchJava are able to express some of the aliasing constraints of a small but complex body of existing Java 

code.  To the best of my knowledge, no previous type system supporting ownership-based encapsulation 

has been evaluated in practice on Java library code.  Showing that ArchJava’s alias annotations are 

practical and support reasoning in ordinary Java code is an important first step towards ensuring that the 

full ArchJava language is practical and beneficial.  The next two sections take another step towards this 

goal by evaluating the architectural features of ArchJava through case studies on real applications. 

4.2 Case Study: Aphyds 

In order to evaluate the practicality and engineering benefits of ArchJava, I used an exploratory case study 

to answer the following experimental questions: 

• Can ArchJava express the architecture of a real program of significant complexity? 

• How difficult is it to reengineer a Java program in order to express its architecture explicitly in 

ArchJava? 

• Does expressing a program’s architecture in ArchJava help or hinder software evolution? 

4.2.1 Methodology 

My approach to answering these questions was to translate a Java program into ArchJava, using the 

conceptual architecture provided by the program’s developer as a guide.  In addition to a direct answer to 

the first two questions for the chosen program and programmer, I hoped to gain some insight into the third 

question.  Other goals included learning about the conceptual architecture of Java programs, gaining 

practical experience using ArchJava, and refining ArchJava’s language design.  In the process of the case 

study, I formed hypotheses for future research, outlined in bold below. 

I looked for Java programs that would be at least 10,000 lines of code—large enough that a developer 

would have difficulty keeping it all in his or her head, and thus might benefit from an explicit software 

architecture.  To reduce any bias toward architectures easily expressible in ArchJava, I chose a program 

and architecture conceived and developed by a third party.  My choice for the initial case study was the 

Aphyds program described in the next subsection. 

I was the participant in the case study—at the time, a graduate student with five year’s experience of 

systems programming in Java.  Although I was the developer of the ArchJava compiler, I was unfamiliar 

with Aphyds and had little experience writing user interfaces in Java.  Thus, the study reflects a common 

reality of a programmer asked to evolve an unfamiliar system. 
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I reengineered Aphyds to express the conceptual architecture described by the developer.  After browsing 

the code to determine which classes corresponded to the components in the developer’s conceptual 

architecture, I converted these classes into ArchJava component classes.  The resulting architecture was 

finer grained than the developer’s conceptual architecture, so I grouped the component classes into higher-

level components. 

In order to gain insight into ArchJava’s support for software evolution tasks, I performed three 

experiments.  First, I analyzed the inter-component communication patterns in Aphyds, describing and 

categorizing each different message.  Next, I refactored the architecture to simplify and regularize these 

inter-component communication patterns.  Finally, I removed a defect from both the original source code 

and the ArchJava version of Aphyds. 

The next two subsections describe the reengineering process and the software evolution experiments.  The 

initial study was done on an earlier version of ArchJava, without alias annotations, so I also report on how 

the experience affected the ArchJava language design, and on a later expansion of the study to incorporate 

alias annotations as well. 

4.2.2 Reengineering Aphyds 

Aphyds, for Academic Physical Design System, is a pedagogical circuit layout application written by an 

electrical engineering professor for one of his classes.  Students are given the program with several key 

algorithms omitted, and are asked to code the algorithms as assignments.  The developer is an experienced 

programmer with a Ph.D. in computer science, but had no Java background prior to writing Aphyds.  The 

application code is 12,101 lines long, not counting the Java and Symantec libraries used. 

Figure 24 shows the developer’s drawing of the conceptual architecture of Aphyds on the left, which is re-

drawn on the right for clarity.  According to the developer, this abstraction allows him to evolve the system 

even though the code base is too large to hold in his head at once. 

 

Validating Aphyds’ Architecture.   I expected that this architecture would be generally accurate, although 

it might leave out some details.  The developer concurred, saying that all of the links in the architecture are 

present, but may be subtle to find.  Furthermore, the division between UI and functional classes is an 

important conceptual device for him, but he told me that this division would not necessarily be obvious 

from looking at the code. 

I decided to test this hypothesis by using the Reflexion Model technique [MNS01] to compare the 

connections in the developer’s conceptual diagram with actual communication patterns between classes in 

the source code.  To each of the developer’s conceptual components, I assigned one or more 



 76

implementation classes.  I ignored library classes as well as data structures shared by the whole application.  

I compared the call graph computed by a simple tool to the arrows in the developer’s diagram, reversing the 

direction of his dataflow arrows to reflect control flow in the opposite direction. 

Overall, the architecture was a good overview of communication in Aphyds.  However, the study revealed 

several minor missing communication paths in the architecture.  For example, although most calls in the 

application go from the user interface into the model, we found two callbacks going the opposite direction.  

I also discovered that the communication paths between the CircuitViewer  and the other viewer 

objects were actually bi-directional. 

Moreover, this architecture is also incomplete in some important respects.  It does not describe the 

multiplicity or temporal lifetimes of components.  It does not show the internal details of components—for 

example, the CircuitViewer component is made up of several panes and sub-windows that might be of 

interest to a developer evolving the program.  Several complex and messy multi-object communication 

protocols, dealing with diverse issues, are represented with single lines in the architecture. 

Although the developer’s conceptual architecture was informal and flawed in certain respects, this is a 

realistic example of common practice today.  Many developers do not define a formal and precise 
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Figure 24.  The architecture of Aphyds.  On the left is the developer’s original drawing, which has been redrawn 
on the right for clarity.  The architecture follows the Model-View design pattern, with the user interface above 
the line in the middle of the diagram and the circuit database and computational code below.  The user interface 
consists of the CircuitViewe r window and several subsidiary windows.  Below the line are a circuit database 
of Node and Net  objects and a set of computational modules that act on the circuit database.  The unlabeled 
arrows represent data flow, while the arrows labeled call represent control flow. 



 77

architecture, but instead communicate the structure of their applications through informal diagrams.  One of 

the motivations for ArchJava is to provide an easy way for developers to gain the benefits of a formal 

architecture, by embedding it in the code that they write.  My experience with the conceptual architecture 

of Aphyds is summarized by my first hypothesis, which corroborates findings in the Reflexion Model work 

[MNS01]. 

Hypothesis 1:  Developers have a conceptual model of their architecture that is 
mostly accurate, but this model may be a simplification of reality, and it is often not 
explicit in the code. 

Reengineering Process.  I decided to design a static architecture that follows the developer’s drawing as 

closely as possible.  Therefore, I proposed an Aphyds  component to encapsulate the whole application.  

The Aphyds  component would contain the UI components, and would connect them to an 

AphydsModel  component, which would contain a subcomponent for each unit in the lower half of the 

developer’s diagram.  I decided that the Node and Net  objects in the circuit database would remain shared 

between components; it would have been extremely unnatural to restrict them to within the Circuit  

component. 

Hypothesis 2:  Programming languages that prohibit sharing data between 
components are too inflexible to express the natural architecture for many 
programs. 

I proceeded to reengineer Aphyds to take advantage of the architectural features of ArchJava.  My 

technique was to choose one class at a time from the architectural diagram, and turn it into a component 

class.  I started with the Circuit  class, as this forms the central part of the architectural diagram.  I 

expected that this process would primarily consist of converting instance variables into ports or 

subcomponents, invoking methods on ports instead of instance variables, and connecting the ports 

appropriately in the architecture. 

The structure of the Aphyds implementation made this task more difficult.  I initially believed that the 

architectural drawing represented a set of objects whose membership didn’t change over the course of 

program execution.  This was in fact true of the user interface, but the circuit database and computational 

components were re-created each time they were read from a file or executed.  There were a number of 

methods that set instance variables in the user interface to point to these components; however, many of 

these methods also had side effects such as refreshing the screen. 

I decided to convert the system into a static architecture with components that persisted for the entire 

execution of the program.  My rationale was that this architecture would be simpler to reason about than a 

dynamically changing architecture.  Therefore, I transformed Aphyds to re-initialize old circuit data 

structures instead of creating new data structures each time the circuit was loaded.  I also separated out the 
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refresh logic from the instance-variable setting messages, so that the architectural connections could be set 

up at startup time, but the display would still work properly throughout program execution.  This 

reengineering process introduced a number of subtle bugs, partly because I did not recognize the dual 

nature of these messages until partway through the study. 

Hypothesis 3: Describing an existing program’s architecture with ArchJava may 
involve significant restructuring if the desired architecture does not match the 
implementation well. 

Reengineering Cost.  Due to the complexity of separating out the Circuit  component and my initial 

unfamiliarity with the application, this first reengineering step took a significant amount of time—about 9½ 

programmer hours, including time to fix several unintentionally injected defects. 

One of the reasons this task may have been difficult is that it was done in a single large step, involving 

significant application restructuring.  An important refactoring principle is to test a program repeatedly 

while making incremental changes, rather than making a large change all at once [FBB+99].  If I had first 

transformed the code into an equivalent Java program with a static structure, and only then converted 

Circuit  into a component class, I might have been able to detect and repair injected defects earlier and at 

a smaller cost. 

Hypothesis 4:  Refactoring an application to expose its architecture is done most 
efficiently in small increments. 

I found support for this hypothesis when transforming the remaining classes into components.  These 

smaller tasks went quickly, taking between 30 and 90 minutes each.  I spent a total of 30 hours working on 

Aphyds—15 hours converting the model into components, 8½ hours converting the user interface into 

components, and 6½ hours refactoring the resulting architecture (as described below).  This works out to 

approximately 2½ hours of work per KLOC.  The current code is 12,652 lines long—only 551 lines longer 

than the original application. 

Hypothesis 5:  Applications can be translated into ArchJava with a modest amount 
of effort, and without excessive code bloat. 

Further study is needed to validate this hypothesis on larger programs, and to determine how the amount of 

time spent in translation varies with the size of the application and the extent of architectural refactoring 

required. 

Final Architecture.  Figure 25 shows the ArchJava code that expresses the architecture of Aphyds.  

Although the case study was done before alias annotations were added to ArchJava, I have added them to 

the example for clarity.  Compared to the developer’s conceptual architecture, the final ArchJava 

architecture describes almost identical communication patterns within the circuit database and between the 

user interface and the database.  The multi-way communication between windows that was missing from 
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the original architecture but was present in the program has been consolidated into the window  port of 

Aphyds . 

public component class  Aphyds { 
  // user interface components 
  final owned FloorplanViewer floorplan = ...; 
  final owned  ChannelRouteViewer channelRoute = ...; 
  final owned  PlaceRouteViewer placeRoute = ...; 
  final owned  CircuitViewer viewer = ...; 
 
  // window event communication 
  private port window { ... }; 
  connect window,channelRoute.window, viewer.window, placeRou te.window, floorplan.window; 
 
  // command protocol 
  connect viewer.command, placeRoute.command, channelRoute.co mmand, floorplan.command; 
 
  // model components 
  final AphydsModel model = ...; 
 
  // protocols for communication with the model 
  connect  viewer.circuit, placeRoute.circuit, model.circuit;  
  connect  viewer.partition, model.partition; 
  connect  floorplan.floorplan, model.floorplan; 
  connect  placeRoute.place, viewer.place, model.place; 
  connect placeRoute.router, viewer.place, model.router; 
  connect channelRoute.channel, model.channels; 
 
  // the program’s starting point 
  public static void main(String args[]) { 
    new Aphyds().run(); 
  } 
  public void run() { viewer.setVisible(true);} 
} 
 
public component class  AphydsModel { 
  final owned  Circuit circuitData = ...; 
  final owned  Partitioner partitioner = ...; 
  final owned  Floorplanner floorplanner = ...; 
  final owned  Placer placer = ...; 
  final owned  GlobalRouter globalRouter = ...; 
  final owned  ChannelRouter channelRouter = ...; 
 
  public port  place { ... } 
  public port  partition { ... } 
  public port  floorplan { ... } 
  public port  circuit { ... } 
  public port  router { ... } 
  public port  channels { ... } 
 
  connect  circuit, partitioner.circuit, floorplanner.circuit , placer.circuit, 
          globalRouter.circuit, circuitData.main, c hannelRouter.circuit; 
  connect  place, globalRouter.place, placer.place; 
  connect  partition, partitioner.partition; 
  connect  floorplan, floorplanner.floorplan; 
  connect router, globalRouter.router; 
  connect channels, channelRouter.channels; 
} 
 
Figure 25.  ArchJava code for the Aphyds and AphydsModel components.  There are subcomponent 
declarations for each element in the user interface, as well as a model component that contains the 
computational code.  Connect declarations show communication patterns between components. 
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Figure 26 shows a visualization of the current Aphyds architecture, generated automatically from the 

ArchJava code.  The developer of Aphyds examined an earlier version of this diagram, and said that it 

captures his conceptual architecture well, including the separation between the user interface and the circuit 

database. 

The ArchJava architecture has a number of advantages compared to the original, conceptual architecture.  

ArchJava architectures are guaranteed to be complete, listing all method call communication between 

components.  The ArchJava architecture is guaranteed to stay up-to-date as the code evolves with changing 

requirements, and a visualization can be generated automatically.  Finally, it is easy to zoom in on an 

ArchJava architecture to look at the interior structure of a component, determine what methods are in each 

port, or examine how the methods are implemented. 

 

Alternative Architectural Choices.  In the study, I tried to implement the developer’s conceptual 

architecture as directly as possible in ArchJava.  However, an architect could have expressed any of several 

alternative Aphyds architectures using ArchJava.  For example, I could have factored the architecture by 

functionality, combining each user interface window with the logic that computes the information the 

window displays.  Alternatively, I could have followed the original source code more closely, creating and 

connecting the model elements on demand as circuits and windows are opened.  ArchJava is flexible 

enough to express these architectures, if the software architect deems them more appropriate. 

Aphyds

window

CircuitViewer

FloorplanDialog PlaceRouteViewer ChannelRouteViewer

AphydsModel

 
Figure 26.  A visualization of Aphyds’ architecture, automatically derived from the ArchJava 
source code.  Boxes represent subcomponents, and arrows represent inter-component control 
flow.  The oval denotes the window port, used for window management messages like screen 
refresh.  The circuit database and computational code in the developer’s diagram have been 
isolated in the AphydsModel  component. 
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4.2.3 Software Evolution 

In order to gain insight into using ArchJava for software evolution tasks, I examined three concrete 

problems identified by the developer: understanding communication within the program, refactoring the 

program to clean up its architecture, and fixing defects related to display updates. 

 

Program Understanding.  When I asked the developer if there were any problems with the current 

structure of Aphyds, he said that communication between the main structures was awkward, especially with 

respect to change propagation messages.  He said that this problem makes it difficult to add new features to 

the system.  This problem had a number of sources: the user interface was partly automatically generated, 

the developer was new to Java when he started to write the program, and the program grew gradually over 

time as features were added. 

My experience while reengineering Aphyds corroborated the developer’s assertions.  Using ad-hoc 

methods to manually trace method executions was ineffective, because different methods with similar 

names often did different things, and each method typically depended on the operation of several others.  In 

the original program, the communication patterns were obscure enough that it was hard to analyze and 

critique them. 

After I initially converted Aphyds to ArchJava, it became clear that the program’s communication structure 

remained inconsistent and unnecessarily complex.  Some of these problems had been introduced while 

refactoring Aphyds to express the architecture, while some were left over from the original source code.  

However, in the modified program, the port descriptions made communication patterns explicit, and so the 

communication problems became obvious simply by looking at the methods defined in the ports. 

Hypothesis 6:  Expressing software architecture in ArchJava highlights refactoring 
opportunities by making communication protocols explicit. 

I decided to systematically analyze the communication patterns to find opportunities for refactoring.  For 

each category of messages, I examined the source code to identify the messages’ purpose, the message 

implementers, the message invokers, and the invocation trigger conditions. 

ArchJava’s language constructs and its guarantee of communication integrity eased this communication 

analysis.  Simply scanning the required and provided methods in each port showed which methods are 

invoked by and which are implemented by each component.  Ports also focused attention on the subset of a 

component’s methods that are involved in inter-component communication.  The name of a port also gave a 

clue about the purpose of the port’s methods.  Connections showed which other component instances might 

implement a given component’s required methods. 
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Automated tools could have gathered some of this connectivity information from the original Java program.  

However, these tools would require sophisticated alias analysis to support the level of reasoning about 

component instances that is provided by ArchJava’s communication integrity.  Furthermore, ArchJava 

makes this connectivity explicit at the source code level, and an architect can use ports and connections to 

express design intent in a way that tools cannot duplicate. 

Hypothesis 7: Using separate ports and connections to distinguish different 
protocols and describing protocols with separate provided and required port 
interfaces may ease program understanding tasks. 

Refactoring Architectural Communication.  The communication analysis based on the ArchJava 

architecture yielded a number of refactoring opportunities.  For example, the window refresh logic had 

been identified by the developer as troublesome in the original application.  I found that there were several 

different refresh methods, each of which affected a subset of the windows.  I refactored these into one 

refresh method that accepted a list of windows to refresh, and modified the method call sites to refresh only 

the windows affected by the surrounding code. 

I found another refactoring opportunity in the data invalidation code.  When a new circuit is loaded into the 

program, data computed about the old circuit must be invalidated.  Originally, this was done from many 

different places in the user interface code, using different message protocols.  First, I refactored the 

invalidation methods to give them consistent names and semantics, and then I simplified the user interface 

code by moving the invalidation logic from the user interface into the model. 

After this refactoring step, communication in Aphyds was considerably easier to understand.  Refactoring 

eliminated a number of methods and even entire categories of communication.  The communication 

categories in the user interface that remained after refactoring include menu update, window refresh, and 

open/close/show window messages. Between the user interface and the model, the communication 

categories were user interface callback, command, data query, data update, and validity check messages.  

This experience suggests that the explicitness of architectures in ArchJava may help developers to identify 

and refactor poorly written code. 

 

Architectural Refactoring during Translation.   While reengineering Aphyds to express the developer’s 

architecture, I found that ArchJava’s communication integrity rules forced us to refactor problematic code.  

For example, class ChannelRouteDialog  enabled a menu item as follows: 

getDisplayer().getViewer().ChannelRouterMenuItem.se tEnabled(b);  

This code traverses a series of object links before calling a method on the final object.  It violates a design 

principle known as the Law of Demeter [LH89], which states, “Objects should only talk to their immediate 
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neighbors in a system.”  Code like this makes a program fragile, because this line may break if any object 

in the sequence of links is changed. 

In ArchJava, this code violates communication integrity, because it makes a method call across 

architectural boundaries without using a connection or a shared ownership domain.  Therefore, during the 

reengineering of Aphyds, I was forced to refactor this code to call a required method on a local port, which 

was connected through the architecture to the code that enables the menu item. 

Hypothesis 8:  Communication integrity in ArchJava encourages local 
communication and helps to reduce coupling between components. 

Fixing Defects.  Aphyds’ developer said that there were subtle defects in the window update code.  To 

investigate how ArchJava affects the defect-fixing process, I identified and removed a defect that was 

present both in the original Aphyds code and in the ArchJava version.  The defect occurred whenever the 

user changed the location of one element in a routed circuit.  The program did not re-compute the routing 

data, and so the routing display was left in an inconsistent state. 

This was a relatively trivial defect, and the solution was the same in both versions: I added a call to the 

doGlobalRouting  function from the code that moved the circuit element.  I repaired the defect in the 

ArchJava version first.  The repair involved adding a router  port to the component that moves the circuit 

element, calling doGlobalRouting  on that port, and connecting the port to the model in the 

architecture. 

Fixing the bug in the original Java version was conceptually simpler, since I didn’t have to create or link up 

the extra port.  To my surprise, however, the operation actually turned out to be more complex and took 

longer, because it was difficult to figure out how to get a reference to the GlobalRouter  object.  The 

following code shows the complex chain of objects we had to traverse to fix this bug: 

getDisplayer().placeroutedialog1.placeRouteDisplaye r1.getCircuitGlobalRouter()

.doGlobalRouting();  

This defect-fixing example is extremely simple and may not generalize to more complex defects.  The 

comparison above is confounded by many factors, including the order in which the defects were repaired, 

the confusing user interface source code in the original program, and my familiarity with the two versions 

of the source code.  However, it illustrates the potential of software architecture to ease software evolution 

tasks by making structure more explicit. 

Hypothesis 9: An explicit software architecture can make it easier to identify and 
evolve the components involved in a change. 
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4.2.4 ArchJava Language Changes 

While reengineering the Aphyds architecture, I discovered a significant shortcoming in the original 

ArchJava language design.  At first, the language did not include alias annotations to control object 

aliasing, and so it placed restrictions on control flow from objects into components.  For example, objects 

could not store references to components, and component classes could not inherit from object classes. 

These restrictions created a significant problem for framework libraries such as the Swing library [ELW98] 

used in Aphyds, because these libraries were not written using component classes, yet they must often 

invoke component methods.  This made it impossible to express any meaningful architecture for Aphyds, 

since all of the application’s control flow is driven by the user interface. 

Initially, I decided to extend the language by allowing port declarations within objects, and permitting 

components to make connections between objects and their own subcomponents.  This had the crucial 

advantage of allowing me to work incrementally, transforming one class at a time into a component class 

by connecting its ports to ports of the surrounding objects.  In the reengineering process, I made the 

database classes into component classes, and initially left the user interface classes as they were, adding 

ports for communication channels that led to the database.  However, the thorniest architectural problems in 

Aphyds were in the user interface interactions, and since I didn’t make the user interface classes into 

components, the architecture didn’t help with these problems at all. 

In order for ArchJava to aid reasoning about communication within the user interface, I decided to also 

allow component classes to extend regular classes and interfaces, so that legacy libraries could invoke the 

inherited methods of components through references to the appropriate superclass.  Although any ordinary 

object with access to a component’s ownership domain can invoke the inherited methods of that 

component, the new methods introduced in the component can only be called through declared connections 

in the architecture.  These are the methods that express the application logic that I felt was essential to 

capture and reason about with software architecture.  This solution conveyed the architecture of the user 

interface much more effectively, and was responsible for a disproportionate amount of the software 

engineering benefits I observed. 

4.2.5 Alias Annotations for Aphyds 

After designing and implementing AliasJava, I continued the case study by adding alias annotations to the 

Aphyds source code, with the goal of answering the following experimental questions: 

• Is the annotation system practical on realistic application code? 

• Does the annotation system help to encode application-specific architectural constraints? 
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Methodology.  In this study, I focused on the model part of Aphyds.  My goal was to express the data 

sharing relationships between the components in the architecture.  Thus, I applied AliasJava to the 

AphydsModel  class representing the overall model’s architecture, as well as the Circuit  repository 

and the five computational module classes.  These 7 large classes comprise 3550 lines of code.  I 

typechecked the alias annotations in these classes against annotations I added to parts of the interfaces of 

the Java standard library and the rest of the Aphyds application. 

Results.  The study took about three hours and 40 minutes—less than a quarter of the time that it took me 

to express the control-flow architecture of the same part of Aphyds.  The alias annotation system probably 

required editing more lines of source text than the earlier, control-flow architecture annotations.  However, 

the alias annotations did not require changing any existing source code, just adding annotations.  In 

contrast, expressing the control-flow architecture required significant source-code refactoring to make the 

code conform to the developer’s intended architecture. 

I discovered almost immediately that it was quite tedious to annotate the many method arguments 

(including this ) and local variable declarations that have a lent  annotation.  I have since made lent  

the default annotation for method arguments and locals. 

The annotations in the architecture show the style of sharing in this repository application.  The circuit 

database declares a single ownership domain data  that represents the circuit elements in the database.  

Since all of the other computational components act on these circuit elements, they also declare this domain 

in the ports they use to connect to the database.  I did not use the shared  annotation except for objects of 

type String .  String  objects are immutable in Java, so I did not feel that it was important to track their 

aliasing patterns precisely, and making strings shared  simplified the annotation task. 

The annotations in ports used for communication between components also show the semantics of the 

methods used for inter-component communication.  Methods that return computed data typically take 

lent  parameters and return results annotated either unique  or data .  In contrast, methods that set data 

usually take parameters with data  annotations.  These annotations also showed that the objects shared 

between components came from a small set of classes including circuit elements and data structures that 

reflect their organization into a circuit. 

4.2.6 Aphyds Case Study Summary 

I was able to capture the conceptual architecture of Aphyds effectively in ArchJava with a small amount of 

effort relative to the size of the program.  The language made the architecture explicit, and expressing 

communication protocols through ports helped to clean up communication in the program.  The ArchJava 

compiler helped me in the restructuring task by enforcing communication integrity: it wouldn’t let me 

forget any communication backdoors between components. 
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4.3 Case Study: Taprats 

In this section, I describe a case study that evaluates ArchJava’s support for dynamic architectures and 

component inheritance, and provides another practical evaluation ArchJava.  In the case study, I attempt to 

answer the following experimental questions: 

• Is ArchJava expressive enough to describe a real architecture whose precise structure is 

determined at run time? 

• How does the difficulty of reengineering a Java program in order to express its architecture vary 

with the program’s characteristics? 

• What might be the benefits of expressing a program’s architecture in ArchJava? 

4.3.1 Methodology 

My methodology in this case study was similar to the previous one.  I asked the developer to draw the 

conceptual architecture of Taprats, and then attempted to express the architecture of the program using 

ArchJava.  In the process of the Taprats case study, I refined the hypotheses formed in the Aphyds case 

study, and made new hypotheses, outlined in bold below. 

The next four subsections describe the process of reengineering Taprats, a comparison to the earlier 

Aphyds case study, an analysis of what we learned about the ArchJava language, and a summary of the 

benefits of reengineering Taprats in ArchJava. 

4.3.2 Reengineering Taprats 

Taprats [Kap00] is an application for designing Islamic star patterns.  The user first chooses a basic tiling 

pattern from a library, then defines the exact shapes used within the tiles, and finally renders the design in 

one of several styles.  Different windows are provided for these tasks, and the user can simultaneously 

work on different variations of a single design. 

The developer of Taprats is a computer science graduate student and an experienced Java programmer.  

Taprats won the grand prize in the 2000 ACM/IBM Quest for Java, and can thus be considered a model 

Java program with a quality design and implementation.  The application is 12,540 lines of Java source 

code, as measured by the Unix wc (word count) program, not counting the Java libraries used. 
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I asked the developer to draw the conceptual architecture of Taprats.  He drew two diagrams, one 

representing the user interface and one representing the internal data structures.  The left side of Figure 27 

shows the original diagrams, which are redrawn on the right side of the figure for clarity.  The user 

interface is a pipeline architecture of four windows, each of which passes an increasingly detailed data 

structure to the next window.  The internal view shows how data structures are contained within and 

produced from each other. 

 

Validating Taprats’ Architecture.  I began the study by examining the Taprats source code to try to 

determine how it corresponds to the developer’s conceptual architecture.  I discovered that the main  

method in the Program  class created the first user interface window, and that each successive window 

spawned the next one in the action code for the appropriate button. 

Although the conceptual architecture of the user interface showed a sequence of windows, the 

implementation structure was more like a nesting of window instances, where each window object is 

responsible for creating child window objects for the next tile design stage.  Thus, my experience with 

Taprats supports a hypothesis from the previous case study: 

Tiling 
Card 

User’s Point of View 

Design 
Editor 

Design 
Preview 

Decoration 
Editor 

Prototype 

Internal Po int of View 

Planar Map 
Vertices 

Edges 

RenderStyle 
RenderPanel 

Tiling 

Tiling Prototype 

 

Figure 27.  The architecture of Taprats.  On the left is the developer’s original drawing, which has been redrawn 
on the right for clarity.  At the top of the drawing is the user’s point of view, describing the four main user 
interface windows, what they look like on the screen, and what data structures are passed from one window to 
the next.  At the bottom are the internal data structures, beginning with a Tiling  that is nested within a 
Prototype , which first evolves into a Map and then has rendering style information added. 
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Hypothesis 1 (again): Developers have a conceptual model of their architecture that 
is mostly accurate, but this model may be a simplification of reality, and it is often 
not explicit in the code. 

Architectural Design Principles.  ArchJava provides two kinds of objects with which to build 

applications.  Component objects allow developers to specify the communication patterns within an 

architecture, but the compiler’s communication integrity checks limit the ways in which component objects 

can be used.  ArchJava also provides ordinary Java objects, which allow data to be shared according to a 

system of alias annotations, but which cannot be used to specify or check architectural properties.  Design 

principles are needed to help determine where to use component objects and where to use ordinary objects. 

Using the intuition that architecture is most important at the largest scales in the application, I began the 

study by creating a component representing the entire Taprats application, and then refined this architecture 

to increase its level of detail.  I developed the following guidelines to choose which application objects 

should be components in the architecture, and which are best left as ordinary objects: 

• Scale.  The larger the scale of the component, the more program understanding and evolution 

benefits may be gained by making its internal structure explicit.  This is primarily because other 

tools for program understanding (including browsing source code) are the least effective at large 

scales. 

• Sharing.  ArchJava supports a hierarchical view of software architecture, and therefore does not 

allow a component to be shared by two container components.  Thus, structures that are shared 

between components should be left as ordinary objects, unless the sharing can be easily replaced 

with method calls through the container component’s port. 

• Database objects. Singleton objects that encapsulate information shared by multiple components 

are good component candidates, forming a repository architecture style. 

• Data structures.  Small data structures that have many instances and are shared or passed between 

components are best left as ordinary objects.  ArchJava’s component mechanisms may be too 

heavyweight to use at these small application scales. 

• Cooperation.  If a set of objects communicate with each other in complex ways, making them 

component classes in an architecture may aid program understanding by making the 

communication patterns explicit as connections in the architecture. 

• Lack of communication.  ArchJava’s architectural features can be used to document the invariant 

that a set of components do not communicate directly with one another. 
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These principles are not orthogonal; a designer must make tradeoffs based on the applicability of the 

different design criteria, and the specific nature of the application.  I hope to refine these design principles 

based on future experience with ArchJava. 

 

Architectural Design.  Applying the design principles above, I initially focused on the architecture of the 

user interface, as shown in the top part of Figure 27.  My rationale was that the user interface is the highest 

level of scale in the application. 

As I reengineered Taprats, I used the architecture design guidelines to flesh out the initial architecture.  

Following the developer’s conceptual architecture, I made each user interface window into a component.  I 

then refined the architecture by making several window panes into subcomponents of their containing 

window, either because there was significant cooperation between the pane and the window, or because I 

wanted to document the fact that the panes were unshared and they did not communicate with other 

components.  Ultimately, I decided not to encode the bottom part of Figure 28 in the architecture, because 

these are data structures that are passed along the user interface pipeline. 

Parts of the user interface architecture made extensive use of inheritance, exercising ArchJava’s support for 

component inheritance.  For example, the user interface employs window panes of different classes 

depending on the tiling pattern chosen by the user.  Taprats’ design shows how inheritance can be useful in 

a component-based system. 

 

Code Restructuring.  As described above, each window in the user interface creates the next one, 

suggesting a series of nested windows rather than a pipeline of windows.  In order to make the developer’s 

conceptually linear architecture more explicit, I decided to make two structural changes to the application. 

First, I made the windows siblings in the architecture instead of being nested within each other.  At the 

time, ArchJava components could only be created by their container component, so I had to move all the 

application’s window-creation code into the Program  class.  This change complicated the application 

slightly, because each window had to call into the container component to create the next window.  

However, it has benefits as well: the new design shows the conceptual architecture more directly than the 

original design.  This “factory pattern” design [GHJ+94] also decouples the different user interface 

windows, because each window no longer specifies exactly which window will be created next and how it 

will be created.  This information is hidden within the container component, potentially allowing the 

interface to be modified at a smaller cost. 



 90

Hypothesis 10: Using ArchJava to express software architecture explicitly can aid 
information hiding by encouraging developers to reduce coupling between different 
components in their architecture. 

In a post-study interview, the Taprats developer said that this change made the ArchJava architecture 

appear more like his conceptual architecture, but thought that there should be some way to allow 

components to be constructed by their siblings in the architecture.   

Second, instead of passing tiling data from one window to the next via an argument to the latter window’s 

constructor, I created explicit connections between the windows, along which the data could be passed.  I 

made this change in order to express the developer’s conceptual architecture as directly as possible, and the 

developer agreed that the new design helped to accomplish this goal.  However, a serious drawback of the 

new design is that windows are not completely initialized when the constructor completes, but remain in a 

partially initialized state until the tiling data is passed via a separate method call.  Because of this, the 

developer said that he would not have made this second architectural change. 

In response to this concern, I added connection constructors to the language.  With these constructors, one 

window can request a connection to the next, passing all appropriate initialization parameters, and the 

implementation of the connection constructor in the containing component can create the next window with 

the appropriate parameters and connect the two directly.  This solution expresses the architecture directly, 

eliminates coupling between windows, and avoids the drawbacks of my original solution. 

 

Reengineering Process.  I performed the reengineering as a series of small refactoring steps, compiling the 

program and fixing introduced defects after every stage.  Thus, I never went more than an hour without a 

correctly running program.  This methodology was suggested in the Aphyds case study, after I tried to 

make many changes at once and ended up introducing several hard-to-repair defects.  I found that this 

methodology was effective at limiting defects in this study. 

To understand the process of reengineering a program to make its architecture explicit with ArchJava, I 

recorded the major refactoring steps I performed, and categorized them into the following refactoring 

patterns: 

• Change class to component class: When a class describes an object that is part of the architecture, 

change it into a component class.  This may require applying other refactorings in order to pass 

communication integrity checks. 

• Move creation to container component: When a component creates one of its sibling components 

in the architecture, create a port in the component and its container with a single method, 

requestCreate .  The container component creates the sibling in requestCreate , connects 
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it as appropriate in the architecture, and optionally returns a connected port to the original child 

component.  This refactoring is probably done more cleanly with the new connection constructor 

facility, mentioned briefly above, and presented in detail in other work [ASCN03]. 

• Change a field link into a connection: When a component has a field that refers to a sibling 

component, replace the field with a port that contains all of the methods invoked on the sibling 

component.  In the container component, connect the component’s port to a corresponding port on 

its sibling, and then convert method invocations on the field into invocations on the appropriate 

port. 

In addition to these major refactoring steps, I used several conventional refactoring patterns [FBB+99], as 

well as a few more minor refactoring patterns that are specific to ArchJava. 

 

Reengineering Cost.  I spent about 5½ hours reengineering Taprats, or about 30 minutes of work per 

thousand lines of code.  Of this time, approximately half was spent in design activity—understanding the 

structure of the original program, planning the conversion to ArchJava, considering architectural 

alternatives, and examining the final architecture for completeness at the end.  Because the developer of 

Taprats had already put considerable effort into making a clean design and implementation, a relatively 

small amount of time was spent actually implementing the architectural changes. 

The implementation time was divided roughly equally between modifying the source code to express the 

architecture, and repairing defects that were introduced in these refactoring steps.  The final program code 

is 12693 lines long—only 153 lines longer than the original application.  A total of 242 lines of code were 

added or changed in the process.  My experience supports a hypothesis from the previous study: 

Hypothesis 5 (again):  Applications can be translated into ArchJava with a modest 
amount of effort, and without excessive code bloat. 

 

Code Characteristics.  One particular code characteristic that stood out as I edited Taprats was that the 

Taprats code closely followed the Law of Demeter mentioned in the Aphyds case study [LH89].  The Law 

of Demeter can be thought of as the object-oriented analog of communication integrity, since ArchJava 

components may only communicate with the architectural “neighbors” to which they are connected in the 

architecture.  Because Taprats followed the Law of Demeter, when I converted an object into a component, 

the new component would often pass the compiler’s communication integrity checks as soon as I converted 

direct method calls into calls on ports.  In fact, only one class in Taprats violated the law of Demeter in the 

source code, and this class was more awkward to componentize compared to other classes in the system.  

Although the developer had not heard of the Law of Demeter by name, he said that he followed the same 
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principle in his programming, and the code that violated the law of Demeter had been an oversight.  This 

experience suggests: 

Hypothesis 11: It is relatively easy to use ArchJava to express the software 
architecture of an object-oriented program whose source code obeys the Law of 
Demeter. 

Final Architecture.  Figure 28 shows the ArchJava code that expresses the architecture of Taprats.  The 

complete ArchJava source code for Taprats is available at the ArchJava web site [Arc02].  Compared to the 

developer’s conceptual architecture, the final ArchJava architecture describes identical communication 

patterns between the user interface windows.  Although the case study was done before alias annotations 

were added to ArchJava, I have added them to the example for clarity. 

public component class  Program { 
 
  // the tiling selector window subcomponent 
  private final  owned TilingSelector ts = new TilingSelector(); 
 
  // connections between the windows 
  connect  pattern  TilingSelector.send, DesignEditor.receive { 
    send( owned TilingSelector sender, unique Tiling t) { 
      owned DesignEditor e = new DesignEditor(t); 
      connect (sender.send, e.receive); 
    } 
  } 
  connect pattern  DesignEditor.send, PreviewPanel.receive { 
    send( owned DesignEditor sender, unique  Prototype proto) { 
      owned PreviewPanel p = new PreviewPanel(proto); 
      connect (sender.send, p.receive); 
    } 
  } 
  connect pattern  PreviewPanel.send, RenderPanel.receive { 
    send( owned PreviewPanel sender, unique Map m, double  left, double  top, 
         double  width, double  theta, shared String name) { 
      owned RenderPanel r = new RenderPanel(m, left, top, width, theta, name); 
      connect (sender.send, r.receive); 
    } 
  } 
 
  // the main methods of the program 
  public void  run() { 
    owned Frame f = new Frame( "Taprats 0.3" ); 
    f.add( "Center", ts ); 
    // more code to finish setting up the window... 
  } 
 
  public static void  main(String[] args) { 
    new Program().run(); 
  } 
} 
 
Figure 28.  ArchJava code for the Taprats  component.    The main application method creates a Program
component and invokes run  on it.  The initial TileSelector  window is created in the field initializer for ts , 
and the run  method wraps it in a Frame .  Connect patterns show communication patterns between windows.  
Each connect pattern contains a connection constructor which creates and initializes the next window, then 
connects it to the previous window in the sequence. 



 93

Figure 29 shows a visualization of the Taprats architecture automatically derived from the ArchJava source 

code using a visualization tool.  I showed the developer this diagram, and he agreed that it captured his 

conceptual architecture well. 

 

Alternative Architectural Choices.  The Taprats study was directed towards implementing the 

developer’s conceptual architecture as directly as possible in ArchJava.  However, an architect could have 

expressed alternative Taprats architectures using ArchJava.  For example, the architect could have followed 

the original source code more closely, producing a nested hierarchy of components instead of a linear 

sequence of components.  Although this architecture would not show all of the user interface components 

and connections within one composite component, it would express the constraint that the user interface 

window instances form a tree with each window spawning multiple windows on the next level.  The 

architecture I chose does not eliminate the possibility that the windows form a dag, where data from two 

source windows might be combined into a later-stage window (this does not occur in practice, of course).  

ArchJava is flexible enough to express both architectures, depending on which the software architect deems 

more appropriate. 

4.3.3 Comparison to Aphyds Case Study 

I found that expressing the conceptual architecture of Taprats with ArchJava was straightforward when 

compared with the earlier Aphyds case study.  In all, I spent approximately one fifth the effort in this case 

 
Figure 29.  A visualization of Taprats’ architecture, automatically derived from the 
ArchJava source code.  Boxes represent subcomponents, and arrows represent inter-
component control flow.  The ovals are internal ports of the program component, which 
are used by the first three window components to create the next window in the sequence. 
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study compared to the Aphyds case study, despite the fact that the programs were of similar size.  Several 

application characteristics may have contributed to this difference: 

• Architecture Style.  The pipeline architecture style of Taprats, where data is passed from one 

component to another, has simpler communication patterns than the repository architecture style 

of Aphyds, where components access a shared database. 

• Architectural Connectivity.  Once spawned, Taprats’ user interface windows are completely 

independent: they access different data, and do not communicate in any way.  In contrast, Aphyds’ 

user interface windows show different views of the same data, and therefore the user interface 

architecture includes connections to pass updated data and window state. 

• Architecture Granularity.  The developer of Aphyds specified a fairly fine-grained architecture, 

and the control flow within the user interface encouraged us to make the architecture even more 

fine-grained than the developer specified.  In contrast, the Taprats user interface architecture was 

more coarse-grained, consisting of only four windows and their window panes. 

• Architectural Mismatches.  The structure of the original Taprats code was quite similar to the final 

architecture we expressed in ArchJava.  In the Aphyds study, the original code created several 

components dynamically each time a new file was loaded.  I chose to modify the code to reuse old 

components instead, which may have been a poor choice because it created an architectural 

mismatch [GAO95] between the original code structure and the final architecture.  This required 

me to restructure the code to support component re-initialization. 

• Code Interdependence.  As described above, Taprats had a well factored codebase that generally 

followed the Law of Demeter, making the architectural reengineering easy.  In contrast, the 

Aphyds codebase contained many dependencies across object structures.  Its frequent violations of 

the Law of Demeter required many reengineering steps before the compiler’s communication 

integrity checks were satisfied. 

Experience from the two case studies suggests that looking at these application characteristics may shed 

light on how much effort will be required to express an application’s architecture with ArchJava. 

4.3.4 Benefits of ArchJava 

The ArchJava architecture has a number of advantages compared to the original, conceptual architecture of 

Taprats.  ArchJava architectures are guaranteed to be complete, listing all method call communication 

between components.  The ArchJava architecture is guaranteed to stay up-to-date as the code evolves with 

changing requirements, and architectural visualizations can be generated automatically.  Finally, it is easy 
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to examine the source code to look at the interior structure of an ArchJava component, determine what 

methods are in each port, or examine how the methods are implemented. 

The process of reengineering Taprats to make its architecture explicit may also have made the code more 

maintainable and easier to change.  For example, the compiler’s communication integrity checks identified 

several violations of the Law of Demeter, enabling me to replace them with better-factored code.  Because 

ports encapsulate all control-flow communication between components, the components are more loosely 

coupled in the final version of the code, making them easier to evolve as requirements change.  More 

experience with evolving ArchJava programs is needed to determine if these potential benefits are realized 

in practice. 

In summary, I was able to capture the conceptual architecture of Taprats effectively in ArchJava with a 

small amount of effort relative to the size of the program.  This experience demonstrates that the language 

is flexible enough to describe dynamically evolving software architectures, and suggested improvements to 

the language design such as connection constructors. 

4.4 Summary 

I have evaluated the expressiveness an experiment adding alias annotations to a key class from the Java 

collections library.  I evaluated the practicality and the engineering benefits of ArchJava with two case 

studies on small but real applications: Aphyds and Taprats.  The results show that ArchJava is practical 

enough to document the intended software architecture of existing Java code with a fraction of the effort it 

takes to write the code in the first place.  Furthermore, the case studies suggest that the guaranteed accuracy 

of ArchJava’s architectural documentation provides real benefits for building and evolving software 

systems. 
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Chapter 5 

Related Work 

The ArchJava language builds on diverse fields of related work, including architecture description 

languages, component infrastructures, module systems, tools for enforcing design, and ownership and 

linear type systems.  ArchJava integrates ideas from many of these areas in order to provide a rich 

architecture specification language and a practical type system that guarantees architectural conformance. 

In the rest of the chapter, I discuss how each of these areas related to ArchJava.  At the end, I will 

summarize the aspects that make the ArchJava project unique. 

5.1 Architecture Description Languages 

Architecture Description Languages.  A number of architecture description languages (ADLs) have been 

defined to describe, model, check, and implement software architectures [MT00].  Many of these languages 

support sophisticated analysis and reasoning.  For example, Wright [AG97] allows architects to specify 

temporal communication protocols and check properties such as deadlock freedom.  The Armani system 

allows developers to declaratively specify the topological constraints of an architectural style, and then 

check concrete architectures against that style [Mon01].  SADL [MQR95] formalizes architectures in terms 

of theories, shows how generic refinement operations can be proved correct, and describes a number of 

flexible refinement patterns.  Rapide [LV95] supports event-based behavioral specification and simulation 

of reactive architectures.  ArchJava’s support for architectural dynamism is similar to that of Darwin, an 

ADL designed to support dynamically evolving distributed architectures [MK96]. 

The SADL system formalizes architectures in terms of theories, providing a framework for proving that 

communication integrity is maintained when refining an abstract architecture into a concrete one [MQR95].  

However, the system did not provide automated support for enforcing communication integrity. 

While Wright and SADL are pure design languages, other ADLs have supported implementation in a 

number of ways.  UniCon’s tools use an architectural specification to generate connector code that links 

components together [SDK+95]. C2 provides runtime libraries in C++ and Java that implement C2 

connectors [MOR+96].  Darwin provides infrastructure support for implementing distributed systems 

specified in the Darwin ADL [MK96].  Although the code generation tools are convenient to programmers, 

they do not automatically enforce communication integrity.  Furthermore, these tools support a limited 

number of built-in connector types, and developers cannot easily define connectors with custom semantics. 

Architectures in Rapide can be filled in with implementations in an executable sub-language or in 

languages such as C++ or Ada.  The Rapide system includes a tool that dynamically monitors the execution 
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of a program, checking for communication integrity violations [Mad96].  The Rapide papers also suggest 

that integrity could be enforced statically if system implementers follow style guidelines, such as never 

sharing mutable data between components [LV95].  However, the guideline forbidding shared data 

prohibits many useful programs, and the guidelines are not enforced automatically. 

 

Component Languages and Infrastructures.  A number of recent language proposals add explicit 

support for components and connections to object-oriented languages such as Java.  For example, 

ComponentJ [SC00] and ACOEL [Sre02] provide primitives for linking components together with 

connections.  However, these languages do not specify architecture explicitly, and thus do not enforce 

architectural conformance. 

Component-based infrastructures such as COM [Mic95], CORBA [OMG95], and Enterprise Java Beans 

[Sun00] provide sophisticated services such as naming, transactions and distribution for component-based 

applications.  While these infrastructures do not include mechanisms for explicitly describing software 

architecture, the Arabica environment [RN00] supports C2 architectures built from off the shelf Java Beans 

components.  This system shows how software architecture can be expressed in the context of component 

infrastructures, but verifying communication integrity of a Java Beans implementation is left to future 

work. 

5.2 Module and Effect Systems 

Module systems and module interconnection languages (MILs) support system composition from separate 

modules [PN86]. Jiazzi [MFH01] is a component infrastructure for Java, and a similar system, Knit, 

supports component-based programming in C [RFS+00].  These tools are derived from research into 

advanced module systems, exemplified by ML’s functors [MTH90] and MzScheme’s Units [FF98].  

Architecture description languages, including ArchJava, differ from module systems in that the former 

make data and control flow explicit through architectural connections, while the latter use import/export 

connections primarily to make names and types defined in one module visible to client modules [MT00]. 

Compared to ArchJava, advanced module systems have richer facilities for defining, manipulating, and 

controlling access to types.  These facilities support encapsulation, for example by restricting the definition 

of a type or a function name to within a single module.  An important area of future work is combining the 

strengths of advanced module systems with the architectural conformance property enforced by ArchJava.  

This combination will be challenging, in part because components are first-class objects that can be created 

and recursively linked together at run time. First-class, recursive module systems are currently an active 

area of research [FF98,CHP99,DCH03]. 
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Despite their strengths, existing module systems do not support architectural conformance.  For example, if 

module A defines a function f  and restricts its visibility to modules A and B, module C can still call f  if 

module B passes f  to C as an anonymous function.  This violates architectural conformance if modules A 

and C are not directly linked with an import/export relationship.  Similarly, if module A defines a type T 

that includes a reference but hides the definition from external modules, and A exposes the reference to 

external module C, then C can affect variables of type T by writing to the reference.  The key issue is that in 

existing module systems, restricting the visibility of names does not necessarily restrict communication.  

ArchJava requires all objects (generalizing functions and references) to be labeled with an ownership 

domain that controls access to those objects.  The subtyping rules for unique references ensure that only the 

architectural neighbors of an ownership domain can access objects in the domain.  Thus, in ArchJava, 

communication between components must be mediated by connections or shared ownership domains, 

enforcing architectural conformance. 

 

Effect Systems.  Effect systems show what functions might be called or what state might be affected by 

executing a function [LPZ02,CD02].  Effect systems typically show transitive effects in considerable detail, 

compared to the local, high-level communication overview that an architecture specifies.  The additional 

detail and transitivity that effect systems provide is useful for some engineering tasks, but comes at a cost 

in verbosity and scalability.  For example, ArchJava can summarize communication through a shared 

callback object using a single connection and ownership domain, whereas an effect system would describe 

all of the state that could be affected by execution of the callback—possibly a substantial fraction of the 

entire program.  Relative to effects, ArchJava provides a lightweight alternative for describing 

communication between components that is also less sensitive to program changes that affect effect 

specifications. 

5.3 Enforcing Design 

Type Systems.  Lam and Rinard have developed a type system for describing and enforcing design 

[LR03].  Their designs describe communication between subsystems (corresponding to ArchJava’s 

components) that is mediated through shared objects that are labeled with tokens (corresponding to 

ownership domains).  Their system does not model architectural hierarchy, and the set of subsystems and 

tokens is statically fixed rather than dynamically determined, as in ArchJava.  Their system requires whole-

program analysis, compared to the local typechecking rules in ArchJava, and it is unclear how their system 

handles Java features such as inheritance.  Furthermore, their system does not describe data sharing as 

precisely, omitting constructs like uniqueness and encapsulation via ownership.  However, they do describe 

a number of useful analyses, which would complement ArchJava’s more detailed architectural descriptions. 
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Analysis Tools.  Design structure can also be supported with analysis.  For example, the Reflexion Model 

system uses a call graph construction analysis in order to find inconsistencies between an architectural 

model and source code [MNS01].  Similar systems include Virtual Software Classifications [MW99] and 

Gestalt [SSW96].  These analysis-based approaches are more lightweight than ArchJava’s type system, but 

do not support hierarchical, dynamic architectures or precise data flow constraints. 

 

Aspect-Oriented Programming.  Shomrat and Yehudai have proposed using aspect-oriented 

programming (AOP) to enforce architectural design [SY02].  For example, they show how the constructs of 

the AOP language AspectJ can be used to enforce kernel architectures, where the kernel of a system has 

exclusive access to hardware resources and presents a limited interface to the rest of the system.  A similar 

approach [LLW03] has been used to check the Law of Demeter [LH89], a property related to 

communication integrity.  Although aspect-oriented programming gives programmers more control over 

the properties enforced by the system, the projects described above statically check architectures that are 

less precise than those supported by ArchJava. 

 

CASE Tools.  A number of computer-aided software engineering tools allow programmers to define a 

software architecture in a design language such as UML, UML-RT, ROOM, or SDL, and fill in the 

architecture with code in the same language or in C++ or Java.  While these tools have powerful 

capabilities, they either do not enforce communication integrity or enforce it in a restricted language that is 

only applicable to certain domains.  For example, the SDL embedded system language prohibits sharing 

objects between components [ITU99]. This restriction ensures communication integrity, but it also makes 

the language awkward for general-purpose programming.  Many UML tools such as Rational Rose 

RealTime or I-Logix Rhapsody, in contrast, allow method implementations to be specified in a language 

like C++ or Java [RSC00].  This supports a great deal of flexibility, but since the C++ or Java code may 

communicate arbitrarily with other system components, there is no guarantee of communication integrity in 

the implementation code.  The techniques described in this dissertation can be applied in tools such as 

Rational Rose RealTime to provide a static guarantee of communication integrity. 

Several of CASE tools, including Consystant and Rational Rose RealTime, generate connector code that 

automatically links distributed components together.  This connection code can range from stubs and 

skeletons for an infrastructure like CORBA or RMI to wires that connect different processors in an 

embedded system.  Like many of the technologies discussed above, these tools typically support a fixed set 

of connectors, in contrast to the flexibility of user-defined connectors in ArchJava. 
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5.4 Type Systems for Alias Control 

Ownership.  Ownership types, which describe a limited static or dynamic scope within which sharing can 

occur, can also be used to control aliasing.  Early work such as Islands [Hog91] and Balloons [Alm97] 

imposed strict rules on sharing objects between components, significantly limiting expressiveness.  A more 

recent variation, Confined Types [BV99], allows programmers to restrict object references to within a 

particular package; the system has been extended to support inference of confined types [GPV01].  

Universes [MP99] provides a combination of ownership and confinement, providing additional flexibility 

using read-only references that can cross universe boundaries. More recently, Clarke et al. and Banerjee et 

al. have used ownership types to reason about side effects and representation independence as well as 

aliasing [CD02, BN02]. 

The ownership annotations in AliasJava are most closely related to Flexible Alias Protection [NVP98] and 

its successors [CPN98,CNP01,Cla01].  Flexible Alias Protection uses ownership polymorphism to strike a 

balance between guaranteeing aliasing properties and allowing flexible programming idioms.  In Flexible 

Alias Protection, owned objects can only be accessed by their owner and its children.  However, this 

invariant prohibits iterators, which are not owned by a collection, yet must access its owned state.  Clarke et 

al. address this issue by introducing a new abstraction called ownership contexts: each object has an 

owning context (the context that owns it) and a representation context (the context that owns its 

representation) [CNP01, Cla01].  The key property of their system is a containment invariant, which states 

that if object o1 refers to object o2, then the representation context of o1 must be inside the owning context 

of o2. 

The ownership subset of AliasJava is quite similar to that of Clarke’s thesis [Cla01] in both expressiveness 

and the properties enforced.  We wanted to enforce an encapsulation property that relates objects directly, 

rather than one that relates abstract ownership contexts. Therefore, we chose to phrase the encapsulation 

guarantees of AliasJava in terms of capabilities that can be passed from one object to another using 

ownership parameters.  AliasJava’s capability-based encapsulation is slightly weaker than Clarke’s 

containment invariant because we place no restrictions on ownership parameters, but AliasJava is 

correspondingly more flexible.  Existing implementations of Flexible Alias Protection and its successors 

lack support for language features such as inheritance [Bok99, Buc00], and thus there has been no 

significant experimental validation of the design. 

Parameterized Race Free Java (PRFJ) uses the concept of object ownership and uniqueness to develop a 

type system to guarantee that a program is free of data races [BR01] and deadlocks [BLR02].  PRFJ was 

not designed to encapsulate owned objects.   
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Boyapati et al. proposed a system that supports safe run-time updates to code in object-oriented databases 

[BLS03].  Their system has a stronger notion of object encapsulation than ArchJava: owned objects are 

confined within the owner, its owned objects, and its inner classes.  The system is more restrictive than 

ArchJava: an object can delegate a capability to access its owned state to its other owned objects and to its 

inner classes, but not to trusted external classes and methods, even temporarily.  Thus, iterators can only be 

implemented as inner classes of the collection they iterate over.  Also, objects cannot be unique if they have 

non-shared, non-unique ownership parameters—prohibiting many uses of unique.  To my knowledge, the 

system has not been evaluated in practice. 

Ownership has also been used to reason about side effects [CD02], representation independence [BN02], 

and deadlocks and race conditions [BR01,BLR02]. Clarke et al. used the concept of ownership (without 

explicit annotations) to enforce some of the confinement rules in the JavaBeans specification [CRN03].  

Leino et al. use the related concept of data groups to describe different sections of an object’s state for the 

purposes of specifying effects [LPZ02]. 

 

Information Flow.   Another area of related work is systems that enforce the secure flow of information.  A 

representative system is JFlow [Mye99], which annotates each piece of data with a set of principals that 

own the data, and for each owner, a list of principals that are allowed to read the data.  The type system 

verifies that no principal can read a piece of data unless all the data’s owners have given read permission to 

that principal.  AliasJava is more lightweight than JFlow, because AliasJava labels references with a single 

owner instead of a list of owners and a list of authorized readers for each owner.  However, AliasJava only 

supports reasoning about direct information flow between components, not transitive flows from one 

component to another. 

 

Tools for Understanding Aliasing.  An alternative to using a type system to limit aliases is to use an alias 

analysis-based tool such as Lackwit [OJ97] to visualize the aliases within a program.  For answering 

questions about aliasing, AliasJava can be more precise than Lackwit, which does not treat data structures 

polymorphically.  Compared to Lackwit’s successor Ajax [OCa00], AliasJava allows more parametric 

polymorphism on methods, but its treatment of subtype polymorphism is less precise due to the constraints 

of AliasJava’s type system.  One benefit of expressing alias information in a type system is that the 

information is constantly available and constantly checked for consistency, and so there is no need to run a 

tool to take advantage of it. 
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Uniqueness.  Uniqueness types can be used to declare references that are unaliased [Min96, CBS98].  

Passing a unique object from one method to another avoids all aliasing problems, since the original method 

may not use the object again.  Boyland’s alias burying paper [Boy01] described how to implement unique 

pointers without a special destructive read operation, an innovation adopted by AliasJava.  Alias burying 

uses an effect system to enforce a stronger uniqueness invariant than AliasJava enforces: namely that when 

a unique field is read, all previous lent aliases to that field are dead.  Recently, Clarke and Wrigstad 

proposed external uniqueness, allowing internal pointers to a unique object as long as only one external 

pointer is present [CW03].  External uniqueness could be added orthogonally to AliasJava, but I have not 

yet done so because the making external uniqueness sound in the presence of threads is an open problem. 

 

Linearity.  Linear type systems [Wad90a] guarantee uniqueness and in addition can be used to track 

resource usage.  AliasJava’s lent  annotation, which allows temporary aliasing of a unique pointer, is 

similar to the let!  construct in Wadler’s system [Wad90a].  Linear types have been applied to check 

protocols defining the order in which library methods can be called, as in the Vault language [FD02].  

Leino et al. have also used uniqueness to specify and check side effects in a modular way [LPZ02].  A 

number of research efforts have used linear types to verify the correctness of explicit memory management 

using the concept of a region [TT94,CWM99,FD02,GMJ+02].  A region represents a group of objects that 

are deallocated together.  A region type is similar to an ownership type in that all objects must be accessed 

through their region.  Although supporting explicit deallocation is not a goal of AliasJava, the system 

makes two contributions relative to region types.  First, regions must be tracked linearly to enable explicit 

deallocation; AliasJava relaxes this constraint on owning objects, permitting more flexible aliasing patterns.  

Second, region types do not have an encapsulation model like AliasJava’s for protecting access to the 

objects in a region; any object that can name the region can access the objects inside it. 

 

Monads.  Pure functional languages use monads to achieve linearity when modeling state [W90b], serving 

a similar purpose to ArchJava’s unique qualifier.  Ownership domains can be viewed as a mechanism for 

reasoning about state that sits somewhere between monads and full-blown references: more flexible than 

the former yet more structured than the latter.  Software architecture’s role extends beyond reasoning about 

state, however—evolving any program, functional or stateful, requires understanding what functionality 

each part of the system implements, and how the system’s components work together to accomplish some 

task. 
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Other Type Systems.  Capabilities for Sharing [BNR01] describes a general capability-based aliasing 

model that can encode a number of other alias-control systems, including ours, as a special case.  The 

capabilities in their system are fine-grained and are dynamically checked; in contrast, AliasJava verifies 

statically (except for casts) that objects are only accessed through appropriate high-level capabilities. 

Systems such as Alias Types [WM00] and Role Analysis [KLR02] specify the shape of a local object graph 

in more detail than AliasJava.  The Alias Types proposal uses this information to safely deallocate objects, 

while Role Analysis is used to specify and check properties of data structures.  In contrast to these detailed 

specifications of a local alias graph, the goal of AliasJava is to provide a lightweight and practical way to 

constrain global aliasing within a program. 

Separation logic is an alternative way to designate separate parts of the heap and reason about how they 

may refer to one another [Rey02].  Different parts of the heap in separation logic are similar to ownership 

domains in AliasJava.  Although separation logic provides a much more detailed way to describe aliasing, 

AliasJava’s constructs are more lightweight, allowing developers to specify heap separation properties with 

just a few type annotations. 

5.5 Summary 

ArchJava builds on a great deal of previous work in software architecture, modules, infrastructure software, 

and type systems.  Three factors, taken together, set ArchJava apart from all previous systems: 

• A rich specification of software architecture that is hierarchical, instance-based, dynamically 

evolving, and includes detailed specifications of connector semantics and aliasing constraints; 

• A type system integrating uniqueness and ownership, and a formal proof that the core of the type 

system ensures that all run-time communication follows the architectural specifications; and 

• An implementation in a mainstream programming language and numerous case studies on non-

trivial programs, showing that the system is practical and provides significant engineering 

benefits. 
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Chapter 6 

Critique of the ArchJava Project 

In this chapter, I critique the ArchJava project: what worked well and what worked poorly in the ArchJava 

language design and experimental evaluation, and some lessons I hope to apply in future research. 

6.1 Language Design 

In general, I believe the ArchJava language design achieves its goals.  Modeling architecture as a hierarchy 

of component instances is very natural, and many existing ADLs model architecture in this way [MT00].  

AliasJava’s use of ownership domains for sharing data between components appears to be novel, but it is a 

natural object-oriented generalization of architectural shared variables, which were part of the SADL 

language [MQR95]. 

Embedding architecture into an implementation language and enforcing architectural structure using types 

is controversial, but I have shown that the technique offers benefits that no previous technique has.  

ArchJava is the first system that supports a rich architectural model and enforces architectural conformance 

in a general-purpose implementation language.  The type system is demonstrably practical.  Although using 

ArchJava clearly requires an investment of more effort than analysis-based architectural tools [MNS01], it 

also lets architects specify the architecture of a system in much more detail, and its presence in the source 

code provides developers with a constant awareness of architectural issues.  Further experience will 

indicate whether this tradeoff is worthwhile. 

Building on top of Java provided great benefits, but also significant drawbacks.  The depth of practical 

experience I got with ArchJava is almost wholly attributable to the ability to leverage existing Java 

programs.  Java was also a convenient vehicle for explaining what I had done, and makes the system 

potentially adoptable by practitioners.  On the other hand, using Java made a lot of things harder and uglier.  

The worst example is the dichotomy between the component world and the object world—two different 

kinds of entities with different rules.  Although I intend to continue working in mainstream languages, I 

also look forward to examining how to build a system that uses a unified construct for architectural 

modeling and object-oriented data modeling. 

The practical experience with Java programs has also enabled me to iron out many of the kinks in the 

language design.  For example, ArchJava’s support for components inheriting from objects, objects 

connecting to components, and components requesting connections to their peers in an architecture, were 

all features that developed in response to needs identified in case studies. 
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The biggest remaining problem in the language design is the lack of scalability in the architecture.  

Although the programs in my case studies are nontrivial, they are small enough that their architectures are 

fairly trivial.  Moving to larger, more complex architectures is likely to require hierarchy in ports and 

connections, which is not currently supported.  One mistake in the current language design is that port 

interfaces are defined within components, instead of being defined externally.  Rectifying this will be 

crucial to supporting larger systems, where port interfaces are reused in multiple places.  Finally, case 

studies have already shown that the language has inadequate support for “glue” connections, which bind 

the external port of a component to one or more ports of its subcomponents. 

6.2 Experimental Evaluation 

ArchJava is a real, robust system that has been used in tens of thousands of lines of code.  I have performed 

a number of exploratory case studies on real, nontrivial programs, including additional studies not 

presented here [ASCN03, Ric02].  The results of the case studies have been rich, and in some cases, 

surprising. 

Despite these successes, the experimental evaluation of ArchJava has had significant limitations, which 

must be corrected before claims of practicality and benefits can be fully substantiated.  The experience I 

have gathered has been on relatively small systems of up to about 10,000 lines of code.  However, I would 

expect the primary benefits of architecture to accrue in programs of over 100,000 lines of code.  

Furthermore, I was the subject in all of the case studies described in chapter 2, and none of the case studies 

provided much information about how ArchJava programs evolve over time. 

6.3 Lessons Learned 

In addition to the detailed lessons implicit in the criticism above, I learned some higher-level lessons about 

programming language and software-engineering research, from which I hope to benefit in the future. 

Lesson 1: Focus on technical properties early on in the design of a system. 

Answering the questions, “What properties should the system have?” and, “Why are those properties 

useful?” was crucial not only for getting the design right, but also for communicating that design to others.  

For example, an earlier focus on communication integrity in the overall ArchJava design, as well as a focus 

on the encapsulation properties enforced by AliasJava, would have enabled me to progress faster. 

Lesson 2: Gather experience in depth before breadth. 

Many language design papers are published with little in-depth experience—and, although these systems 

may have technical merit, this lack of practical evaluation raises serious questions about the true benefits 

and costs of the language designs.  I think the Aphyds case study is a good start, combining a realistic (if 
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small) program with evaluation in some depth.  However, I wish I had invested the time to do a 

longitudinal case study on a large program, perhaps reducing the breadth of the ArchJava project (omitting 

the work on connectors [ASCN03]) in order to get more depth of experience.   

Lesson 3:  Don’t hesitate to tackle controversial research, if there’s an achievable path to success. 

Risky, controversial research projects don’t always work out.  ArchJava was controversial in two 

constituent communities: many programming language researchers didn’t see the value of software 

architecture, while many software architecture researchers thought that embedding architecture into a 

language was a dead-end approach.  However, even though ArchJava is still contentious in some circles, 

there are signs that type-based approaches to architectural conformance are becoming a topic of interest in 

the broader research community [LR03,CRN03]. 

Controversial projects offer risks, but also the potential of significant rewards.  In the case of ArchJava, I 

found that because type systems had not been previously applied to architecture, there was an opportunity 

to statically enforce an important property, architectural conformance, for the first time.  This strategy of 

applying technical results from one area to an important unsolved problem in another is one potential route 

to making a broad impact.  Time will tell if ArchJava achieves the latter. 
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Chapter 7 

Conclusion 

The ArchJava language extends Java with constructs that model hierarchical, dynamically evolving 

software architectures.  Components communicate through explicit connections as well as through shared 

objects that are part of architecturally declared ownership domains.  ArchJava’s type system uses 

ownership and linearity to enforce structural conformance between architecture and implementation.  Thus, 

engineers can have confidence that the code behaves according to the architectural documentation, and can 

use this knowledge to build and evolve systems more effectively. 

I have evaluated the practicality of ArchJava with two exploratory case studies on real systems of nontrivial 

size.  These studies suggest that ArchJava is practical enough to be used on existing systems with relatively 

minor changes to the code, and that the language provides concrete benefits for software evolution tasks.   

In future work, I intend to improve the set of ArchJava development tools so that I can gather experience 

from outside users of ArchJava.  I will perform further case studies to see if the language can be 

successfully applied to programs larger than 100,000 lines of code.  I will also investigate extending the 

language design to enable reasoning about other architectural properties, such as enforcing an architectural 

style, checking temporal ordering constraints on component methods, and specifying and checking domain-

specific architectural properties.  Finally, I will use what I have learned with ArchJava to create other 

languages and tools that enforce architectural conformance in new domains. 
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